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performances has not been developed yet.

format as input.

coherent manner for such crossbreeding systems.

Background: For a two-breed crossbreeding system, Wei and van der Werf presented a model for genetic evaluation
using information from both purebred and crossbred animals. The model provides breeding values for both purebred
and crossbred performances. Genomic evaluation incorporates marker genotypes into a genetic evaluation system.
Among popular methods are the so-called single-step methods, in which marker genotypes are incorporated into a
traditional animal model by using a combined relationship matrix that extends the marker-based relationship matrix
to non-genotyped animals. However, a single-step method for genomic evaluation of both purebred and crossbred

Results: An extension of the Wei and van der Werf model that incorporates genomic information is presented. The
extension consists of four steps: (1) the Wei van der Werf model is reformulated using two partial relationship matrices
for the two breeds; (2) marker-based partial relationship matrices are constructed; (3) marker-based partial relationship
matrices are adjusted to be compatible to pedigree-based partial relationship matrices and (4) combined partial
relationship matrices are constructed using information from both pedigree and marker genotypes. The extension of
the Wei van der Werf model can be implemented using software that allows inverse covariance matrices in sparse

Conclusions: A method for genomic evaluation of both purebred and crossbred performances was developed for a
two-breed crossbreeding system. The method allows information from crossbred animals to be incorporated in a

Background

Production systems based on crossbreeding are predomi-
nant in pig and chicken breeding and take advantage of the
increased performance of crossbred animals compared to
purebred animals. For a two-breed crossbreeding system,
Wei and van der Werf (Appendix 2 in [1]) presented a
model for genetic evaluation using information from both
purebred and crossbred animals. The model provides esti-
mated breeding values for purebred (mating with own
breed) and crossbred (mating with the other breed) per-
formances that are different but correlated. The model is
particularly attractive since it can fit a breeding goal that
includes both purebred and crossbred performances (see
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Jiang and Groen [2]). This model is the starting point of
our paper.

Genomic selection [3] has offered a new paradigm for
livestock breeding and has been successfully applied for
selection within purebred populations [4-6]. Moreover,
genomic selection also offers greater opportunities for
incorporating information from crossbreds and selecting
for crossbred performance [7-9]. Genomic selection of
purebreds for crossbred performance was proposed by
Ibanéz-Escriche et al. [7] that used phenotypes on cross-
breds only, and a genomic model with breed of origin
specific allele substitution effects. The resulting breeding
values for purebred animals were for crossbred perfor-
mance. Although the study included genomic data, it
was less sophisticated than the Wei and van der Werf
model [1] since each animal had only one breeding value
and phenotype recordings in purebreds were not used.
In addition, it assumed that all relevant animals were

© 2014 Christensen et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


http://creativecommons.org/licenses/by/2.0

Christensen et al. Genetics Selection Evolution 2014, 46:23
http://www.gsejournal.org/content/46/1/23

genotyped, which would not be a very likely scenario in
practice.

In cases in which not all animals are genotyped, the
so-called single-step methods [10-12] provide a coherent
approach for genomic evaluation. These methods incor-
porate marker genotypes into a traditional animal model
[13] by using a combined relationship matrix that extends
the marker-based relationship matrix of VanRaden [14] to
non-genotyped animals, and they have been shown to per-
form well for genomic evaluation of dairy cattle [11,15],
pigs [16,17] and chickens [18]. Misztal et al. [19] provided
an extension with “unknown-parent groups” to allow for
different populations, but using such an approach on data
from both purebred and crossbred animals would assume
equal genetic variances in the two breeds and in the
crossbreds, and also that breeding values for purebred
and crossbred performances are the same. A single-step
method for genomic evaluation of both purebred and
crossbred performances has not been developed yet.

In a genomic model, when crossbred animals are geno-
typed, it is natural to split the additive genetic effect
of crossbreds into breed of origin specific genetic com-
ponents, as in Ibadnéz-Escriche et al. [7]. Each of these
components is a partial genetic effect, in the sense that
only breed-specific alleles are used. This use of the ter-
minology “partial genetic effect” is consistent with the
model of Garcia-Cortes and Toro [20], in which for multi-
breed analysis the additive genetic value is split into sev-
eral independent parts depending on their genetic origin,
with the variance-covariance structure of each part being
determined by a partial relationship matrix (constructed
from pedigree). A partial relationship matrix is a relation-
ship matrix that describes relationships only according to
genetic origin. From this point of view, partial relationship
matrices are key when constructing a single-step method
for both purebred and crossbred performances. However,
the Wei and van der Werf model is not formulated using
partial relationship matrices, and it therefore needs to be
reformulated for the purpose of incorporating genomic
information.

The aim of this paper is to present an extension of the
Wei van der Werf model that incorporates genomic infor-
mation. The extension consists of four steps: (1) the Wei
van der Werf model is reformulated using two partial
relationship matrices [20] for the two breeds; (2) marker-
based partial relationship matrices similar to VanRaden
[14] are constructed; (3) marker-based partial relationship
matrices are adjusted to be compatible to pedigree-based
partial relationship matrices, similar to Christensen et al.
[17] and (4) combined partial relationship matrices are
constructed using information from both pedigree and
marker genotypes, similar to the combined relationship
matrix of Legarra et al., Aguilar et al. and Christensen and
Lund [10-12]. This extension of the Wei and van der Werf
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model can be implemented using software that allows
inverse covariance matrices in sparse format as input.

Methods

The Wei and van der Werf model

Here, the Wei van der Werf model (Appendix 2 in [1]) is
presented. The two breeds are named A and B, and it is
assumed that all crossbred animals .48 have known pure-
bred parents. The number of animals in the pedigree is
n 4 and np for breed A and breed B, respectively, and the
number of crossbred animals is #_45. The model for the
phenotypes is a trivariate model

YA =XuaBa+Zras+en,
y8 = XBBi + Zgag + ep, (1)
YA = XaBBas +CcaB + eus;

where the vectors y 4, ys and y 45 contain phenotypes
on the breed A, breed B and crossbred AB animals,
respectively, and for the three breed groups A, B and
AB, the vectors X484, XpBp and X B s contain
fixed effects, and e4 ~ N(O, ail), eg ~ N(O, 01231)
and ey ~ N(O, aiBI) are the residual error vectors.
The n 4-dimensional vector a4 contains breeding values
for purebred performance for breed .4 animals (mat-
ing within breed .A), and matrix Z4 is an incidence
matrix assigning breeding values to records. Vector ap
and matrix Zg are defined similarly for breed 3. Finally,
the n45-dimensional vector c45 contains the additive
genetic effects for crossbred animals, and these are related
to the vectors of breeding values for purebred animals for
crossbred performance (mating with the other breed) as
follows

cap = 0.5(Zap.aca + Zapses) + ®as, (2)

where the matrices Z 45,4 and Z 45,3 assign purebred par-
ents to crossbred offspring, c 4 is an 7 4-dimensional vec-
tor containing breeding values for crossbred performance
for breed A animals (mating with breed 5 animals), ¢z
is an np-dimensional vector containing breeding values
for crossbred performance for breed B3 animals (mating
with breed A animals), and the vector ® 45 contains the
Mendelian sampling effects.
The genetic covariances are described by

A4 | _ (A
Var[CA]_z QA4

anB _ v(B
Var[CB]—Z X As,

Var [® 45] = Dus,

and the three vectors are independent. The matrices A 4
and Ap are the additive relationship matrices for breed
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A and breed B, respectively, ) denotes the Kronecker
product, and

(A) - (A)
ﬂ”=[¥zzaj,
2:21 222

REE
X1 Zy
are the 2 x 2 variance-covariance matrices containing the
genetic variances for purebred breeding values and cross-
bred breeding values, and the covariance between the
two, for breed A and breed B, respectively. The variance-
covariance matrix of the Mendelian sampling term is a
diagonal matrix D 45 with elements

Var(c4;)) + Var(csm())
(Dan)ii = Var(cagi) — @) . (i)
= (2 +3p)/2
— E A0 + 255 AB)m@m@) /4
= =01/2 — ANaso /D 5
+ Eég)(1/2 — (AB)m(i)m(i)/4),

where for crossbred animal i, f(i) denotes the breed A
parent and m(i) denotes the breed B parent.

The Wei and van der Werf model is an additive genetic
model in the sense that the breeding values for pure-
bred performance, a 4, ag, are additive genetic effects, and
the breeding values for crossbred performance, c 4, ¢, in
combination with the genetic effects c 45 are also addi-
tive genetic effects. The model therefore does not contain
dominance genetic effects explicitly. In practice, such an
additive genetic model may also partly capture dominant
gene actions and other non-additive gene actions [21]. The
fact that genetic correlations between purebred and cross-
bred performances are different from one would be due
to the presence of dominant gene actions in combination
with different allele frequencies in the two breeds [22],
in addition to genetic effects being different in different
environments. In addition, the model captures the gen-
eral level of heterosis in crossbred animals since it has a
seperate fixed mean effect for crossbred animals.

Wei and van der Werf [1] made an alternative formu-
lation of the model. The term c 45 is not of interest for
genetic evaluation when crossbred animals are not used
for breeding, and Wei and van der Werf reformulated the
model using € 43 = ® 45 + e 453 as the residual error term
for the crossbred phenotypes and thereby expressed the
model as a reduced model using only the terms a 4, ¢4, ag
and cp with breeding values for purebred animals. Note
that due to different levels of inbreeding of parents (see
formula (3)), the term € 45 has heterogeneous variance,
and assuming a constant variance is an approximation.
The reduced model can be implemented using software
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that handle multi-trait genetic models. For the purpose
of this paper, observed marker genotypes on crossbred
animals provide information on the Mendelian sampling
term @ 43, and the absorption of this term into the resid-
ual error term is therefore not well-suited. For this reason
we do not follow the reduced model in this paper.

Finally, the special case where 25“24)
be formulated as

= ES) = Y9y can

_aA_
*

Cl e o =
o = =P QXA
MR =
CA
B
| cas |

Var| ag | =

where * denotes artificial random vectors such that
the genetic variance-covariance matrix can be expressed
using a Kronecker product, and A is the usual additive
relationship matrix for all animals. This can therefore be
implemented using a combined pedigree across all ani-
mals. We will return to this special case in the Discussion
section.

Reformulated model

Here, the Wei and van der Werf [1] model is reformulated
using breed-specific partial relationship matrices, as in
Garcia-Cortes and Toro [20]. Partial relationship matrices
describe relationships according to genetic origin.

The starting point of the reformulation is the Mendelian
sampling term for the crossbred animals in formula
(2). This term can be split into breed of origin effects,
D5 = Qfﬁg + q’fz)%’ where Qfﬁg and foé are
independent. Formula (3) can be formulated in mat-
rix notation as Dz = Var(<1>£fé) + Var(<1>§fl)5), where
Var(@4}) = 557051, — 0.25diag(Zap,AA4Z] 5 1)
and Var(®0)) = 15 (0.51, ., —0.25diag(Z 45,8ABZY 5 ),
with I, ,,; being an identity matrix of size nm4z, and
diag(zAB,AAAZJTL\B,A) and diag(zAB,BABZJEB’B) denot-
ing diagonal matrices containing diagonal elements in
matrices ZAB,AAAZ:E\B,A and ZAB,BABZ};B,@ respec-
tively. In other words, we decompose the Mendelian sam-
pling term into Mendelian sampling terms for the A and B
gametes. The additive genetic effect for crossbred animals

in formula (2) can then be expressed as

A B
can = 3 + <
where c&“(g = 0.52AB,ACA + <I>£Z(2, Cfl)s = O.SZAB,BCB +
Qf}s, and c&“(g and Cfl)s are independent, i.e. the genetic

effects for crossbred animals is split into two breed of
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origin genetic effects. Thus, the model equation system
(1) can be written as:

Ya=XuBy+Zaay+ey,

y8 = XBBs + Zpas + es, (4)

(B)

YaB = XuBB A5 + C(A) +c 5+ eas.

Focusing on breed .4, the variance-covariance matrix of

the genetic effects C(A) becomes

Var(c(A)) = 02555 Z a5, AAAZY 5 4
2550 (051, 5 — 0.25diag(Z ap, AAAZ Y5, 1))

(A) (A)

=2y Aus
where A AB is a matrix with elements (A(A))” = 0.5 and
AYD)ii = 0.25(Zap, AAAZYy; 4)ir when i # 1, and the

A)
covariance matrix between CEL\B and ¢ 4 becomes

COV(C%, cyq) = 0-52§§)2AB,AAA-

Therefore, the variance-covariance matrix of breed A
specific genetic effects for crossbred performance equals

CA A
w3
CAB

where the symmetric (74 + n.45)-dimensional matrix

7T
AL _ i Ay 0'5AA(§;46,A
0.5Z a5, 4A Als

is the breed A specific partial relationship matrix in
Garcia-Cortes and Toro [20] (see below).

Similarly, the variance-covariance matrix of breed B
specific genetic effects for crossbred performance equals

(93] B
Var [ 5 } _ 5 DAB),
AB

where

A® = [ Az

A(B)

0.5A8ZY ;5
0.5Z 45,BARB

is the breed B specific partial relationship matrix (see
below).

Garcia-Cortes and Toro [20] presented a partition of
the variance-covariance matrix of additive genetic values
into breed-specific and breed-segregation terms, where
each term is a scaled partial relationship matrix. The par-
tial relationship matrices are constructed using recursive
formulas similar to usual recursive formulas for the addi-
tive relationship matrix [23]. For the two-breed terminal
crossbreeding system, the partition results in breed A
and breed B specific partial relationship matrices, but no
breed-segregation partial relationship matrices; we refer
to Garcia-Cortes and Toro [20] for the general case. The
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recursive formulas for the breed A specific partial rela-
tionships are:

A 2 A g
=S Afoma/

A A
A - i
where f (i) and m(i) are the two parents of animal i, animal
i’ is not a descendant of i, and f* is the breed .A propor-
tion of individual i (equal to 1 for purebred .4 animals,
0 for purebred B animals and 0.5 for crossbred animals).
To insure that partial relationship matrices are invertible,
Munilla-Leguizamén and Cantet [24] suggested to rede-
fine the partial relationship matrices such that only ele-
ments that are non-null by breed origin were included, i.e.
for the breed A specific partial relationships shown here,
the elements related to purebred B animals are excluded.
In this paper, we followed that suggestion, and it is not dif-
ficult to check that the matrix in (5) is indeed the breed A
specific partial relationship matrix. Using matrix formu-
lation, the breed A specific partial relationship matrix is
AW = TDTT where D is a diagonal matrix with elements

Dij =1~ (4] f(z)f(z) +4
and D;; = 0.5 — f(l)f(l.)/él when animal i is crossbred with

breed A parent f(i). For matrix T, the inverse matrix T~}
is a lower triangular matrix with diagonal elements equal
to 1 and in the lower diagonal, the only non-zero elements
are —0.5 for offspring parent elements. An example with a
small pedigree is in Table 1, and the corresponding partial
relationship matrices are in Tables 2 and 3.

The reformulation of the Wei and van der Werf model
is completed by introducing two artificial random vectors
aﬁffg and aﬁf}s such that genetic variance-covariance matri-
ces can be presented using Kronecker products. For breed
A, the genetic covariances are described by

+AYD /2,

m(i)i

(l)m(L))/éL when animal i is breed A,

ay
(A)
AU

cq
(A)
CaB

Var =3 ® AW,

Table 1 Example pedigree
Id Father

0

0

Mother Breed group

0 N O LMW N
w N~ O O

A O L1 O O N O
Ehwowws sk
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Table 2 Breed A specific partial relationship matrix A
for the pedigree in Table 1

Id 1 2 3 7 8
1 1

2 0 1

3 12 12 1

7 0 12 1/4 12

8 1/4 1/4 12 1/8 12

and similary for breed 5, the genetic covariances are
described by

apB
affl)% (B) (B)
=X AV,
o 0
(B)
Can

Var

Implementing the model requires inverses of the two
partial relationship matrices. The inverse of a partial rela-
tionship matrix (A“Y)~! can be expressed by the usual
formula

(A(.A))fl — (Tfl)TDflel,

and the usual methods for computing the diagonal ele-
ments of the partial relationship matrix and the inverse
partial relationship matrix in sparse format [25,26] can be
applied.

The model is a trivariate model with breed A and
B specific genetic effects for both purebred and cross-
bred performances, and can be implemented using
a software package for multivariate mixed models
that either explicitly can construct inverses of par-
tial relationship matrices from pedigree or alterna-
tively can use inverse covariance matrices in sparse
format as input (e.g., DMU [http://dmu.agrsci.
dk], WOMBAT [http://didgeridoo.une.edu.
au/km/wombat .php], ASReml [http://www.vsni.
co.uk/software/asreml], blupf90 [http://nce.
ads.uga.edu/wiki/doku.php]), MiX99 [http://
www.mtt.fi/BGE/Software/MiX99].

Table 3 Breed B specific partial relationship matrix A
for the pedigree in Table 1

Id 4 5 6 7 8
4 1

5 0 1

6 12 12 1

7 1/4 1/4 12 12

8 1/4 1/4 12 1/4 12
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Extending the model to incorporate genomic informa-
tion requires the construction of two combined breed-
specific partial relationship matrices expressed as inverse
matrices, and for this purpose, marker-based breed-
specific partial relationship matrices need to be con-
structed, and marker-based and pedigree-based partial
relationship matrices need to be made compatible. These
are the topics of the following subsections.

Marker-based partial relationship matrix
Here, a marker-based breed A specific partial relation-
ship matrix is constructed. The assumption here is that
the marker genotypes for crossbred animals are phased
such that it is known which allele originated from breed
A and which allele originated from breed B. The marker
genotype matrix m* for purebred .A animals has elements
m;l“ = —1, 0 or 1 if SNP j of individual i is 11, 12, or 22,
respectively. For crossbred animals, the breed .A marker
allele matrix q** has elements qf‘ = —0.5 or 0.5 if loci j of
individual i has breed A allele 1 or 2, respectively.

Constructing a marked-based breed-specific partial
relationship matrix similar to the marker-based relation-
ship matrix of VanRaden [14] is done by using the breed-
specific alleles only. The marker-based breed A specific
partial relationship matrix G is divided into submatri-
ces with indices denoting genotyped breed A and cross-
bred animals,

GA — { GY Gilis }
cA g« ’

AB,A S AB,AB

which are is defined as
m?A - 2pA - D1T)(mA - 2pA4 — 1T

A _
Gaa= oA ,
g _ =t =1t -t - DT
AAB = sA ’
(5)
w @t =@t = p1HEt - A - p1nT
GAB,AB - A ’

where the vector p** contains estimated breed A spe-
cific allele frequencies based on marker genotypes for
purebred animals and breed A specific marker alleles for
crossbred animals, and s is a scaling parameter. The
scaling parameter s is unspecified here since we adjust
the marker-based partial relationship matrix to make it
compatible with the pedigree-based partial relationship
matrices, similar to Christensen et al. [17] (see below).
The marker-based breed B specific partial relationship
matrix G® is constructed similarly. Matrices GV and
G® correspond to two different covariance structures,
while matrix G5 does not exist. For crossbred animals
that are genotyped, the genetic effect is the sum of two
effects, with variance-covariance matrices proportional to

fol;’ g and foz)s, i respectively. Since a genetic effect
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with a marker-based relationship matrix can be equiva-
lently formulated as a sum of allele substitution effects, the
genetic effect for crossbred animal i therefore equals

(A) (B)
CAB,i = €5, T CaB

p
=Y (g7 — (' = 1/2)a + (] — (o —1/2)af,
j=1

where /A, a? are independent breed of origin specific
substitution effects for SNP j = 1...,p. The model for
crossbred animals is therefore as described by Ibanéz-

Escriche et al. [7].

Compatibility of marker-based and pedigree-based partial
relationship matrices

Marker-based and pedigree-based partial relationship
matrices must be compatible [17,27,28]. In order to
achieve this, either the marker-based partial relationship
matrix or the pedigree-based partial relationship matrix
must be adjusted [28]. Here, we show how to adjust the
breed A specific marker-based partial relationship matrix,
G“Y, to the breed A specific pedigree-based partial rela-
tionship matrix for the subset of genotyped animals, Ag’f),
similar to Christensen et al [17]. The adjustment is of the
form

Ly 1,)T 21, (1y)T
GA _ g +[ m L)’ 3Ly (L,
d P 11, (1) T Ty (1)

= GYB + Ka,

with submatrices corresponding to purebred genotyped
and crossbred genotyped animals, 1 denoting a vector of
ones (with sub-index denoting the dimension: #; is equal
to the number of genotyped purebred animals and #; to
the number of genotyped crossbred animals); matrix K
being implicitly defined; and o and 8 are parameters that
need to be estimated. The form of the adjustment above is
explained in Appendix A. According to Christensen et al.
[17], the parameters « and S can be determined by solving
a system of two equations

A(ﬁ‘l) = GYB + Ka,
daY = GV g + dka,
where Ag’f), G™ and K denote averages of all elements

of the matrices A%) , G and K, and dA ﬁ‘), respectively,

and dAg?), dG"™ and dK denote averages of diagonal ele-

ments of the three matrices, respectively. Based on K =
(m1 +n2/2)%/(m + n2)* and dK = (m1 + na/4)/ (m + n2),
the resulting parameter estimates become

1A A (m+ma/2)?

A —dAp (n1+n2) (n1+nz /4)

= . (A (a2
(_A) _ 1 2
G dG (n1+n3)(n1+nz/4)
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A A
@Ay a6 Byom +my)

(n1 + n/4)

Note that parameter B is completely confounded with
the scaling parameter s** in (5), and the choice of the
scaling parameter is therefore irrelevant.

Combined pedigree-based and marker-based partial
relationship matrix

The combined partial relationship matrix (H“Y) can be
constructed similar to the combined relationship matrix
for purebred animals [10-12]. On the inverse scale, the
elements of the matrix for non-genotyped animals do not
depend on the marker genotypes. Therefore,

HA)™ = [(GEUA))I " A g] A,

(6)

with GEUA) =(1- a))GgA) + a)Agf). Parameter w is the
fraction of genetic variance not captured by the marker
genotypes, and in practice should be chosen to maximize
accuracy and minimize bias of the resulting estimated
breeding values [17].

Computation of the submatrix Ag’f) follows the Colleau
algorithm [29,30], which is based on the decomposition
A = TDTT shown in a previous subsection. The essen-
tial idea is to compute the ith column of Ag’f) by comput-
ing Ae;, where e; is a vector with element i equal to 1
and all other elements equal to 0, based on Misztal et al.
[30]. The algorithm consists of computing consecutively
r = TTe; by solving the sparse system (T~1)Tr = e; for
r, t = Dr, and finally A®¥We; = TTt by solving the sparse
system (T-HT(AWe;) = r for AWe;.

In summary, computations for creating (H*Y)~! are
straightforward. First, matrices A~ G and A%)
are computed, then G™ is adjusted, GYW = a -
a))GE,A) + a)A%) is computed, and finally matrices A%)
and GYY are inverted. The sparse inverse matrices
H™Y1 and (H®)™ ! are used as input when imple-
menting the extension of the Wei and van der Werf model.

Discussion

This paper demonstrates how to incorporate marker
genotypes into the Wei and van der Werf model for
genetic evaluation using both purebred and crossbred
information. The approach builds on using partial rela-
tionship matrices, and assumes that the marker genotypes
of crossbreds can be phased such that the breed of origin



Christensen et al. Genetics Selection Evolution 2014, 46:23
http://www.gsejournal.org/content/46/1/23

of alleles is known. Many different algorithms for phasing
have been developed [31,32], and it has been shown that
the accuracy of phasing depends among others on size of
the sample and relatedness of animals within the sample.

An alternative to using combined partial relationship
matrices would be to specify one combined relationship
matrix across all animals in the three breed groups A, B
and AB. As mentioned in the Methods section, this is
actually a special case of the model where )35“24) = Eg) .
With this approach, only one marker-based relationship
matrix would have to be created and there would be no
need to know the breed of origin of alleles. However, the
adjustment of the marker-based relationship matrix to
be compatible to the pedigree-based relationship matrix
becomes more complicated when both breeds are con-
sidered at the same time and, as mentioned, this model
is less sophisticated than the model developed in this
paper.

More complicated crossbreeding systems with three
breeds (mating crossbred A5 animals with purebred C
animals) or four breeds (mating breeds A and B, mat-
ing breeds C and D, and finally mating the two groups
of crossbred animals AB with CD) are typically used in
pig and chicken production. The three-breed crossbreed-
ing system was studied using pig data by Ibanez et al. [33],
using the Garcia-Cortes and Toro [20] decomposition of
the relationship matrix, and assuming breeding values
for purebred and crossbred performances were identical.
However, an extension of the Wei and van der Werf model
to the three-breed crossbreeding system can be formu-
lated as follows (only the vector containing genetic effects
for terminal crossbreds is shown),

_ (A (B) ©) (AB)
B = Cupyc t € unc T Canc T Cunc

where the genetic terms cEj)B)C, Cgi)B)c and CES‘)B)C are
related to the vectors containing breeding values for
(AB)C crossbred performance for purebred animals, c 4,
cs and c¢, respectively, by partial relationships. The
genetic term Cgﬁg;c is a breed-segregation term that is
independent of the other genetic terms, and has variance-
covariance matrix E((jg))cln( AB)C /2, where 2((:25))(: is a
parameter. Thus, the genetic parameter E((jg))c and the

error variance parameter afAB)C are not both identifi-

able, ngg;c can be incorporated into the residual error,

and the three breed crossbreeding model can be for-
mulated using three breed-specific partial relationship
matrices. Extending the three-breed crossbreeding model
to include observed marker genotypes is currently been
investigated.

The model presented in this paper is an additive genetic
model (in the sense that it considers and estimates substi-
tution effects), but in practice it may capture both additive
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gene actions and partly dominant gene actions. Using
purebred pig data, Su et al. [34] showed that when an
additive genomic model was extended to explicitly incor-
porate dominance genomic effects, improved accuracies
of predictions of both total genetic values and breeding
values were obtained. Using simulated data from cross-
bred animals, Zeng et al. [9] showed that an increased
response to selection was obtained with a genomic model
with dominance genetic effects compared to an additive
genomic model. Lo et al. [35] extended the Wei and van
der Werf model to include dominance genetic effects and
this model has been used in several studies on real data
[36,37]. The formulation of that extension is based on
extending the reduced model of Wei and van der Werf
(see the Methods section) by incorporating a dominance
genetic effect for the purebred phenotypes and a full-
sib family effect for the crossbred phenotypes. Similar
to the reduced model, this model formulation does not
directly contain individual genetic effects for crossbred
animals and is, therefore, not well-suited for incorporating
genomic information on crossbred animals. A marker-
based dominance relationship matrix was proposed by
Su et al. [34], but this would need to be extended to
a combined dominance relationship matrix, and further
extended to a crossbreeding system. Extending the model
in this paper to contain dominance genetic effects would
be an interesting topic for future research.

Conclusions

A method for genomic evaluation of both purebred and
crossbred performances was developed for a two-breed
crossbreeding system. The method allows information
from crossbred animals to be incorporated in a coherent
manner for such crossbreeding systems.

Appendix A

In this appendix, we present the explanation behind
the adjustment of the marker-based partial relationship
matrix. Marker-based relationships, with allele frequen-
cies equal to the observed ones, reflect relationships rel-
ative to the genotyped animals, whereas pedigree-based
relationships are relative to the base population of the
pedigree. The idea behind the adjustment of the marker-
based partial relationship matrix is to translate relation-
ships to become relative to the base population of the
pedigree, instead of being relative to the given set of
animals, as suggested by Powell et al. [38], and which
is also the idea behind the adjustment in Christensen
etal. [17].

For a given set of animals (purebred and crossbred)
and a given breed, let us assume that breed-specific
gametes are randomly assigned to animals (purebred ani-
mals receive two gametes each, and crossbred animals
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receive one gamete each), and let o be equal to twice the
gametic relationship coefficient. The partial relationship
matrix for these animals, A?, has entries

1+a/2 i = i’ purebred,

o i # i’ purebreds,

a/2 i purebred, i’ crossbred,
1/2 i = i crossbreed,

afd i # i crossbreds,

and can therefore be written as

a\|IL, O
7
2)[ 0 51,12} @
N [almamﬂ S 1m<1n2>T]
B8 PG POLIDS PRC PR

AP=<1_

with submatrices corresponding to purebred and cross-
bred animals, 1 being a vector of ones and I the identity
matrix (with sub-indices denoting the dimension: n; equal
to number of purebred animals and 7 number of cross-
bred animals). The matrix

5]

0 1L, |’

would be a partial relationship matrix when gametes are
unrelated (¢ = 0), and therefore the partial relationship
matrix relative to the given set of animals. Hence, the for-
mula (7) shows how relationships relative to the given set
of animals are related to relationships relative to the base
population of the pedigree. Therefore, it provides a for-
mula to translate a marker-based relationship matrix (with
allele frequencies being the observed ones) to have the
same base population as the pedigree-based relationship
matrix. As in Christensen et al. [17], we substitute 8 for
1 — /2 to incorporate the scaling parameter s in (5).
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