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Abstract

Background: Genomic selection methods require dense and widespread genotyping data, posing a particular
challenge if both sexes are subject to intense selection (e.g., aquaculture species). This study focuses on alternative
low-cost genomic selection methods (IBD-GS) that use selective genotyping with sparse marker panels to estimate
identity-by-descent relationships through linkage analysis. Our aim was to evaluate the potential of these methods
in selection programs for continuous traits measured on sibs of selection candidates in a typical aquaculture
breeding population.

Methods: Phenotypic and genomic data were generated by stochastic simulation, assuming low to moderate
heritabilities (0.10 to 0.30) for a Gaussian trait measured on sibs of the selection candidates in a typical aquaculture
breeding population that consisted of 100 families (100 training animals and 20 selection candidates per family).
Low-density marker genotype data (~ 40 markers per Morgan) were used to trace genomic identity-by-descent
relationships. Genotyping was restricted to selection candidates from 30 phenotypically top-ranking families and
varying fractions of their phenotypically extreme training sibs. All phenotypes were included in the genetic analyses.
Classical pedigree-based and IBD-GS models were compared based on realized genetic gain over one generation of
selection.

Results: Genetic gain increased substantially (13 to 32%) with IBD-GS compared to classical selection and was great-
est with higher heritability. Most of the extra gain from IBD-GS was obtained already by genotyping the 5% pheno-
typically most extreme sibs within the pre-selected families. Additional genotyping further increased genetic gains,
but these were small when going from genotyping 20% of the extremes to all phenotyped sibs. The success of
IBD-GS with sparse and selective genotyping can be explained by the fact that within-family haplotype blocks are
accurately traced even with low-marker densities and that most of the within-family variance for normally distrib-
uted traits is captured by a small proportion of the phenotypically extreme sibs.

Conclusions: IBD-GS was substantially more effective than classical selection, even when based on very few
markers and combined with selective genotyping of small fractions of the population. The study shows that
low-cost GS programs can be successful by combining sparse and selective genotyping with pedigree and linkage
information.

Background

Recently, genomic selection (GS) [1] has led to a para-
digm shift in quantitative genetic analyses and selective
breeding programs. GS was originally developed on the
basis that all selection candidates and training animals
are individually and densely genotyped. However, imple-
mentation of GS has been hampered in many species by
the cost of genotyping large numbers of animals. For
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species like dairy cattle, for which traditional selection
schemes focus mainly on the male candidates and neces-
sarily involve progeny testing, GS can often be imple-
mented more cost-effectively by genotyping a limited
number of male selection candidates and reducing the
need for progeny testing. In species with a higher female
fecundity, selective breeding focuses on both sexes.
Aquaculture breeding programs represent the most ex-
treme of these, in which both males and females have an
extremely high fecundity. Moreover, since some of the
most important aquaculture species are single spawners
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under certain conditions (e.g., Atlantic and Pacific sal-
mon), progeny testing is uncommon and organized
breeding programs are often based on sib-testing (for
invasive traits). Such breeding populations are usually
large, with many training animals and numerous selec-
tion candidates of both sexes. Genotyping costs are thus
the main obstacle for the successful large-scale imple-
mentation of GS in aquaculture species. Such costs can
be reduced by: (1) genotyping fewer samples (either
fewer animals or pooled samples) and (2) genotyping
fewer marker loci per sample (e.g., genotyping by se-
quencing regions of the genome). However, the chal-
lenge is to find a balance between genotyping costs and
accuracy of selection. Pooled genotyping will be investi-
gated in a future study and will not be further discussed
here. The current study focuses on the use of combined
selective and sparse genotyping in GS, which can greatly
reduce genotyping costs, but the potential advantage
of GS over classical pedigree-based selection in these
conditions remains uncertain.

The methods suggested by Meuwissen et al. [1] imply
that identity-by-state (IBS) information from all available
marker loci is used, i.e., a given marker allele is assumed
to have the same statistical effect on phenotype across
different familial backgrounds. Thus, all marker alleles
that are IBS are assumed to have the same effect, which
can be explained by the existence of linkage disequilib-
rium (LD) between the marker and one or more quanti-
tative trait loci (QTL). However, Luan et al. [2] showed
small differences in accuracies of genetic evaluations of
dairy bulls when using genomic identity-by-descent
(IBD) relationships within the known pedigree (traced
by markers) instead of the IBS relationships suggested
by Meuwissen et al. [1]. In the following, these two
methods of GS will be termed IBD-GS and IBS-GS, re-
spectively. Assuming base animals are unrelated, IBD-
GS uses only information from known, and thus close
relatives, which typically share long chromosomal seg-
ments IBD. In comparison, the (LD-based) haplotype
blocks found across a population are much shorter [3],
both for domesticated breeds and, even more so, for
large wild populations. Tracing large IBD-blocks within
a known pedigree does not require dense markers,
which makes IBD-GS less sensitive to marker density,
compared to the more widely used IBS-GS.

Although IBS-GS does not use the pedigree explicitly
(and thus IBD information), it does use the available
population structure, i.e., IBD relationships necessarily
imply sharing of marker alleles (but not vice versa).
Hence, in a domesticated population under artificial se-
lection, differences in IBS relationships between individ-
uals are largely explained by close relationships, rather
than by relationships due to common ancestors prior to
the known base population. For IBS-GS, it has also been
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shown that relationships with reference individuals have
a much higher effect on accuracy of resulting genomic
breeding value predictions than LD per se [4]. Further-
more, IBS-GS in pedigreed populations can be used to
predict genomic breeding values even in the absence of
LD, which shows that markers capture close relation-
ships among genotyped animals, and thereby affect ac-
curacy of predictions [5]. IBD-GS is expected to use this
information more accurately but at the cost of not using
LD that may exist between markers and QTL.

Use of the IBD-GS method has the potential to reduce
marker density, while maintaining the efficiency of GS
and taking the entire heritable variance into account.
Yet, the number of animals to be genotyped can lead to
a significant cost. Thus, in this study, our aim was to in-
vestigate whether IBD-GS can be effectively combined
with selective genotyping of selection candidates and
training animals. From this perspective, the advantage of
IBD-GS over IBS-GS is that the accuracy of predicted
breeding values depends on the number of genotyped
and phenotyped known relatives, rather than on geno-
typing of the whole population. Hence, the IBD-GS
method may provide accurate genomic EBV (estimated
breeding values) for specifically targeted families by pref-
erentially genotyping high-ranking families (based on
phenotypic/pedigree-based pre-selection). Furthermore,
the genotyping of training animals could focus on the in-
dividuals that are most informative for prediction of
Mendelian deviations from the mid-parent means, which
are the phenotypically most extreme sibs (in both direc-
tions); the intermediate sibs mainly provide information
about mid-parent means (which are easily estimated
with classical methods), and are thus less informative for
prediction of Mendelian deviations from the parental
means.

The aim of the study was to quantify whether a low-
cost IBD-GS scheme could provide a significant increase
in genetic gain for traits evaluated on sibs of selection
candidates, compared to classical selection schemes, as
applied in aquaculture breeding populations. The low-cost
approach combines sparse marker panels (or genotyping by
sequencing) with selective genotyping of a subsample of the
selection candidates and the phenotypically most extreme
training sibs of these candidates.

Methods

Simulation

The QMSim software [6] was used to simulate all data-
sets. All scenarios were replicated 50 times.

Genome

The genome was assumed to consist of 20 chromosomes,
each 100 ¢cM long, with 1200 potential marker loci and 80
potential QTL. Mutation rate for both markers and QTL
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was set to 3.010°. To simplify the simulation and statis-
tical analysis, only recurrent allele mutations were allowed,
and therefore only bi-allelic loci (similar to single nucleotide
polymorphisms or SNPs) existed. Loci (both marker and
QTL) with minor allele frequencies (MAF) below 5% (in
the founder population of the pedigree) were deleted. The
QTL effects were sampled from a gamma distribution with
shape parameter 0.4.

Population

A base population with effective population size N, =
500 was simulated for 5000 generations in order to
achieve mutation-drift balance. At generation 5000,
~4000 marker loci (~200 per chromosome) and ~ 240 to
280 QTL segregated with a MAF above 5%. From gener-
ation 5000, 100 males and 100 females were randomly
selected and each male was randomly mated with a sin-
gle female, resulting in 100 families, each consisting of
120 full-sibs (12 000 individuals per generation). The
same population structure was used to simulate the
three subsequent generations (5001 to 5003). Phenotypes
and genotypes (for a fraction of the animals) were stored
only for generations 5001 to 5003, which were used in
the subsequent genetic analysis. No selection was ap-
plied within these generations.

Data structure

Breeding values were defined as the sum of all QTL ef-
fects for each individual. The QTL effects were rescaled
such that the total additive genetic variance (variance of
breeding values summed over all QTL) was equal to
0.30 for all replicates (in generation 5001). Standardized
random residuals for phenotypes were sampled independ-
ently from a standard normal distribution and subsequently
scaled by the appropriate environmental standard deviation.
Phenotypes were defined as the sum of the breeding values
and the scaled random residuals. Two scenarios were simu-
lated, one with heritability h* = 0.10 and one with heritabil-
ity h®>=0.30. Datasets with different heritabilities were
generated from the same simulation datasets by changing
the residual standard deviation used for scaling of the stan-
dardized residuals. Hence, breeding values and genetic
variance were identical in the parallel replicates across sce-
narios with different heritabilities.

Of the 120 sibs in each family, 100 sibs were randomly
selected as training animals (phenotyped and were not
available for selection) and the remaining 20 were chosen
as selection candidates (non-phenotyped validation ani-
mals). Descriptive statistics of the data sets are given in
Table 1.

Genotyping
Genotyping was performed by sampling every 5™ marker
(the first and last marker of each chromosome were
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Table 1 Descriptive statistics of the simulation schemes

Number of chromosomes 20
Length per chromosome (Morgan) 1.0

Base population

Number of generations 5000
Mutation rate, markers 30%10°
Mutation rate, QTL 30%10°
Effective population size 500
Evaluated population
Number of generations 3
Genotyped markers per chromosome* ~40
Number of segregating QTL per chromosome* ~240-280
Genetic variance® 0.3
Residual variance 2.7 or 0.7
Heritability* 0.10r03
Training animals per generation 10,000
Selection candidates per generation 2000
Sires per generation 100
Dams per generation 100
Families per generation 100
Selection candidates per family 20
Training animals per family 100

*From base population generation 5000 (base population in the statistical
analyses).

always retained) from the complete dataset, ie, ~40
markers/Morgan (M). These markers were then used to
trace genomic relationships within the known pedigree,
as described in the next section (considering parents
from generation 5000 as base animals). To mimic a situ-
ation with selective genotyping, marker genotypes were
stored only from parents (generations 5001 and 5002)
and individuals of the phenotypically best (based on the
average phenotype of the 100 training sibs) 30 of 100
families in the last generation (generation 5003). It was
considered unlikely that candidates from the remaining
70 families would be selected (even with marker data,
which was confirmed by later results). Furthermore,
within the best 30 families, marker genotypes were
stored for all selection candidates (20 per family) and for
varying fractions of the phenotyped training sibs (the
top and bottom 5 to 20%, or all sibs). Thus, the total
number of genotyped individuals ranged from 900 to
3600 out of 12 000 individuals (per generation). The dif-
ferent genotyping strategies are described in Table 2.

Tracing relationships

Markers were traced through the pedigree by linkage
analysis using the linkage disequilibrium multi-locus it-
erative peeling (LDMIP) method [7] based on informa-
tion from all genotyped marker loci and the entire
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Table 2 Genotyping strategies for the different breeding
program scenarios with classical pedigree-based selection
(PED) and IBD-GS

PED IBD5 IBD10 IBD20 IBDall

Number of families 100 100 100 100 100
Selection candidates per family 200 20 20 20 20
Number of pre-selected families 0 30 30 30 30

Genotyped selection candidates 0 600 600 600 600

Genotyped training animals 0 545 10+10 20+20 100
per family

Total number genotyped 0 900 1200 1800 3600
Number of selected new parents 200 200 200 200 200

Minimum number of parental 20 - - - -

families

Only generation 5003 is considered.

pedigree (using parents from generation 5000 as base
population). The output was used to calculate IBD prob-
abilities at each genotyped marker locus [8] and the
genome-wide IBD relationship matrix was produced by
averaging over all loci. The IBD matrix also included
IBD probabilities of non-genotyped animals, using infor-
mation from relatives to estimate their genotypes [7].
Non-genotyped non-parents were consequently assumed
to have standard pedigree relationships with all their
sibs, but not necessarily with more distant relatives
(as their relationships are influenced by the relationships
among genotyped ancestors). Animals not related through
the pedigree were considered unrelated, regardless of their
marker genotypes.

Statistical models

Two statistical models, pedigree-based (PED) and IBD-
GS, were applied to all datasets and scenarios to esti-
mate BLUP (Best Linear Unbiased Prediction) breeding
values with the DMU software package [9]. Both models
had the following general characteristics:

y=1lu+Za+e

where y is a vector of all phenotypes, i is the overall
mean, a is a vector of additive genetic breeding values of
all animals included in the pedigree, e~N(0,I0?) is a
vector of random residuals, o2 is the residual variance
and Z is an appropriate incidence matrix. The two
models only differed in their distributional assumptions

for the additive breeding values:
PED : a~N(0,A0?),
IBD-GS : a~N(0,Ggpo2),

where 02 is the additive genetic variance, A is the pedigree-
based numerator relationship matrix, and Ggp is the

Page 4 of 8

IBD-based genomic relationship matrix, calculated as de-
scribed above. The true variance components were as-
sumed known.

Validation
To evaluate the IBD-GS method, it was compared to
classical pedigree-based selection methods. Animals were
ranked based on their predicted breeding values from the
PED and IBD-GS models, respectively. Predicted breeding
values (either PED or IBD-GS) were used to select 200
parents for the next generation. Genetic gain in the
first generation is expected to equal the average gen-
etic level of the parents deviated from the population
average in the previous generation. Hence, efficiency of
classical pedigree-based selection vs. IBD-GS using se-
lective genotyping was assessed by comparing the aver-
age true breeding values of the selected parents (from
generation 5003) for the two models. Since none of the
selection candidates had their own phenotype available
(only sibs with data) classical selection based on PED
implied family selection, i.e., all 200 selected individ-
uals would originate from only 10 families (with 20
candidates each) unless restrictions are imposed.
Hence, for classical selection, the number of selected
offspring was restricted to 10 per family, and future
parents were thus randomly sampled from the 20
top-ranking families. GS allowed individual selection
also for non-phenotyped (albeit genotyped) animals. In
practice, one would then select the best animals based
on EBV across families. The lowest-ranking sibs within
the best families are probably outperformed by the
highest-ranking sibs among the second-best families,
which implies that future parents are selected from a
wider range of familial backgrounds. Hence, for GS,
there was no need to put any restrictions on selection.
Results showed that future parents were indeed se-
lected from nearly all 30 pre-selected families.
Selection based on the two models was compared
based on the expected rate of inbreeding, which was ap-
proximated as [10]:

where ¢; is the relative genetic contribution of parent i
(appearing as parent for generation t) to generation £+ 1,
and k = 200 (total number of parents per generation).

The two models were also assessed for bias by regression
of true breeding values on predicted breeding values. A
regression coefficient equal to 1 indicates proper scal-
ing, < 1 indicates inflation and > 1 indicates deflation
of the predictions.
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Results

IBD-GS led to a substantial increase in genetic gain
over one generation, compared to classical selection
(Figure 1), especially with higher heritability. For a mod-
erately heritable trait (h?=0.3), the increase in genetic
gain with IBD-GS compared to classical pedigree-based
selection was substantial, with relative increases of 23,
28, 31 and 32% by genotyping the phenotypic most
extreme (top/bottom) 5, 10, 20%, and all training sibs,
respectively. Hence, most of the extra gain with IBD-GS
was already obtained by genotyping the top and bottom
5% training sibs for the 30 pre-selected families. For a
low heritable trait (h® = 0.1), the extra gain with IBD-GS
was lower (13 to 21%) but, again, most of the extra gain
was achieved with genotyping of the top and bottom 5%
of training sibs of the pre-selected families.

Although restrictions with respect to inbreeding were
imposed only for the classical selection scheme, the un-
restricted IBD-GS scheme had lower average rates of
inbreeding (1.04 to 1.13% vs. 1.25%) and new parents
were recruited from more (26 to 29 vs. 20) of the 30
pre-selected families (Table 3).

The average regression coefficients across replicates
(standard deviations) of true breeding values on pre-
dicted breeding values are in Table 4. Across replicates,
the pedigree-based model had an average regression co-
efficient close to the expectation (1.0) and was thus un-
biased. IBD-GS was also unbiased when all members of
preselected favorable families were genotyped (IBDall).
However, selective within-family genotyping of pheno-
typically extreme sibs resulted in slight, albeit significant
bias at the highest heritability, in terms of inflated
variance of genomic EBV (Table 4). Nevertheless, when
looking at single replicates, the pedigree-based model
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frequently deviated more from the expected regression
coefficient than the IBD-GS model.

Discussion

Genetic gain

The study shows that for traits that are evaluated on sibs
of selection candidates, substantial increases in genetic
gain can be achieved through IBD-GS using sparse
marker genotyping on small sub-samples of carefully se-
lected individuals, e.g., 900 to 1800 animals per gener-
ation from a population of 12 000 individuals. Using this
approach, only the best 30% of families were genotyped
(for both selection candidates and training animals). In
most cases, no candidates were selected from the lowest
ranking preselected family. Hence, genotyping more
families would probably not change selection decisions
for this population structure.

Most of the potential advantage of IBD-GS relative to
classical selection was already obtained when the 5% top
and bottom training sibs from the pre-selected families
were genotyped. Furthermore, there was little practical
difference in response to selection between genotyping
the 20% top and bottom vs. all training sibs. However,
when analyzing real data, extreme observations may be
artifacts and selective genotyping strategies using small
and highly selected samples are likely be more vulner-
able to such errors. Hence, careful quality control of the
data is particularly important when combined with se-
lective genotyping. Genotyping larger fractions (i.e. 10 to
20%) would increase robustness of the IBD-GS analysis.

Population structure and family production
In this study, both models required pedigree information.
For aquaculture species for which tagging is impossible at

1.4
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Figure 1 Genetic gain in GS-IBD and PED selection schemes. Genetic gain in genetic standard deviation units for classical pedigree-based
selection schemes (PED) and GS-IBD using sparse and selective genotyping for different numbers of genotyped phenotypically extreme sibs
(IBD# = genotyping the # phenotypically best and worst training sibs of each family, IBDall = genotyping all training sibs).

m Heritability = 0.1
m Heritability = 0.3

IBD20 IBDall




@degard and Meuwissen Genetics Selection Evolution 2014, 46:3
http://www.gsejournal.org/content/46/1/3

Table 3 Average number of contributing families and
estimated rate of inbreeding for classical pedigree-based
selection (PED) and IBD-GS

Heritability 0.10 0.30
Number of AF (%) Number of AF (%)
families families
PED 20.0 125 20.0 1.25
IBD5 26.1 113 286 1.07
IBD10 270 1.12 289 1.06
IBD20 274 1.1 29.2 1.04
IBDall 276 .11 29.1 1.05

young ages, it may be necessary to separate families until
they reach tagging size, which increases the costs of family
production and creates physical limitations in the number
of families that can be produced, and potentially introduces
common environmental family (tank) effects. Still, genome-
wide SNP markers (as in IBD-GS) can be used to trace par-
entage of individuals with high accuracy, even with com-
munal rearing e.g. [11,12]. However, when within-family
selective genotyping is to be used, prior knowledge of the
pedigree is required, ie., favoring separate rearing of fam-
ilies. Fortunately, separate rearing is already common prac-
tice in many existing aquaculture selection programs for
traits that are evaluated on sibs of selection candidates (e.g.,
in Salmonidae), and thus the structure necessary to apply
selective genotyping exists. In contrast, for mass-spawning
species, for which artificial stripping is difficult to apply, e.
g., gilthead seabream (Sparus aurata), communal rearing
may be the only practical alternative. Furthermore, mass-
spawning species typically have rather chaotic family struc-
tures (many small families, and uneven contributions of
parents), which makes within-family selective genotyping
difficult to apply, even when family background can be de-
duced (e.g., through an initial parentage assignment based
on microsatellites). Alternatively, parentage testing and
sparse genotyping for IBD-GS may be combined into one
genotyping test but then additional saving from selective
genotyping is not being used.

Table 4 Average (B) and standard deviation (SD) across
replicates of regression coefficients of true breeding
values on predicted breeding values for classical
pedigree-based selection (PED) and IBD-GS

Heritability 0.10 0.30

B SD [ SD
PED 0.963 0.198 0.991 0.126
IBDS 0964 0.155 0961" 0.088
IBD10 0965 0.145 0947 0.085
IBD20 0971 0.145 0948 0.080
IBDall 0993 0.146 1.020 0.086

P <0.05 for B<1; “P<0.01 for < 1; 7P <0.001 for < 1.
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Multi-trait selection

This study considered selection on a single trait but real
selection programs are often multi-trait and can include
more than one trait measured on sibs of selection candi-
dates. In such cases, selection of the families to be geno-
typed would be based on a total merit index. In some
cases, traits measured on sibs are recorded on different
subsets of training sibs. This would still allow the pro-
posed strategy for within-family selective genotyping to
be used for each trait separately, but would require
genotyping more animals. If multiple traits are recorded
on the same group of training sibs, sibs for genotyping
could be selected based on their total merit index.
These animals are not necessarily the most phenotypic
extremes for each trait but they are expected to be the
most extreme with respect to the aggregated genotype,
which is what we want to predict and genetically
improve.

Bias by selective genotyping

When genotyping is restricted to phenotypically extreme
sibs, estimates of genetic variation may be inflated,
resulting in biased EBV. However, results from a previ-
ous study indicate that when non-genotyped sibs are in-
cluded in the analysis through pedigree information (as
in the current study), accurate estimates of genetic vari-
ance can still be obtained for larger selectively genotyped
samples [13]. In the current study, the true genetic vari-
ance was assumed known (i.e., BLUP), which reduces
the risk of inflated variation of EBV. Still, a statistically
significant but small bias in terms of inflated variance of
EBV was detected with IBD-GS, but the limited magni-
tude of the inflation indicates that the bias would not be
a problem in practice. The bias detected was of similar
magnitude as previously reported for other GS ap-
proaches e.g. [14,15]. Furthermore, the pedigree-based
model (which was unbiased when averaged over repli-
cates) showed larger between-replicate variation. Hence,
for real data, pedigree-based evaluation may actually
give larger scaling errors than IBD-GS using selective

genotyping.

Inbreeding

Although there were no restrictions on inbreeding and
genetic gain was faster, inbreeding rates were systematic-
ally lower with IBD-GS than with pedigree-based selec-
tion schemes. Here, the expected rate of inbreeding was
estimated over only one generation of selection. In the
longer term, differences between the two methods are
expected to be more substantial and in favor of IBD-GS
because pedigree-based selection for traits measured on
the sibs will favor co-selection of relatives. Furthermore,
imposed recruitment of parents of less favorable EBV, as
was done for the pedigree-based program, can reduce
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inbreeding in the short term but the long term contribu-
tion of such parents may be low. In the IBD-GS scheme
parents were solely selected based on EBV, which is ex-
pected to give more even long-term genetic contribu-
tions of the selected parents compared to a classical
selection scheme imposing selection of genetically infer-
ior parents.

Genetic variability

It has been stated that GS is particularly useful for traits
with low heritability [16], which is indeed likely to be
true for traits that are recorded directly on selection
candidates as well as on sibs. With classical selection
for traits of high heritability, individual phenotypes will
compensate for the lack of precision achieved with sib
data. For a trait measured only on sibs, the extra genetic
gain from IBD-GS over pedigree-based selection is more
likely to increase with increasing heritability. This is be-
cause, with pedigree-based selection, the EBV of all se-
lection candidates is set equal to their mid-parent EBV,
regardless of heritability, while IBD-GS allows estimation
of Mendelian deviations from this mean, even without
individual phenotypes. In the current study, mid-parent
means are expected to be accurately estimated in both
models, even for traits with low heritability because of
the large number of phenotyped offspring (100 per family),
while accuracies of the estimated Mendelian sampling
deviations from these means (predicted in IBD-GS) are
expected to be greater with high heritability. As a conse-
quence, the extra gain from IBD-GS increases with increas-
ing heritability of the traits evaluated on sibs. The greater
benefit of IBD-GS for traits with higher heritability is
evident from our study; the classical pedigree-based model
showed similar genetic gains (6% different) for traits with a
low or moderate heritability, while for IBD-GS, genetic gain
was substantially greater (15 to 16%) for traits with moder-
ate versus low heritability.

This study considered genetic gain over only one
generation, starting from a previously unselected popula-
tion. In practice, selection is usually continued over sev-
eral generations, and the Bulmer effect would (as long as
selection continues) reduce between-family variation in
the population [17]. As a consequence, the ability to use
within-family (Mendelian) genetic variation will be more
important for future generations (and more so if restric-
tions are imposed on inbreeding). Thus, because clas-
sical sib-selection does not use within-family variation
the relative advantage of GS is expected to increase if
selective breeding is applied over multiple generations.

Sensitivity to assumptions

Genomic selection simulation studies are typically based
on several idealized assumptions, including: (1) QTL ef-
fects are strictly additive; (2) all heritable variation is
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explained by the additive QTL effects, (3) all alleles
originate from a single base population, which implies
consistent population-wide LD (no segmentation of the
population), and (4) marker and QTL alleles follow simi-
lar frequency distributions. In practice, these assump-
tions do not necessarily apply: many populations have
mixed origins, QTL and markers do not necessarily fol-
low the same distributions (e.g., QTL loci are often
subjected to selection) and non-additive (dominance
and epistatic) genetic effects exist. Through sexual
reproduction and recombination, non-additive effects
are often not passed on to future generations, which
reduces their relevance for selective breeding. How-
ever, epistatic effects between linked loci are expected
to be more sustained over generations and evidence for
epistatic interactions between linked loci has been re-
ported for different species [18,19]. Within families,
haplotypes of linked loci are likely inherited as one
block, i.e., as if they were a single locus [20]. Similarly,
transgenerational epigenetic inheritance [21], such as
chromatin marking (including methylation), can also
contribute to inherited differences and thus contribute
to the heritable (“additive”) variation, i.e., the variance
available for selective breeding. Such heritable factors,
may partly explain the so-called “missing heritability
problem” that is typically observed with IBS relationships
[22]. These effects of local epistasis and transgenerational
epigenetics (chromatin marking) may, however, be effect-
ively captured by genomic IBD relationships. Thus, the
IBD-GS model is expected to take such effects into
account.

One of the main advantages of the IBD-GS method is
that it can effectively use sparse marker genotypes and
selective genotyping. In contrast, IBS-GS methods are
intended for dense marker data [1] and sparse genotyp-
ing would require a sparse-to-dense imputation step
(i.e., dense marker data must be available for preceding
generations). Furthermore, IBD-GS is well suited for the
joint analysis of data from non-genotyped and genotyped
individuals (e.g., as in selective genotyping), which is
likely to introduce bias in IBS-based analyses. The IBD-
GS method is thus easier to implement for analysis of
selectively genotyped and sparse marker data and of
phenotypic data that do not necessarily fit the idealized
conditions that are typically assumed in stochastic simu-
lation studies.

Conclusions

The IBD-GS was substantially more effective than clas-
sical selection, even when based on very few markers,
and when combined with selective genotyping of small
proportions of the population, i.e., 900 to 1800 out of 12
000 individuals. The study shows that a low-cost GS
program can be successfully performed by combining
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sparse and selective genotyping with pedigree and linkage
information. Thus, the IBD-GS method is suitable for cost-
effective genomic evaluation using sparse markers, for se-
lective genotyping of training animals, and for phenotypic
data that do not necessarily fit the idealized conditions that
are typically assumed in stochastic simulation studies.
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