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Abstract

as marker densities increase.

used for routine applications.

Background: To obtain predictions that are not biased by selection, the conditional mean of the breeding values
must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects
have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a
conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense
matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also,
computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations.
Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC

Methods: A strategy is presented for Bayesian regression models (SSBR) that combines all available data from
genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses
imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to
accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields
results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At
present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is
applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an
associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce
computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores.

Discussion: In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step.
Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t
distribution, as in BayesA, or mixture distributions, as in BayesB or BayesCs. Furthermore, it has the advantage that
matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be

Background

Due to advances in molecular biology, high-density sin-
gle nucleotide polymorphisms (SNP) data are now being
incorporated with phenotypic data into genetic evalua-
tion [1-4] in what has been called genomic prediction
or genomic selection [5]. Typically, genotypes are ini-
tially available only on a few thousand individuals at many
thousands to several hundred thousand SNPs. Phenotypic
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values or deregressed estimated breeding values (EBV)
on these genotyped individuals are used to estimate the
effects of the SNPs using Bayesian multiple-regression
models in which the marker effects are treated as ran-
dom [5]. We refer to such models as marker effect models
(MEM). The estimated marker effects are then used to
predict the breeding values (BV) of animals that may not
yet have phenotypes but have been genotyped.
Nejati-Javaremi [6] proposed an alternative approach to
incorporate genotype information into genetic evaluation,
where the BV of the animals are fitted, as in a pedigree-
based best linear unbiased prediction (BLUP) analysis, but
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with a genomic relationship matrix, computed from avail-
able genotypes, that replaces the pedigree-based additive
relationship matrix. We refer to these models as breed-
ing value models (BVM). Fernando [7] showed that the
MEM and BVM provide equivalent predictions of BV
and that predictions could be more easily obtained from
MEM than from BVM because at the time of their study
the number of markers was much smaller than the num-
ber of genotyped animals. This situation changed when
high-density SNP data became available and the BVM was
rediscovered for genomic selection [8,9]. In this context,
BLUP using the BVM is often referred to as G-BLUP.

When MEM are used and not all animals are geno-
typed, marker-based EBV are typically combined with
pedigree-based BLUP EBV from the entire breeding pop-
ulation to improve accuracy, using various selection-index
approximations [2,10]. Legarra et al. [11-14] proposed
an alternative to this approximate approach to combine
information from genotyped and non-genotyped animals,
where in a single step, they obtain BLUP EBV combin-
ing phenotypic, pedigree and SNP data using Henderson’s
mixed model equations (MME) for a BVM with a modified
version of the additive relationship matrix H that reflects
the additional information from the SNP genotypes. Thus,
their method is called single-step BLUP (SS-BLUP), and is
expected to yield unbiased predictions under multivariate
normality, even in populations that are undergoing selec-
tion and non-random mating. This is important, because
genotypes are usually collected only on superior animals
and this can lead to biased evaluations. A properly cal-
culated BLUP evaluation has been shown to be free of
this selection bias [15-21]. Because their BLUP analysis
is based on a BVM, we will refer to their SS-BLUP as
SSBV-BLUP.

In SSBV-BLUP, the SNP data are used to construct
the matrix G of genomic relationships for the genotyped
individuals [6,8,22]. Conceptually, the remaining relation-
ship coefficients constructed from pedigree are modified
to provide consistency with G [11]. Provided that G}
and the inverse A;ZI of the corresponding additive rela-
tionship matrix are available, an efficient algorithm has
been developed to construct H™! [13]. However, com-
puting G~ and A2_21 is an inefficient process, because
the computing time to obtain these inverses is propor-
tional to n%, where ny is the number of individuals with
genotypes. Nevertheless, when ny is a few thousands,
SSBV-BLUP provides an elegant and convenient method
to estimate BV that combines the available phenotype,
pedigree and SNP data. Due to wide-spread adoption of
genotyping in livestock, however, n; is becoming too large
for SSBV-BLUP to remain computationally feasible much
longer [23,24]. One strategy to overcome this problem is
to approximate G such that the inverse could be computed
efficiently [24]. Another strategy is to obtain solutions to
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the MME without explicitly inverting G [23]. Because G
is very dense and it grows in size as more individuals are
genotyped, these strategies are not very promising.

As discussed by Stranden and Garrick [9], when the
number of genotyped individuals exceeds the number of
marker covariates, use of MEM, which do not require
computing G or its inverse, will lead to more efficient
calculations. At present, however, most analyses that use
MEM are based on Markov chain Monte-Carlo (MCMC)
techniques that are computationally demanding. In addi-
tion, analyses using MEM have not been able to accom-
modate animals without genotypes.

In this paper, we extend MEM to accommodate ani-
mals without genotypes and propose alternative MCMC
approaches to address computing requirements. The
methodology presented here will extend the attractive
features of SSBV-BLUP to Bayesian multiple-regression
analyses that draw inferences from posterior distribu-
tions using MCMC techniques. Our extended MEM will
enable BLUP evaluations without having to compute G or
its inverse, while combining information from genotyped
and non-genotyped animals.

Methods

We begin this section with a short introduction to the
most widely used MEM and equivalent BVM. Then, we
briefly review the theory that underlies SSBV-BLUP and
show that the BVM used in SSBV-BLUP is equivalent to an
MEM that can be used for single-step Bayesian regression
(SSBR). Finally, strategies will be presented to implement
a Gibbs sampler for drawing inferences from the posterior
distributions of the breeding values.

Marker effect models

The groundbreaking paper of Meuwissen et al. [5] pro-
posed three multiple-regression, MEM for genomic selec-
tion. These models can be described by the following
general model:

y=XB+Ta+e, (1)

where y is the vector of trait phenotypes, X is a known
incidence matrix that relates the vector of non-genetic,
“fixed” effects toy, T = M—E(M), M is a matrix of marker
covariates, « is the vector of random, partial-regression
coefficients of the marker covariates, and e is a vector of
residuals. The expected value of the marker covariates can
be written as E(M) = 1k/, where the row vector K is
the vector of expected values of marker covariates for a
random animal in the absence of selection.

Meuwissen et al. [5] actually used haplotype covariates
in their model, but now most analyses are based on SNP
marker covariates. Their model assumed that the mark-
ers completely capture the first and second moments of
the BV. When this is not true, a polygenic residual BV
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can be added to equation (1). Strandén and Christensen
showed that different allele coding methods lead to the
same inference of marker effects when the general mean
is included in the model and all genotypes are observed
[25]. However, centered allele coding, as in matrix T,
had a numerical advantage when MCMC methods were
used [25].

In the Bayesian implementation of the MEM, the fixed
effects are usually given a flat prior. The o; are a priori
assumed independently distributed as:

) 0 with probability =
ol % =] ~N (O, ogj) with probability (1 — ),
2)
where o2 are a priori assumed identically and inde-

pendently distributed (iid) scaled inverted chi-square
variables with scale S2 and degrees of freedom v,. The
residuals are typically assumed iid normal with null mean
and variance o2, with a scaled inverted chi-square prior
for 022, with scale Sg and degrees of freedom v,.

In the first model considered by Meuwissen et al. [5], the
a; were iid normal variables with null mean and a com-
mon “known” variance, which is equivalent to our general
model with 7 = 0, v, = oo, and S2 set to the com-
mon known variance. This model was called “BLUP” in
their paper [5]. The second model that they considered
(BayesA) is equivalent to our general model with 7 = 0,
and S2 and v, set to “known” values. Their third model
(BayesB) is identical to BayesA, except with 7 = 0.95 or
some other “known” value.

Kizilkaya et al. [26,27] modified the “BLUP” model to
have a value of 7 > 0 and an unknown common variance
with a scaled inverted chi-square prior and referred to this
model as BayesC. Furthermore, Habier et al. [27] extended
the BayesC model in which the value of 7 is unknown
with a uniform prior and referred to this as BayesCrx. In
Bayesian Lasso, the marker effects are assigned a dou-
ble exponential prior. This can be achieved by setting
7 in equation (2) to 0 and using an exponential prior
distribution for a,f/, [28].

Inferences on the breeding values and other unknown
parameters in the model are made from their marginal
posterior distributions, using MCMC methods [5,27,28].
Let t, be the row vector of marker covariates for
some selection candidate. Then, the conditional mean
for its genomic EBV is t.&, where & is the posterior
mean of &, which can be computed from the MCMC
samples.

Breeding value models
Two mixed linear models are said to be linearly equiv-
alent if the vector y of observations has the same first
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and second moments in both models [29]. In that sense, a
model that is equivalent to (1) can be written as:

vy=XB+g+e, (3)

where g = Ta, and T = M — E(M) is the matrix of cen-
tered marker covariates. One of the advantages of using
centered marker covariates is that the vector g of breeding
values will have null means even if & does not have null
means. The covariance matrix of the breeding values is:

Var(g|T) = Var(Ta)
= TVar(a)T'.

Then, in both models (1) and (3), the mean of y is X
and the covariance matrix is:

Var(y|T) = TVar(a)T' + Io2.

Thus, these two models are linearly equivalent and the
parameters of one model can always be written as linear
functions of the parameters of the other model. “Conse-
quently, linear and quadratic estimates under one model
can be converted by these same linear functions to esti-
mates of an equivalent model” [29].

When the number of markers is large relative to the size
of g, BLUP of g can be obtained efficiently [8,9] by solving
the MME that correspond to model (3). When 7 = 0 and
Ve = o< in (1), the covariance matrix of marker effects is:

Var(a) = Io2,

and the covariance matrix of the genomic BV conditional
on M can be written as:

Var(g|T) = TT 62, (4)

Furthermore, under some assumptions, the variance

o2 of marker effects can be related to the variance O'g2
of BV as:
2
o,
02 ____ & (5)

Y2 -p)’
where p; is the frequency of SNP j [22,30,31]. Then,
equation (4) can be written as:
T 9
%
>;2pj(1 —p))

= Go. (6)

Var(g|T) =

Suppose genotypes were not available and the analysis
is conditional only on pedigree, which we denote as P.
Then, the conditional mean of g given P is null and the
conditional covariance matrix is:

Var(g|P) = Ao,

where A is the additive relationship matrix, and the vari-
ance is computed over the conditional distribution of
T. Using this variance for g in setting up the MME for
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equation (3) results in the usual non-genomic MME for
the BVM.

Theory underlying SSBV-BLUP

Legarra et al. [11] proposed an ingenious strategy to
combine information from genotyped and non-genotyped
animals in a single BLUP analysis based on a BVM, which
we refer to as SSBV-BLUP. Suppose g is partitioned as:

_ |81 |_|81
8= [gz] [Tza]’
where g; are BV of the animals with missing genotypes
T, and g, are BV of those with observed genotypes Ts.

Following Legarra et al. [11], the vector g; can be written
as:

g1 = ApAy, g + (gl - A12A2_21g2)
=g +e¢ 7)

where A;; are partitions of A that correspond to g; and g».
The first term in equation (7) is the best linear predictor
(BLP) of g; given g, and the second is a residual genetic
effect to accommodate deviations between the true breed-
ing value, g1, and its prediction from g, g1, which we refer
to as €, the “imputation residual’

Consider first the conditional distribution of g; given P.
Then, as expected, the variance of g; is:

Var(g1[P) = [A12Az) Avi+ (A1 — AAL A o2 ®)
= Aoy, )

where the first term of equation (8) is the variance of the
g1 (i.e. predicted from its relatives in gy) and the second
term is the variance of €. Similarly, Var(gz|P) = AzzogZ.
In this situation, where the covariance structure of g;
and g, is determined entirely by the pedigree, it is easy to
see that € in equation (7) is uncorrelated to gy, and there-
fore if g; and gp are multivariate normal, € and gy are
independent. Multivariate normality of g;, g» and conse-
quently of € will be a good approximation if the effective
number of loci that contribute to the BV is large. This will
be the case even when the individual marker effects do not
have a normal distribution, as in BayesA and BayesB.
Consider now the conditional distribution of g; given
T,. Note that, given the observed genotypes Ty, the distri-
bution of g» changes to a multivariate normal with mean 0
and covariance matrix TQT/ZO'D%. Now, to obtain the result
in [11] for the conditional distribution of g; given Tj, we
have to assume that the change in the distribution of g;
occurs entirely as a result of the change in the distribution
of g;. In other words, we only use the information in T,
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that flows to g; through g, (see Discussion). Then, it can
be reasoned that:

Var (g1|T2) = A12A2_21T2T/2A2_21A21O'3

+ (An - A12A2_21A21) ngy (10)
where now the vector g, = A12A;21g2 has covari-
ance matrix given by the first term of equation (10),
and because € is independent of g, the second term of
equation (10) remains identical to that of equation (8).
Similarly, the covariance between g; and g, conditional on
T2 is:

Cov(g1, 82|T2) = A1A;, ToTho,.

Furthermore, assuming equation (5), the above results
can be combined to show that conditional on T3, g has
a multivariate normal distribution with null mean and
covariance matrix:

Var(g|T2) = H

_ |:A12A2_21GA2_21A21 + (An - A12A2_21A21) A12A2_21G:| o2
GAy, An G ¢
(11)

where G =TT, /[ > 2pi(1 — p;)]. An alternative deriva-
tion of this matrix was given by Christensen and Lund
[14]. The inverse of this matrix is needed to set up the
MME, and can be computed as

4 ... [oo0
H=a T [Gn ]
which is the basis for SSBV-BLUP [11,13,14]. Note that
this requires that both G~! and A2_21 are computed before-
hand, which is not computationally feasible because these
matrices are dense and large when the number ny of
genotyped animals is large. Furthermore, T, T}, is not full
rank when n; exceeds the number of markers. Thus to
obtain a full rank G, ad-hoc adjustments are often made,
such as adding small values to the diagonals or regress-
ing G towards A, which is justified when the markers do
not capture all the genetic variability. However, due to
the increased adoption of SNP genotyping in livestock,
G~ !and A2_21 are becoming too large for SSBV-BLUP to
remain computationally feasible [23,24]. A second prob-
lem in SSBV-BLUP is related to the scaling that is done
using the SNP frequencies. As mentioned earlier, when all
data that were used for selection are available for com-
puting the conditional mean, it can be computed as if
selection had not taken place [18,20,21]. If selection has
taken place, this requires using SNP frequencies from the
founders, because these frequencies are not changed by
selection. However, in most situations SNP genotypes are
not available in the founders and frequencies observed in
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the genotyped animals are used, which can lead to biased
evaluations, particularly in a multi-breed context.

Single-step Bayesian regression

Assuming that BV are captured completely by marker
genotypes, the mixed linear model for the phenotypic val-
ues can be expressed in terms of a BVM (12) or an MEM
(13) as

y=XB+Zg+e
= XB + ZTa + e,

(12)
(13)

where we have introduced the incidence matrix Z to
accommodate animals with repeated records or animals
without records. As in SSBV-BLUP, suppose T is not
observed. Then it is not possible to use equation (13) as
the basis for the MEM. Note that T« is equal to g;. So,
using equation (7) for g; and writing go = Taa, the model
for the phenotypic values becomes:

= le 5 ) [8]

Xi Z; 0|[AA, Toa + €
[XJ B+ [ 0 ZJ [Tﬂ +e (15)

(14)

To construct the matrix Ty of centered marker covari-
ates, we need to know the value of E(M») = 1K/, where the
row vector K’ is the vector of expected values of marker
covariates for a random animal in the absence of selec-
tion. However, marker covariates are often available only
for animals that have been subject to selection. So, we
propose to write g as:

g = Tha (16)
= (M — 1K)« (17)
= Mya — 1y, 18)

where 11, = Ko is assigned a flat prior. The reason g
can be considered an independent parameter is that k" is a
vector of unknown parameters. Substituting equation (18)
for go = Toa in equation (15) gives:

yi| | X7 o Z, 0 ][ Mea+e
)= e 6 2 e o
= X*B* + Wa + Ue + e, (20)

where Xi = [Xp,N1l, i = ApAyTy Xi = [Xo,)a),
Jo = —1, M1 = AjpAy My,

e[ v=[5]

X3 W1 Z M
L | - =
X _[X§:| andW—[WQ]—[ M, |
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The matrix Ml = A12A2_21M2 of imputed marker
covariates can be obtained efficiently, using partitioned
inverse results, by solving the easily formed very sparse
system [see Additional file 1]:

Al'M; = —AM,, (21)
where A¥ are partitions of A~! that correspond to par-
titioning g into g; and gp. Similarly, the vector J; =
A12A;21]2 can be obtained efficiently by solving the sys-
tem:

AllJy = —AP). (22)

The differences between this MEM (20) and the model
that is currently used for Bayesian regression (BR) are: (i)
estimation of an extra fixed effect: 1, = K'e, (ii) some of
the marker covariates in (20) are imputed, and (iii) a resid-
ual term € has been introduced to account for deviations
of the imputed marker covariates from their unobserved,
actual values.

When genotypes are not missing, the vector J; is null,
and the covariate for g only contains J;, which is in the
column space of X when the model explicitly or implic-
itly contains the general mean. In this case, it has been
shown that inference on differences between breeding val-
ues is not affected by the choice of vector k' used to
center the marker covariates [25]. This includes using k' =
0’, which corresponds to not centering, and therefore,
ug does not have to be included in the model. How-
ever, when genotypes are missing J; = A12A;21]2 may
not be in the column space of Xj, and thus u, must
be included in the model if k' is not known and the
marker covariates are not centered. A thorough investiga-
tion of this approach of including 1, as a fixed effect in
the model in place of centering the marker covariates is
beyond the scope of this paper, but a small simulation is
included here to compare the accuracy of prediction when
marker covariates are centered with those when marker
covariates are not centered but ug is included in the
model.

Regardless of the prior used for a, the distribution of the
vector € of imputation residuals will be approximated by
a multivariate normal vector with null mean and covari-
ance matrix (Aj; — A12A2_21A21)0g2 (see equation 10),
2

where P

bution with scale parameter Sg and degrees of freedom
vg. Imputing the marker covariates needs to be done only
once, and it can be done efficiently in parallel. Imputa-
tion of unobserved marker covariates will not significantly
increase the overall computing time, and the storage
costs will not be greater than for centered observed
genotypes.

is assigned a scaled inverse chi-square distri-
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The MME that correspond to equation (20) for BayesC
with 7 = 0 are

XX X¥W Xy,
A% 1%
WX W’W—H% W Z, Bl )\i,,y
o ) o = ; Y |-
2 z
X5 ZW, zjz, +A1% | L€ 1y
a,

3
(23)

The submatrix of these MME that correspond to € are
identical to those for g; from a pedigree-based analy-
sis and are very sparse. Thus, as explained in the next
section, conditional on 8* and «, € can be sampled effi-
ciently by using either a blocking-Gibbs sampler [32,33]
or a single-site Gibbs sampler, as used in pedigree-based
analyses [33]. Note that these MME, which do not have
G or its inverse, may be used to overcome the computa-
tional problems with SSBV-BLUP. The predicted BV can
be written as:

= [Huﬁ [ﬁ;]éH—Ué
The MME given by equation (23) have the advan-
tage that they will not grow in size as more animals
are genotyped, in contrast to the MME corresponding to
equation (14) that are given by Aguilar et al. [13]. Results
from solving equation (23) will not be identical to those
from the MME corresponding to equation (14) because
in equation (23), K’ is treated as an unknown, and p, =
K« is estimated from the genotypic and phenotypic data.
However, the MME corresponding to:

yi|_ [ XT|ge,|Z1 O |]a
=[G 2] [B]ve o
where a; = Mla + €, and ay = Mpa will give predictions
for breeding values computed as:

-~ ]1 N Zl 0 ﬁl
g_[lz}u‘ﬁ[o ZzHﬁz]’

identical to those from equation (24).

(24)

(26)

Numerical example

Consider the pedigree in Table 1, and assume genotypes
are available only on individuals 1, 2, and 4. Genotypes
M; at 10 markers are in Table 2. Following Legarra et al.
[11], the relationship matrix is rearranged such that Aj;
are relationships among individuals 3, 5, and 6, which do
not have genotypes, and Ay are relationships among 1, 2,
and 4, which have the genotypes in Table 2. The inverse
of the rearranged relationship matrix is given in Table 3.
The imputed genotypes, Mj, and the marker covariates,
J1, for 14 of the non-genotyped animals, could be obtained
efficiently by solving the sparse systems (21) and (22),
respectively (Table 4). To set up the MME, we will assume
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Table 1 Pedigree used in the numerical example

Individual Sire Dam Phenotypes SS-BLUP-BV
1 0 0 - 1.61
2 0 0 1.25 1.59
3 0 0 -0.34 0.00
4 1 2 1.30 1.62
5 1 2 127 1.61
6 1 3 046 0.80

Genotypes are available for individuals 1, 2 and 4. Phenotypes are available for
all individuals except individual 1, the sire. Single-step, BLUP predictions of
breeding values (SS-BLUP-BV) are in the last column.

2

that 02 = %, 9<7g2 = 062, and that u, and g are the only
fixed effects. Then, the MME (23) and solutions corre-
sponding to the MEM (20) are in Table 5. For comparison,
the MME and solutions for the single-step BV model are
given in Table 6. The solutions for x and , are iden-
tical for the two sets of MME. The BLUP of g obtained
as equation (24), using the solutions to equation (23), are
identical to those obtained from equation (26), and are in
Table 1.

Simulation to compare accuracy of prediction with and
without centering of covariates

Accuracy of prediction was computed for SS-BLUP with
and without centering of marker covariates. As demon-
strated by the preceding numerical example, the MEM
given by (20) or the BVM given by (25) can be used to get
identical SS-BLUP predictions. When marker covariates
were not centered, accuracy was computed with and with-
out fitting ue in the model. The simulated data consisted
of 20 paternal halfsib families, each with 20 offspring.
Thus, the pedigree consisted of 20 unrelated sires, 400
unrelated dams and 400 offspring. Only genotypes from
the 400 offspring were used in the analysis. Phenotypes
from all 400 offspring and from 210 dams were used.
Results are given for four scenarios of the simulation. In
all four scenarios, the trait was determined by 50 QTL
and had a heritability of 0.5. All QTL effects were sam-
pled from a normal distribution with either mean py = 0
or mean p, = 0.2. The analysis was based on either 100
or 10 000 marker genotypes, including the QTL. Correla-
tions between the predicted and true breeding values for
the three analyses and the four scenarios are in Table 7,

Table 2 Observed genotypes at ten markers for
individuals in the example in Table 1

Individual m1 m2 m3 m4 m5 mé6 m7 m8 m9 ml0

1 1 2 1 1 0 0 1 2 1 0
2 2 1 1 1 2 0 1 1 1 1
4 1 1 0 1 1 0 2 1 2 1




Fernando et al. Genetics Selection Evolution 2014, 46:50
http://www.gsejournal.org/content/46/50

Table 3 Inverse of rearranged relationship matrix for
individuals in the example in Table 1

3 5 6 1 2 4
3 1.50 0.00 -1.00 0.50 0.00 0.00
5 0.00 2.00 0.00 -1.00 -1.00 0.00
6 -1.00 0.00 2.00 -1.00 0.00 0.00
1 0.50 -1.00 -1.00 2.50 1.00 -1.00
2 0.00 -1.00 0.00 1.00 2.00 -1.00
4 0.00 0.00 0.00 -1.00 -1.00 2.00

Row and column labels are the individual identifiers.

which contains correlations for the non-genotyped ani-
mals, and Table 8, which contains the correlations for the
genotyped animals. All three models had almost identi-
cal accuracies except when the number of observations
exceeded the number of markers and the marker effects
had a non-null mean. In this case, the model with cen-
tered marker covariates had a higher accuracy. The same
accuracy could be achieved by including an extra covari-
ate to model the mean of the breeding values. The results
in this simulation indicate that this is necessary only when
the number of observations exceeds the number of mark-
ers. When the number of markers greatly exceeds the
number of observations, this extra covariate may become
unnecessary even when the marker effects have a non-null
mean.

Strategies to implement a Gibbs sampler

In most implementations of BR, a Gibbs sampler is used
to draw inferences from the posterior distribution of
the unknowns [5,27,33,34]. This involves sampling from
full-conditional posterior distributions. Sampling of fixed
effects, B, is almost identical to sampling the marker
effects, o [34]. Thus, we will describe the strategy for
sampling « directly.

Sampling marker effects and variances

The most time-consuming task in a BR analysis is sam-
pling « from its full-conditional distribution. Detailed
derivation of these full-conditionals and illustrative R
scripts are in Fernando and Garrick [34] for BR models
with complete genotype data. As shown in equation (10)
of [34], the first step in sampling «; is adjusting y for all

Table 4 Imputed genotypes at ten markers and covariates
for ug for individuals in the example in Table 1

Individual m1 m2 m3 m4 m5 mé6 m7 m8 m9 mi0 u4

3 00 00 00 00 00 00 0O 0O 00 00O 000
5 15 15 10 10 10 00 10 15 10 05 -1.00

6 05 10 05 05 00 00 05 10 05 00 -050

Page 7 of 13

other effects in the model. In the case of equation (20), y,
the vector of adjusted phenotypic values is:

y=y-X*B* — ZW]‘OZI' — Uk,
J#i
computed with the current values of B*, & and €. This
vector is used to compute the right-hand-side for «;,
rhs; = w;y, which is needed to sample «; in BayesA,
BayesB and BayesC [5,34]. In BayesB and BayesC, «; is
either null or, conditional on the effect variance, normally
distributed. Thus before «; is sampled, a Bernoulli vari-
able §; is sampled that indicates whether «; is null or
is normally distributed. Sampling §; requires computing
the full-conditional probability that §; = 1, which also
requires rhs; [34].
Calculation of rks; can be done more efficiently [35] by
initially computing:

¥y = (y-X*B* — Wa — Ue),

(27)

(28)

which is the vector y corrected for all effects in the model,
using their current values. Then, before sampling «;, the
right-hand-side for «;, rhs; = w;y, is obtained efficiently
as:

rhsi = wiy + (V\/iwl')otl[Old], (29)
and after sampling «;, ¥ is updated as:

’A, _ ;I n W; (Oéi[()ld] _ ai[new]) ) (30)
where oY and al[“ewl are the values of «; before and

L
after sampling. Then, sampling proceeds to the next locus.
Thus for each marker covariate, rhs; is always computed,
whereas in BayesB and BayesC, the vector y only needs to
be updated when ozI[OId] # oci[new]. In computing r#s;, the
first term is the dot product of two vectors of length n,
the number of records. In the second term, the scalar wgw,'
does not change from one round of sampling to the next,
and so it is computed only once for each marker covariate.
To speed-up computations, the dot product can be done
in parallel, using the message passing interface (MPI) [36].
Suppose m processors are used for computing. Then, the
first g elements of each covariate will be stored in memory
of the first processor and the second set of g elements in
the second processor and so on, where ¢ is the whole part
of -, and the last processor gets the remaining elements.
Similarly, blocks of y will also be stored with the m proces-
sors. Then, to compute w;y, each of the m — 1 processors
will do a dot product of length g and the last processor
one of length < g. Only the scalar result of the dot prod-
uct from each processor needs to be communicated for
the sampling and this will be relatively fast. After sampling

o;, updating ¥ will also be done in parallel. Before updat-
[old]

[new]
; :

ing y, the scalar (a o; ) must be available to all

m processors. Then, each processor will update its own
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Table 5 Mixed model equations for marker effects model with observed and imputed marker covariates for the example

in Table 1

12 Kg m mz ms3 mgy ms me myz mg mg mo €3 €5 €6
m 5.00 -3.50 5.00 4.50 250 350 4.00 0.00 4.50 4.50 4.50 250 1.00 1.00 1.00
g -3.50 325 -4.75 -4.00 -2.25 -3.25 -4.00 0.00 -4.25 -4.00 -4.25 -2.50 0.00 -1.00 -0.50
my 5.00 -4.75 8.61 5.75 3.75 4.75 6.50 0.00 5.75 5.75 5.75 3.75 0.00 1.50 0.50
my 4.50 -4.00 5.75 6.36 3.00 4.00 4.50 0.00 5.00 5.25 5.00 2.75 0.00 1.50 1.00
m3 2.50 -2.25 3.75 3.00 3.36 2.25 3.00 0.00 2.25 3.00 2.25 1.50 0.00 1.00 0.50
my 3.50 -3.25 4.75 4.00 2.25 4.36 4.00 0.00 4.25 4.00 4.25 2.50 0.00 1.00 0.50
ms 4.00 -4.00 6.50 4.50 3.00 4.00 7.11 0.00 5.00 4.50 5.00 3.50 0.00 1.00 0.00

me 0.00 0.00 0.00 0.00 0.00 0.00 0.00

my 4.50 -4.25 575 5.00 2.25 4.25 5.00
mg 4.50 -4.00 5.75 525 3.00 4.00 4.50
mg 4.50 -4.25 5.75 5.00 2.25 4.25 5.00
mio 2.50 -2.50 3.75 2.75 1.50 2.50 3.50
€3 1.00 0.00 0.00 0.00 0.00 0.00 0.00
€5 1.00 -1.00 1.50 1.50 1.00 1.00 1.00
€6 1.00 -0.50 0.50 1.00 0.50 0.50 0.00
rhs 394 -4.04 593 4.91 2.75 4.04 5.06
sol -0.34 -1.61 -0.01 -0.00 -0.01 -0.00 -0.01

1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 7.36 5.00 6.25 350 0.00 1.00 0.50
0.00 5.00 6.36 5.00 2.75 0.00 1.50 1.00
0.00 6.25 5.00 7.36 3.50 0.00 1.00 0.50
0.00 3.50 2.75 3.50 3.36 0.00 0.50 0.00
0.00 0.00 0.00 0.00 0.00 117 0.00 -0.11
0.00 1.00 1.50 1.00 0.50 0.00 1.22 0.00
0.00 0.50 1.00 0.50 0.00 -0.11 0.00 1.22
0.00 534 4.91 534 318 -0.34 1.27 0.46
0.00 0.01 -0.00 0.01 0.00 -0.00 0.00 -0.01

The last two rows give the right-hand-side and the solutions of the equations.

block of y and will be ready for sampling the effect of the
next marker covariate. The remaining calculations related
to sampling marker effects do not depend on the number
of records and will take only a negligible amount of time.
Once the marker effects are sampled, sampling the locus-
specific variances of marker effects in BayesA and BayesB,
or the common variance in BayesC does not depend on
the number of observations [5,34].

Parallel computations
To investigate the speedup from parallel computations,
the Lonestar Linux cluster of the Texas Advanced

Table 6 Mixed model equations for single-step BV model
for the example in Table 1

" Mg as as de ai az as
m 500 -350 1.00 1.00 1.00 000 1.00 1.00
g =350 325 000 -100 -050 000 -1.00 -1.00
a3 1.00  0.00 117 000 -0.11 006 000 000
as 100  -1.00 000 1.22 000 -011 -0M 0.00
ds 100 -050  -0.11 0.00 122 -0Mm 000 000
as 000 000 006 -0.11 -0.11 032 -001 -009
az 100 -1.00 000 -0.11 000 -0.01 131 -017
as 100  -1.00 0.00 0.00 000 -009 -0.17 1.29
rhs 394 404 034 1.27 0.46 0.00 1.25 1.30

sol  -034 -161 -0.00  -0.01 -0.01 -0.00  -0.02 0.01

The last two rows give the right-hand-side and the solutions of the equations.

Computing Center was used. According to the documen-
tation at (http://www.tacc.utexas.edu/user-services/user-
guides/lonestar-user-guide#overview) a regular compute
node on this cluster contains two Xeon Intel Hexa-Core
64-bit Westmere processors (12 cores in all) on a single
board, as an SMP unit. The core frequency is 3.33 GHz
and supports four floating-point operations per clock
period, with a peak performance of 13.3 GFLOPS/core or
160 GFLOPS/node. Each node contains 24 GB of memory
(2 GB/core). The memory subsystem has three channels
from each processor’s memory controller to 3 DDR3 ECC
DIMMS, running at 1333 MHz. The processor intercon-
nect, QPI, runs at 6.4 GT/s.

Table 7 Correlation between predicted and true breeding
values of non-genotyped animals for three models

Markers Mo Correlations
cc CNpg CN
100 0.0 0.67 0.67 0.66
100 0.2 0.67 0.67 0.59
10,000 0.0 0.60 0.60 0.60
10,000 0.2 0.58 0.58 0.58

Models with marker covariates centered (CC), marker covariates not centered
with 14 in the model (CNg), and marker covariates not centered without /14
(CN) in the model. The QTL effects were sampled from a normal distribution with
either mean j1, = 0 or mean 1, = 0.2. The analyses were based on either 100 or
10 000 marker genotypes, including the QTL.
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Table 8 Correlation between predicted and true breeding
values of genotyped animals for three models

Markers Mo Correlations
cc CNug CN
100 0.0 0.93 093 0.91
100 0.2 0.92 0.92 0.78
10,000 0.0 0.71 0.71 0.71
10,000 0.2 0.76 0.76 0.76

Models with marker covariates centered (CC), marker covariates not centered
with 14 in the model (CNyg), and marker covariates not centered without /14
(CN) in the model. The QTL effects were sampled from a normal distribution with
either mean u, = 0 or mean p, = 0.2. The analyses were based on either 100 or
10 000 marker genotypes, including the QTL.

Initially, a data set with 1 million individuals and 5000
markers on each individual was used. Obtaining 100 sam-
ples of o and o2 for BayesC with 7 = 0 took 1167
seconds on a single core. By extrapolation, ignoring mem-
ory limitations, 100 samples for 50 000 markers would
take about 11 670 seconds on a single core. Next, MPI
[36] was used for parallel computation on 120 cores across
10 nodes. Then, obtaining 100 samples for 1 million indi-
viduals with 50 000 markers took 202 seconds. Thus, the
speedup on 120 cores was about 58 times, and obtaining
40 000 samples would take about 22 hours.

Sampling imputation residuals and genetic variance

Using results from [33], it can be shown that conditional
on the sampled value of all other variables and the data,
the conditional distribution of € is multivariate normal
with mean € that is given by the solution to the following
system:

2
g ~
(Z’lll + A“;) ¢=Z)(y1 - X;B" — Wha), (31)

g
5\ 1
: : / 11% 2
and covariance matrix: |Z1Z; +A" — o;. The
o
g

right-hand-side of equation (31) can be obtained effi-
ciently as Z\y1 + Z)Z;€, where ¥, is the current value of
the sub-vector from equation (28) that corresponds to yj.
A sample from this distribution can be obtained by using
the blocking-Gibbs sampler described by Garcia-Cortes
and Sorensen [32,33]. This requires solving equation (31),
which is very sparse, and can be done iteratively. Alter-
natively, a single-site Gibbs sampler can be used [33].
It can be shown that the full-conditional posterior for
2

o, is a scaled inverse chi-square distribution with scale

parameter:

/A1l 2
_eA e+ngg
- )

2
0
S

g
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and degrees of freedom :9; = S§+n€, where n, is the num-

ber of elements in € [33]. The matrix A!! is very sparse,
and thus computing €’ A!l¢ is fast.

An alternative sampler

Here, we consider the situation where € is a “nuisance
parameter” and interest is only on inference about marker
effects: a. The starting point for this sampler is the MME
given by equation (23). When w = 0 in the prior of
marker effects of equation (2), conditional on the variance
components in the model, the posterior for the location
parameters is a normal distribution with mean given by
the solution to these MME and covariance matrix given
by the the inverse of the left-hand-side of the MME times
062 [33]. Eliminating € from (23) results in the following
MME:

X{PX; + X5 X5 XPPW; + X5 W) 2 [ [3*}
WiPX] + W) X5 WiPW, + WyW, +175 || &

= |: X; Py, + X3 y2 :| ,
WPy, + Wy,
(32)

-1
where P = I — Z; (Z/lll +Auzez> Z!. The solu-
g

tion to these MME for ﬁ and & are identical to those
from equation (23). Furthermore, the inverse elements
of the left-hand-side of these MME are identical to the
corresponding inverse elements of equation (23). Thus,
equation (32) can be used to draw samples from the
posterior of § and «.

In BayesA and BayesC with m = 0, the blocking-Gibbs
sampler of [32] can be used to sample all effects jointly.
In BayesB, BayesC and BayesCr, the single-site sampler
is more convenient. When the number of observations is
larger than the number of effects in the model, equation
(13.12) of [33] can be used to compute rhs; efficiently,
which is required to sample the i location effect from its
full-conditional posterior distribution [5,34] as:

rhs; = r; — C;0 + C;i6;, (33)

where r; is the i element from the right-hand side of
equation (32), C; is the i row from the left-hand side of
equation (32), and 6 is the vector of sampled values of
the fixed effects and marker effects. Once equation (32)
is set up, the time for computing rks; as equation (33)
does not depend on the number of observations. Thus,
computing time for sampling B and « by either the
blocking-Gibbs sampler or by the single-site sampler,
using equation (33) to compute rks;, does not depend the
number on observations.

Furthermore, when 7 is close to 1, the sampled value for
most marker effects is null. Then, dramatic reductions in
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computing time can be achieved as described in the fol-
lowing. Sampling is started with § = 0, and so initially, the
vector rhs = r. As sampling proceeds and any non-null
effect 6; is sampled, rhs is updated as:

rhs = rhs — C;6;, (34)

and
rhsi =T

where C; is the i column of C. Then, before sampling
0i, rhs; would be equal to equation (33). In sampling
marker effects, updating rhs using equation (34) is the
only non-scalar computation, and when 7 is close to 1, the
number of such updates can be very small. In such situa-
tions, 40k samples of BayesB can be obtained on a single
core in about half an hour, regardless of the number of
observations.

The most intensive computation in setting up equation
(32) is that of W} PW and W/, W». First, we consider com-
puting the matrix of crossproducts: W, W,. For an arbi-
trary matrix S of # rows and k columns, the crossproduct
S’S can be written as:

4
§'s=>SS,
i

where §' = [S’I,S’z, . ..,Sé]. In equation (35), the
crossproducts are independent and can be done in
parallel.

Next, we consider computing W/IPWL This can be
undertaken in two steps. In step 1, the columns of B =
PW are computed in parallel. Column i of this product
can be written as:

(35)

-1
2
b; =Wy, — 71 (Z’1Z1 + Allzez) Z’1W1,-,
g

where W1; is the i column of W;. The second term in
b; can be computed efficiently as Z;q;, where q; is the
solution to the sparse system:

2
(z’lzl + A11062> Q= Z, Wi,
%

The Cholesky decomposition of this system is also suf-
ficiently sparse for exact computation and has to be done
only once. Once B is computed, in the second step, the
product W PW; = W)B can be computed in parallel,
similar to equation (35), as the sum of independent matrix
products.

Parallel computations

The Lonestar Linux cluster was used to examine the possi-
ble speedup that could be achieved by parallel computing
of §'S. Initially, a single core on this cluster was used to
compute S’'S with the number of rows in S, 1, equal to
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1 million and the number of columns, k equal to 5000.
This computation took 11 669 seconds. If memory was
not limiting, computation with k = 50 000 would take 100
times longer because now S’S would be 100 times larger
than with k = 5000. Actual calculations with k = 50 000
were undertaken with 200 nodes. In each node, S'S; was
computed with S; being a slice containing a subset of the
50 000 rows of the S matrix. MPI [36] was used to com-
pute S'S as the sum of these matrices, as in equation (35).
The Eigen C++ template library [37], which can exploit
the multiple cores within a node, was used to compute
S'S; within each node. Although each node of the
Lonestar cluster has 12 cores, using 8 cores within each
node gave the best result: 912 seconds to compute S'S.
This was a speedup of about 1,279 times.

Discussion

Genomic prediction is based either on marker effects
models (MEM), where the effects of marker covariates are
explicitly included in the model as random effects, or on
breeding value models (BVM), where the markers are used
to compute the covariance matrix of the breeding values.
Although BLUP using these two types of models can be
identical [9], computing using the BVM is more efficient
when the number of marker covariates is much larger than
the number of individuals. Furthermore, the BVM has also
been used to combine information from genotyped and
non-genotyped individuals to obtain BLUP in a single step
(SSBV-BLUP) [11,13,14].

SSBV-BLUP is based on the conditional covariance
matrix, H, of g given both pedigree and observed marker
genotypes. When this covariance matrix is written in
terms of a single variance component, as in equation (11),
a “base correction” is needed to ensure that relationships
in G and A are expressed relative to the same base or
founder population, as explained in detail by Meuwissen
et al. [38]. In the MEM (20) presented here, the variance
component o2 for @ and crgz for € are kept separate. This

strategy of keeping o2 and ag2 separate can also be used in

computing H by defining G as MoM,02/ og2 instead of as

o
MM,/ [3° 2pi(1 — pi)].

Legarra et al. [11] and Christensen and Lund [14] gave
alternative derivations of the matrix H. The derivation by
Legarra et al. [11] uses the identity given by equation (7),
which was also used here to develop the MEM for single-
step Bayesian regression. Here, we reasoned that if g has a
multivariate normal distribution, gy and € would be inde-
pendent because they are also uncorrelated. Furthermore,
we assumed that when conditioning on the observed
marker information, the change in the distribution of g;
results directly from the change in the distribution in gj.
However, one might argue that this assumption is not
reasonable because when you condition on the observed



Fernando et al. Genetics Selection Evolution 2014, 46:50
http://www.gsejournal.org/content/46/50

value of My, the change in the distribution of g; results
from the correlated change in the distribution of M; and
not from the change in the distribution of gj.
Christensen and Lund [14] did not rely on equation (7)
to derive H, but they computed the mean of the missing
genotypes conditional on the observed genotypes as:

E(Mi1|M) = E (M) + A1pAy, [My — E (My)].

However, this is valid only for multivariate normal vari-
ables, and multivariate normality is not a good approx-
imation for the distribution of marker covariates. They
also used an expression for the conditional variance of
the missing genotypes that is valid only for multivariate
normal variables. They did not explicitly recognize these
approximations in their derivation, but pointed out that
the conditional distribution of breeding values of the non-
genotyped animals will only be approximately normal.
Similar reasoning was also used by de los Campos et al.
[39] who clearly showed that conditional on My, g; has a
mixture of scaled-multivariate normal densities.

While we agree that conditional on My, g; has a mixture
of scaled-multivariate normal densities, it must be noted
that even the unconditional distribution of g; is only
approximately normal. Furthermore, in G-BLUP, what is
being conditioned on is not the observed value of My
but the observed value of MyMj,. To see this, note that
there are many different My matrices that result in the
same matrix for G, i.e. MzM’z, and thus the same G-BLUP
breeding values. In other words, G-BLUP depends on M,
only through MyM), and therefore, all My that result in
the same MM/, will also result in the same G-BLUP. How-
ever, MoM), is proportional to the covariance matrix of g,.
Thus, it would be correct to say that in G-BLUP, what is
being conditioned on is the covariance matrix of g» chang-
ing from being proportional to Az, to being proportional
to MoMj,. This conditioning may be thought of as a selec-
tion process, where the unselected samples of g; and g»
have a multivariate normal distribution with null mean
and covariance matrix Aogz, while in the selected samples,
selection based on gy results in its mean still being null
but its covariance matrix changing to MoM,02. Then, the
correlated change in g; is given by equation (10), which
is a result from Pearson [40] that was also used by Hen-
derson [16] to develop theory for BLUP under a selection
model. However, given the selection process that we have
described, the distribution of g may not be multivariate
normal.

Hickey et al. [41] imputed genotypes for non-genotyped
individuals so that all individuals have genotypes for fit-
ting a MEM. In their case, imputation was undertaken
using linkage and linkage disequilibrium information.
However, they did not account for any imputation resid-
ual. Liu et al. [42] also have described a single-step MEM
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for combining information from genotyped and non-
genotyped animals, which includes a residual polygenic
component. Their analysis requires repeated multiplica-
tion of A, by a vector, and an efficient algorithm has been
developed for this multiplication. In another approach
(Theo Meuwissen, personal communication, October 3,
2013), the LDMIP algorithm [43] was used to impute
missing genotypes, and for each SNP where the geno-
type of an individual i was not known with certainty, a
random effect with covariance matrix G4 was fitted to
account for the variability that is incompletely explained
by the imputed genotype, where Gz 4 is the linkage analy-
sis based covariance matrix [44]. One of the advantages of
this approach is that imputation of genotypes by LDMIP at
a locus j uses information from the genotypes of all linked
loci, in addition to the genotypes at locus j. The implied
imputation in SSBV-BLUP [11-14] and the method pre-
sented here, only uses genotypes at the current locus.
Furthermore, best linear prediction is used for imputa-
tion, which is optimal only for normally distributed vari-
ables. In contrast, in LDMIP, conditional probabilities of
the missing genotypes, given all observed genotypes at
locus j and linked loci, that are computed approximately
by iterative peeling and combine both linkage and LD
information, are used to impute genotypes. Although the
covariance matrix G4 is easier to justify than the covari-
ance of € used here and in SSBV-BLUP, normality of the
residuals of a single SNP covariate is more difficult to jus-
tify than normality of €. Use of mixture genetic models
[45] addresses this weakness, but more work is needed to
make these analyses efficient for routine use.

The single-step Bayesian regression approach presented
here and SSBV-BLUP have the same appealing property
that phenotype, genotype and pedigree information are
combined in a single-step. Unlike SSBV-BLUP, SSBR is not
limited to normally distributed marker effects; SSBR can
be used with ¢-distributed marker effects, as in BayesA,
and with mixture models, as in BayesB and BayesCrx.
Furthermore, it has the advantage that matrix inversion
is not required. However, this comes at the expense of
using MCMC methods that are computationally intensive,
but these methods have the advantage that computing
time and memory requirements increase linearly with the
number of observations and number of markers. Thus,
as demonstrated here, computing clusters can be used
to parallelize and speedup MCMC analyses for routine
applications.

Additional file

Additional file 1: Efficient computation of ﬁh = A12A;21 M. Itis
shown here how the matrix ﬂh = A12A;21 M, of imputed marker
covariates can be obtained efficiently by solving an easily formed sparse
system of equations.
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