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Abstract

Background: The additive genetic correlation (rg) is a key parameter in livestock genetic improvement. The
standard error (SE) of an estimate of rg, r̂ g, depends on whether both traits are recorded on the same
individual or on distinct individuals. The genetic correlation between traits recorded on distinct individuals is
relevant as a measure of, e.g., genotype-by-environment interaction and for traits expressed in purebreds vs.
crossbreds. In crossbreeding schemes, rg between the purebred and crossbred trait is the key parameter that
determines the need for crossbred information. This work presents a simple equation to predict the SE of r̂ g
between traits recorded on distinct individuals for nested full-half sib schemes with common-litter effects,
using the purebred-crossbred genetic correlation as an example. The resulting expression allows a priori
optimization of designs that aim at estimating rg. An R-script that implements the expression is included.

Results: The SE of r̂ g is determined by the true value of rg, the number of sire families (N), and the reliabilities
of sire estimated breeding values (EBV):

SE r̂g
� �

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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;

where ρ2x and ρ2y are the reliabilities of the sire EBV for both traits. Results from stochastic simulation show that this
equation is accurate since the average absolute error of the prediction across 320 alternative breeding schemes
was 3.2%. Application to typical crossbreeding schemes shows that a large number of sire families is required,
usually more than 100. Since SE r̂g

� �
is a function of reliabilities of EBV, the result probably extends to other cases

such as repeated records, but this was not validated by simulation.

Conclusions: This work provides an accurate tool to determine a priori the amount of data required to estimate
a genetic correlation between traits measured on distinct individuals, such as the purebred-crossbred genetic
correlation.
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Background
The additive genetic correlation is a key parameter in
livestock genetic improvement and is defined as the cor-
relation between breeding values of individuals for two
distinct traits, say x and y [1],

rg ¼
σAxy

σAxσAy

;

where σAxy denotes the covariance between the breeding
values Ax and Ay of individuals, and σAx and σAy the
additive genetic standard deviations. Estimation of rg re-
quires substantial amounts of data [2-4].
The standard error (SE) of the estimated genetic correl-

ation depends on whether both traits are recorded on the
same individual or on distinct individuals [2]. Examples of
cases where both traits are recorded on distinct individuals
are: (i) traits that are expressed in different environments,
where rg is a measure of the degree of genotype-by-
environment interaction, (ii) traits that are expressed in
males vs. females, such as sperm quality in bulls and milk
yield in cows, (iii) traits that are expressed in live vs. dead
animals, such as meat quality traits in fattening pigs and
longevity of sows, and (iv) traits that are expressed in
purebreds vs. crossbreds. This work considers the SE of
the estimated genetic correlation between traits recorded
on distinct individuals, with a focus on the purebred-
crossbred genetic correlation.
In crossbreeding schemes, the ultimate goal is to improve

the performance of the crossbred offspring of the pure
breeding lines. With genotype-by-environment interaction
and/or non-additive genetic effects, purebred performance
is an imperfect predictor of crossbred performance. Thus,
selection in crossbreeding schemes is ideally based on infor-
mation recorded on crossbred relatives of the purebred se-
lection candidates, or on a genomic reference population
based on crossbred phenotypes [5-8]. However, phenotypic
and pedigree data are not always routinely collected on
crossbred individuals. The genetic correlation between the
purebred and the crossbred trait (rpc) is the key parameter
that determines the need for crossbred information. Hence,
accurate estimation of rpc [9,10] is required to decide on
the strategy used for data recording.
A priori, the desired accuracy of an estimate of rpc should

be at least as high as for an ordinary genetic correlation. For
example, when accuracies of purebred and crossbred EBV
(estimated breeding values) are similar, the loss in response
to selection due to relying on purebred rather than crossbred
information is ~10% when rpc is 0.9, but ~30% when rpc is
0.7. To accurately identify such differences in rpc, the SE of
the estimated correlation should not be greater than ~0.05.
Predicting the SE of estimates of the genetic correl-

ation has been studied for many years [2-4,11]. In par-
ticular, Robertson [2] considered the SE of estimates of
the genetic correlation between traits recorded on distinct
individuals, such as rpc [12], but only for cases with equal
heritabilities and equal numbers of offspring for both traits.
Moreover, the reports in [2-4,11] all considered half-sib de-
signs, and did not allow for full-sib groups within half-sib
families or for common-litter environmental effects.
In addition, existing prediction equations may not be

readily accessible to applied breeders, because the full pre-
dictions are complex and expressed in terms of intra-class
correlations, rather than heritabilities and common-litter
variances. Simplified expressions do exist, but express the SE

as being proportional to 1−r2g
� �

and are very inaccurate

when rg is close to 1, which may often be the case for a
genotype-by-environment correlation or purebred-crossbred
correlation [1,2,4]. With the computing power available
today, stochastic simulations offer a solution, but they are
still too time-consuming to use as a simple interactive tool.
Thus, although the topic is somewhat outdated, for applied
breeding it is still relevant to propose a simple prediction of
the SE of estimates of genetic correlations.
Moreover, while the use of crossbred phenotypes has

been limited in applied breeding programs because tracing
pedigree relationships in a crossbred production environ-
ment is not trivial, it has recently regained attention
because genomic relations are a solution for the cumber-
some pedigree tracing process. The idea that building a
training dataset with crossbred phenotypes will permit se-
lection for crossbred performance is attractive and has re-
vived interest in using crossbred phenotypes.
Here, we present a simple prediction equation for the SE

of the estimated genetic correlation between traits recorded
on distinct individuals, for nested full-half sib schemes with
common-litter effects. This expression allows a priori
optimization of designs that aim at estimating rg. To facili-
tate application, an R-script that implements the prediction
is included in Additional file 1. Examples of sample sizes re-
quired to estimate rpc are provided for a number of prac-
tical cases, but optimization of schemes is not considered
extensively, since it can be easily done for specific cases
using the R-script.

Methods
Analytical prediction of the SE of genetic correlation
estimates
In the following, purebred and crossbred performance will
be used as an example of two traits recorded on distinct in-
dividuals. Hence, subscript p, referring to purebred, will be
used to denote one trait, and subscript c, referring to cross-
bred, to denote the other. However, the resulting expression
will apply to the general case of a genetic correlation be-
tween traits recorded on distinct individuals.
Consider a population with phenotypic records on pure-

bred and crossbred offspring of N sires. Each sire was
mated to ndp dams of its own line, each dam producing nop
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purebred offspring, and to ndc dams of the other line, each
dam producing noc crossbred offspring. Thus, a half-sib
structure is present between purebreds and crossbreds,
whereas full-sib families are nested within half-sib families
within the purebreds and within the crossbreds.
For both purebreds and crossbreds, the trait model is

given by:

Pi ¼ Ai þ ci þ ei;

where Ai denotes the breeding value, ci the common-litter
effect, and ei the environmental effect for trait i (purebred
or crossbred). Hence, it is assumed implicitly that fixed ef-
fects can be estimated accurately. We do not model per-
manent environmental effects. Hence, a single observation
per individual and a single litter per dam are assumed.
The estimate of the purebred-crossbred genetic correl-

ation is given by:

r̂ pc ¼
σ̂Apc

σ̂Ap σ̂Ac

;

where σ̂Apc denotes the estimate of the purebred-
crossbred genetic covariance, and σ̂Ap and σ̂Ac the esti-
mates of genetic standard deviations. Throughout this
article, symbols with hats (^) denote estimates, which
are random variables, while symbols without hats denote
the true parameters. The standard error of r̂ pc was de-
rived using a Taylor-series expansion of the expression
for r̂ pc . The final result is presented in the main text,
while derivations are in Additional file 2.
The resulting expression shows that the SE of the

estimate of the purebred-crossbred genetic correlation is
determined by the true value of rpc, the number of sire
families, N, and the reliabilities of sire EBV,

SE r̂pc
� �

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð1Þ
where ρ2p is the reliability (i.e., squared accuracy) of sire

EBV for purebred performance, and ρ2c the reliability of
sire EBV for crossbred performance. Reliabilities of EBV
are given by:

ρ2 ¼ 1
4= σ2

A

var �Pð Þ; ð2Þ

where �P denotes the average phenotypic value of the
progeny of a sire with a variance equal to:

var �Pð Þ ¼ 1
4= σ2A þ 1

4= σ2A þ σ2c
nd

þ 1
2= σ2A þ σ2e
ndno;

ð3Þ

where σ2c denotes the common-litter variance and σ2e the
environmental variance. Thus, Equations 2 and 3 are
used twice, once for purebreds and once for crossbreds. In-
stead of using Equations 2 and 3, empirical reliabilities from
genetic evaluations, when available, can be substituted into
Equation 1.
In the limiting case where the number of dams mated

to a sire and the number of offspring per dam are large,
so that ρ2p ¼ ρ2c→1, the expression reduces to:

SE r̂pc
� �

≈
1−r2pcffiffiffiffiffiffiffiffiffiffi
N−1

p ; ð4Þ

which is the common expression for the SE of a simple
correlation coefficient [13].

Simulations
A limited number of scenarios was tested by estimation
of rpc in simulated data using ReML [14] and compared
to results from analysis of the data using random-effects
ANOVA with dam families nested within sire families
[15] and to predictions from Equation 1. The simulated
data consisted of sires with purebred and crossbred off-
spring. Crossbred offspring were from F1 females mated
to a terminal sire line, i.e., three purebred lines were simu-
lated, each with an Ne of 100. For each purebred line, 10
generations of pedigree were used. Purebred and cross-
bred phenotypes were simulated from multivariate normal
distributions, for different values of h2p, h

2
c , and rpc. Genetic

correlations were estimated with the ASReml software
[16], using 200 replicates per scenario. Average SE r̂pc

� �
as

reported by ASReml and the standard deviation of r̂ pc over
the 200 replicates were calculated.
A large number of simulated scenarios was tested

using ANOVA and compared to predictions from
Equation 1. One thousand replicates of all factorial combi-
nations of N = (50, 150), ndp = 10, ndc ¼ 5; 20ð Þ , nop ¼ 8,

noc ¼ 6; 12ð Þ, rpc = (−0.8, − 0.4, 0, 0.4, 0.8), h2p ¼ 0:3; 0:6ð Þ,
h2c ¼ 0:2; 0:4ð Þ , c2p ¼ 0:05 and c2c ¼ 0; 0:1ð Þ were simu-

lated (320 scenarios in total). Genetic parameters were
estimated using ANOVA. Estimates of rpc outside the
boundaries of −1 and 1 were set to the nearest boundary.

Results
Accuracy of SE predictions
Concordance between the ReML and ANOVA estimates
from the simulations was very high (Table 1). The SE
from the ReML analyses were a little lower than the SE
from the ANOVA estimates, which was expected be-
cause the ReML estimates used 10 generations of pedi-
gree information, whereas the ANOVA estimates were
based on a family structure of a single generation. More-
over, the SE of the ReML estimates were less precisely
estimated because of the limited number of replicates
(See footnote of Table 1). Because of computation time,



Table 1 Comparison of predicted SE r̂pc
� �

from Equation 1 to empirical estimates from ANOVA and to empirical and
reported estimates from ASReml

Design SE r̂pc
� �

5ASReml

rpc h2p h2c nd no N Equation 1 1Anova 2Reported 3Empirical

0.4 0.1 0.1 10 4 100 0.195 0.203 0.191 40.250

0.8 0.5 0.5 10 4 100 0.065 0.066 0.061 0.060

0.0 0.3 0.3 20 4 100 0.120 0.123 0.118 0.127

0.4 0.3 0.3 20 4 100 0.104 0.104 0.103 0.105

0.0 0.1 0.1 10 4 200 0.145 0.146 0.143 0.146

−0.8 0.5 0.5 10 8 200 0.039 0.039 0.036 0.034

0.8 0.5 0.5 20 8 200 0.032 0.032 0.028 0.030

For σ2
c ¼ 0; 1results are the SD among 1000 replicates of r̂ pc ;

2results are the average of reported SE of 200 replicates; 3results are the SD among 200 replicates of
r̂ pc ;

4four replicates were fixed at the boundary of r̂ pc 1; with these four estimates removed the SE equaled 0.216; 5Empirical SE from ASReml were based on 200
replicates only, and may therefore deviate from the true SE. With 200 replicates, the SE of the relative empirical SE, i.e. the SE of the ratio of the empirical SE over
the true SE, equals SE ŜE r̂ pc

� �
=SE r̂ pc

� �� �
= 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 200−1ð Þp

≈0.05 [13]; thus a 5% error in predicted SE does not indicate a significant discrepancy between
predictions and simulations, indicating that 200 replicates yield a limited accuracy of the empirical SE; when predicted SE r̂ pc

� �
is unbiased, the expected absolute

relative error equals ≈ 3.5%, and a relative error >9.8% indicates a significant difference between empirical and predicted SE r̂ pc
� �

(P <0.05; two-sided, not accounting for
multiple testing).
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more extensive evaluation of the accuracy of predictions
from Equation 1 was based on the ANOVA estimates.
ANOVA estimates showed that the predicted SE from

Equation 1 were accurate since the average absolute
relative error across all schemes evaluated was equal to
3.2% (=100% × |predicted SE-simulated SE|/simulated
SE; [see Additional file 3]). Sizeable errors occurred only
for schemes for which estimates of genetic variances
were near 0 in some replicates, which yielded extreme
values for r̂ pc (this occurred occasionally for schemes

with N =50, h2c ¼ 0:2 and c2c ¼ 0:1). For those schemes,
the maximum absolute relative error was 14%. These
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.2 0.4 0.6 0.8 1

S
E

 (
r p

c
)

rpc

rel=0.4
rel=0.6

rel=0.8

rel=1

Figure 1 Predictions of SE r̂pc
� �

as a function of rpc, for different
reliabilities of sire EBV (rel) that are assumed to be the same
for the purebred and crossbred trait. For N =100. The figure is
symmetric in rpc, so the range for rpc = −1 to 0 is omitted. SE r̂ pc

� �
was based on Equation 1.
schemes are, however, of little practical relevance since
their SE r̂pc

� �
was around 0.25, which is far too high to

be useful in practice.
Required sample sizes
Figure 1 shows predictions of SE r̂ pc

� �
based on Equation 1

as a function of rpc for a sample size of 100 sires, and for
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Figure 2 Predictions of SE r̂pc
� �

for typical breeding schemes as

a function of the number of half-sib families (N). SE r̂ pc
� �

were
based on Equation 1 with the following input values: Harvest weight
in aquaculture (tilapia): nd = 2, no = 40, h2 = 0.3, c2 = 0.15, rpc = 0.8.
Egg number in laying hens: nd = 7, nop ¼ 10, noc ¼ 5, h2 = 0.2, c2 = 0,
rpc = 0.6. Growth rate in pigs: nd = 10, no = 10, h2 = 0.3, c2 = 0.10, rpc =
0.7. Growth rate in broilers: nd = 12, nop ¼ 70, noc ¼ 10, h2 = 0.3, c2 =

0.05, rpc = 0.8. Minimum: Lowest possible SE r̂ pc
� �

for rpc = 0.7 refers
to a scheme with many dams per sire and many offspring per dam.
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different reliabilities of sire EBV. When sire EBV have high
reliability, SE r̂ pc

� �
becomes considerably smaller when rpc

comes closer to 1. However, when sire EBV are inaccurate
there is only a weak relationship between SE r̂ pc

� �
and rpc.

Clearly, a sample of 100 half-sib families is too small, un-
less reliabilities of sire EBV are close to 1 and rpc is greater
than ~0.7.
Figure 2 shows predictions of SE r̂ pc

� �
as a function of

the number of half-sib families, for a range of schemes that
may represent practical cases (personal communication
Egiel Hanenberg, Gosse Veninga, Hooi Ling Khaw and
Jeroen Visscher). Results from aquaculture breeding pro-
grams, such as for Tilapia, show that the commonly used
strategy of mating a sire to only two dams, together with
the presence of common full-sib family effects, causes very
large standard errors, even when 600 half-sib families are
used. On the contrary, the use of large numbers of dams
per sire in broiler chicken breeding causes standard errors
to approach their theoretical minimum (Equation 4).
Discussion
The main objective of this work was to provide breeders
with a simple tool to predict the SE of estimates of the
genetic correlation between traits recorded on distinct in-
dividuals (SE r̂pc

� �
). The objective was not to address the-

oretical issues underlying the SE of genetic correlation
estimates, which have been discussed extensively in the
past [2-4,11]. Nevertheless, this work provides new insight
on the impact of the reliability of sire EBV on SE r̂pc

� �
,

which was not obvious from previous work. Equation 1
shows that SE r̂pc

� �
depends on the reliabilities of sire EBV

and the true value of rpc. Since Equation 1 is expressed in
terms of reliabilities, it probably extends to other models
for trait analysis, such as repeatability models, but this was
not validated by simulation.
On the one hand, Equation 1 can be interpreted as a

lower bound of SE r̂pc
� �

because it assumes a balanced
design and that the fixed effects are known, while actual
estimation of rpc always involves somewhat unbalanced
data and estimation of fixed effects. However, on the
other hand, Equation 1 assumes that rpc is estimated
from half-sib relationships only, whereas estimation of
genetic parameters in livestock populations usually in-
cludes multiple generations of pedigree information, so
that more distant relationships also contribute to the es-
timate, which reduces the SE.
We have considered a genetic correlation between

traits measured on distinct individuals, of which the gen-
etic correlation between purebred and crossbred per-
formance, rpc, is an important example. When both
traits are measured on the same individuals, additional
complications arise due to covariances between the dam,
common-litter and residual effects for the two traits. In
such a case, derivation of SE r̂ g

� �
for a nested full-half

sib scheme with common-litter effects is complicated,
and this was not attempted here. When both traits are
measured on the same individuals, stochastic simulation
results (not shown) indicate that SE r̂ g

� �
is similar to the

value given by Equation 1 when rg = 0, but smaller than
that value when the true correlation differs from 0.
Hence, in most cases, the SE of a genetic correlation be-
tween traits measured on the same individuals is smaller
than the value obtained from Equation 1.
Based on Robertson’s results [2], Falconer and Mackay

[1] presented a simplified prediction of SE r̂ g
� �

, taking

the form SE r̂g
� � ¼ 1−r2g

� �
x , where x is a function of

the data structure and heritabilities. For rg = ± 1, this ex-
pression yields SE r̂g

� � ¼ 0, which is very inaccurate un-
less the reliabilities of sire EBV are close to 1 (Figure 1).
For rg→ 1 and equal reliabilities of sire EBV for both
traits, Equation 1 reduces to:

SE r̂g rg ¼ 1Þ≈
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
N−1

p 1
ρ2

−1
	 


;

����
	

ð5Þ

which does not approach 0 unless reliabilities approach
1 (see values for rpc = 1 in Figure 1).

Conclusions
This paper presents a simple and accurate prediction of
the standard error of estimates of the genetic correlation
between traits recorded on distinct individuals, for nested
full-half sibs schemes with common-litter effects. This al-
lows breeders to decide on the required sample size to es-
timate this correlation, e.g., to support decisions on the
collection of crossbred information. Results show that
more than 100 half sib families are required in most cases.

Additional files

Additional file 1: R-code for SE(rpc). This file contains an R-script that
implements Equation 1 for a range of input values of genetic parameters
and breeding designs.

Additional file 2: Derivation of Equation 1. This file contains the
derivation of Equation 1.

Additional file 3: Numerical validation of Equation 1. This file shows a
comparison of predicted and empirical SE for a range of alternative schemes.
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