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Abstract

Background: Genomic selection (GS) allows estimation of the breeding value of individuals, even for non-phenotyped
animals. The aim of the study was to examine the potential of identity-by-descent genomic selection (IBD-GS) in
genomic selection for a binary, sib-evaluated trait, using different strategies of selective genotyping. This low-cost GS
approach is based on linkage analysis of sparse genome-wide marker loci.

Findings: Lowly to highly heritable (h2 = 0.15, 0.30 or 0.60) binary traits with varying incidences (10 to 90%) were
simulated for an aquaculture-like population. Genotyping was restricted to the 30% best families according to phenotype,
using three genotyping strategies for training sibs. IBD-GS increased genetic gain compared to classical pedigree-based
selection; the differences were largest at incidences of 10 to 50% of the desired category (i.e. a relative increase in genetic
gain greater than 20%). Furthermore, the relative advantage of IBD-GS increased as the heritability of the trait increased.
Differences were small between genotyping strategies, and most of the improvement was achieved by restricting
genotyping to sibs with the least common binary phenotype. Genetic gains of IBD-GS relative to pedigree-based models
were highest at low to moderate (10 to 50%) incidences of the category selected for, but decreased substantially at higher
incidences (80 to 90%).

Conclusions: The IBD-GS approach, combined with sparse and selective genotyping, is well suited for genetic
evaluation of binary traits. Genetic gain increased considerably compared with classical pedigree-based selection. Most
of the improvement was achieved by selective genotyping of the sibs with the least common (minor) binary category
phenotype. Furthermore, IBD-GS had greater advantage over classical pedigree-based models at low to moderate
incidences of the category selected for.
Findings
Background
An earlier study by Ødegård and Meuwissen [1] de-
scribed how identity-by-descent (IBD) genomic selection
(IBD-GS) for a Gaussian trait can use sparse marker data
combined with selective genotyping of the phenotypic-
ally best families and the sibs with the most extreme
(high/low) phenotypes within these families. Binary traits
take only two possible values, and thus, truly extreme
phenotypes cannot be identified at moderate frequencies
(since both categories are common), while at high/low
frequencies the least common category may be defined
as phenotypically extreme.
The aim of the study was to quantify to what extent dif-

ferent types of selective genotyping schemes, using sparse
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markers, combined with IBD-GS could increase genetic
gain for a sib-evaluated binary trait, compared with classical
pedigree-based selection schemes, as applied in aquaculture
breeding. The IBD-GS method uses linkage analysis to
trace genomic IBD relationships in the population [2].
Methods
Data was simulated using the QMSim software [3]. The
simulated datasets were essentially identical to the datasets
reported in Ødegård and Meuwissen [1], except that the
simulated (underlying) Gaussian phenotype z (standard
normal) was converted to a binary phenotype y, with an

incidence P by assuming: y ¼ 0 if z ≤ k
1 if z > k

�
, where k= probit

(1 − P). Here, 1 is defined as the desired category, and the
incidence P was set to values 0.1, 0.2, 0.5, 0.8 and 0.9.
A total of 50 replicates were generated, assuming an

underlying heritability of 0.15, 0.30 or 0.60. For the final
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Table 1 Descriptive statistics of the simulation scheme

Chromosomes 20

Length/chromosome (M) 1.0

Base population

Generations 5000

Mutation rate, markers 3.0*10−5

Mutation rate, QTL 3.0*10−5

Eff. pop. size 500

Final population

Generations 3

Chosen markers/chromosome* ~40

Segregating QTL/chromosome ~240-280

Genetic variance* 0.3

Residual variance 0.7

Heritability* 0.3

Training animals/generation 10 000

Selection candidates/generation 2000

Sires/generation 100

Dams/generation 100

Families/generation 100

Selection candidates/family 20

Training animals/family 100

*From base population generation 5000 (base population in the
statistical analyses).
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generations, 100 full-sib families were produced, each
consisting of 120 sibs, of which 100 were used for train-
ing and 20 were selection candidates (non-phenotyped).
Marker density was low (~40 markers/M) and geno-

types were stored only for the phenotypically best 30
families (high incidence) in the last generation (and par-
ents and grandparents). Genotypes were available on se-
lection candidates (20 per family) and for varying
fractions of their phenotyped training sibs (100 per fam-
ily). Three strategies were tested:
Full genotyping (FG): Genotyping all training sibs.
Top-bottom genotyping (TBG): Genotyping 40 training

sibs per family, aiming at 20 bad (y = 0) + 20 good (y = 1)
sibs. For families with less than 20 sibs of one category,
additional sibs of the other category were genotyped.
Minor category genotyping (MCG): Selective genotyp-

ing of sibs with the least common (minor) binary cat-
egory phenotype.
All strategies involved genotyping 600 selection candi-

dates, but with different numbers of the training animals
(FG: 3000, TBG: 1200, MCG: 3000*f, where f is the inci-
dence of the minor category phenotype within the pre-
selected families).
A general probit threshold model was used for analysis:

Pr yi ¼ 1ð Þ ¼ Pr λi > 0ð Þ ¼ Φ μþ Ziað Þ

where λi is the underlying liability of animal i, μ is the
overall mean of the underlying liabilities, a is a vector of
additive genetic breeding values of all animals included
in the pedigree, and Zi is the ith row from the incidence
matrix Z. Two sub-models (PED and IBD-GS) were de-
fined that differed in their distributional assumptions for
the additive breeding values:

PED: a ∼N 0;Aσ2g
� �

;

IBD−GS : a ∼N 0;GIBDσ
2
g

� �
;

where A is the numerator relationship matrix and GIBD

is an IBD-based genomic relationship matrix estimated
through linkage analysis with the available markers (for
animals being genotyped), using the linkage disequilib-
rium multi-locus iterative peeling (LDMIP) method [4].
The DMU software package [5] was used in all statistical
analyses, assuming known (true) underlying variance
components.
Evaluation of genotyping strategies and models was

carried out as follows. Selection candidates of the last
generation were ranked based on their estimated breed-
ing values (EBV) obtained from the PED and IBD-GS
models, respectively (high EBV are favorable), which
were used to select 200 parents for the next generation.
Genetic gain was calculated as the average true breeding
value of the chosen parents. To ensure realistic and
similar levels of inbreeding for both models, restrictions
on the number of selected families were imposed for
PED, requiring parents to be selected from 20 different
full-sib families, while no restrictions were imposed for
IBD-GS, since lower inbreeding is generally expected
based on a shift from pure family selection (PED) to in-
dividual selection (IBD-GS).

Results and discussion
Descriptive statistics of the simulation study are in
Table 1. Restrictions on inbreeding (20 families used in
the breeding program) were only practiced for the PED
model, since higher inbreeding is generally expected for
this model. Despite no restrictions on the number of
families to be used, the IBD-GS model selected parents
from nearly all the 30 pre-selected families (Table 2),
and inbreeding levels were similar for the two models
(not shown).
As expected from the large family sizes, the average

genetic gains through classical family-based selection
were robust to both heritability and incidence, with gen-
etic gain over one generation of classical selection differ-
ing only slightly (1.5 to 1.7 genetic standard deviations)
between scenarios. The lowest gain was obtained at the
lowest heritability and highest incidence of the desired



Table 2 Average number of contributing families by
incidence of the desired category, heritability and
genotyping strategy

Heritability Genotyping strategy Incidence (%)

10 20 50 80 90

0.15 PED 20.0 20.0 20.0 20.0 20.0

FG 27.1 26.9 27.9 26.9 25.9

TBG 27.0 26.4 26.3 26.7 25.8

MCG 27.1 26.7 26.8 26.5 25.8

0.30 PED 20.0 20.0 20.0 20.0 20.0

FG 28.2 28.4 28.7 28.2 27.2

TBG 28.6 27.8 27.8 28.2 27.3

MCG 28.4 28.4 27.8 28.1 27.3

0.60 PED 20.0 20.0 20.0 20.0 20.0

FG 29.1 29.1 29.6 29.1 28.4

TBG 29.3 29.3 29.1 29.2 28.8

MCG 29.3 29.4 29.2 29.3 28.8

FG = full genotyping, TBG = top-bottom genotyping,
MCG =minor-category genotyping.

Figure 2 Increase in genetic gain achieved when using
genomic selection (IBD-GS) relative to classical pedigree-based
selection (PED) for a binary trait with an underlying heritability
of 0.30. Presented by incidence of the desired category (10 to 90%)
and genotyping strategy (FG = full genotyping, TBG = top-bottom
genotyping, MCG =minor-category genotyping).
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category, while the highest gain was obtained for the
highest heritability and at 50% or lower incidences of the
desired category. Relative to PED, in all cases, the IBD-
GS model gave substantial and significant (P < 1.0e-10)
increases in genetic gain over one generation (Figures 1,
2 and 3). The relative increase in genetic gain of IBD-GS
compared to pedigree-based models was largest (15 to
36%) at low to moderate (0.1 to 0.5) incidences of the
category selected for, but smaller (3 to 21%) at higher in-
cidences. Furthermore, the relative advantage of IBD-GS
increased as the heritability of the underlying trait in-
creased. If the trait has a high underlying heritability and
at low to moderate incidence, the relative improvement
Figure 1 Increase in genetic gain achieved when using
genomic selection (IBD-GS) relative to classical pedigree-based
selection (PED) for a binary trait with an underlying heritability
of 0.15. Presented by incidence of the desired category (10 to 90%)
and genotyping strategy (FG = full genotyping, TBG = top-bottom
genotyping, MCG =minor-category genotyping).
was comparable to results obtained for a Gaussian trait
of moderate heritability (0.30) [1]. For binary traits, ex-
pected heritability on the observed scale is always lower
than the underlying heritability, and decreases symmet-
rically when the incidence departs from 50% [6]. How-
ever, the relevance of this statistic is limited when
considering the efficiency of individual (within-family)
selection. For IBD-GS, the realized genetic gain was far
from symmetric around the incidence of 50%. Genetic
gain was higher when the desired category phenotype
was rare and lower when the desired category phenotype
was common. For binary traits, the pre-selected (best)
families will necessarily have above-mean incidences of
the desired category phenotype, which is statistically fa-
vorable at low overall incidences, but unfavorable at high
incidences. Furthermore, when incidence approaches ex-
treme values, animals with the most common binary
phenotype will be less informative, since their expected
Figure 3 Increase in genetic gain achieved when using
genomic selection (IBD-GS) relative to classical pedigree-based
selection (PED) for a binary trait with an underlying heritability
of 0.60. Presented by incidence of the desired category (10 to 90%)
and genotyping strategy (FG = full genotyping, TBG = top-bottom
genotyping, MCG =minor-category genotyping).
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(average) underlying liability approaches the family
means, while the opposite is true for animals that have
the least common binary phenotype.
The differences between the three genotyping strat-

egies were small in terms of genetic gain, but strategy
FG was, as expected, slightly superior (0 to 6%) to TBG
and MCG (Figures 1, 2 and 3). Albeit small, differences
in genetic gains between FG and the other genotyping
methods were highly significant (P < 1.0e-10) at moder-
ate (20 to 50%) incidences, but not necessarily so at
higher (5.0e-3 ≤ P ≤ 0.43) or lower (2.8e-11 ≤ P ≤ 0.11) in-
cidences. Both TBG and MCG focus genotyping towards
animals with the minor category phenotype within each
family, and these animals are likely the most informative
in prediction of Mendelian deviations from the family
mean.
For normally distributed traits, Ødegård & Meuwissen

[1] found that genetic predictions (regression of true on
predicted breeding values) were slightly biased with se-
lective genotyping. In this work, we also detected some
bias, but its magnitude was similar in the pedigree-based
and IBD-GS models with different genotyping strategies.
Average regression coefficients of true breeding values
on EBV were 0.82, 1.07 and 1.21 for underlying herita-
bilities of 0.1, 0.3 and 0.6, respectively. Hence, predicted
EBV appear inflated at low heritabilities and deflated at
high heritabilities.
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