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Abstract

Background: SNP (single nucleotide polymorphisms) genotype data are increasingly available in cattle populations
and, among other things, can be used to predict carriers of specific haplotypes. It is therefore convenient to have a
practical statistical method for the accurate classification of individuals into carriers and non-carriers. In this paper, we
present a procedure combining variable selection (i.e. the selection of predictive SNPs) and linear discriminant analysis
for the identification of carriers of a haplotype on BTA19 (Bos taurus autosome 19) known to be associated with
reduced cow fertility. A population of 3645 Brown Swiss cows and bulls genotyped with the 54K SNP-chip was
available for the analysis.

Results: The overall error rate for the prediction of haplotype carriers was on average very low (∼≤ 1%). The error
rate was found to depend on the number of SNPs in the model and their density around the region of the haplotype
on BTA19. The minimum set of SNPs to still achieve accurate predictions was 5, with a total test error rate of 1.59.

Conclusions: The paper describes a procedure to accurately identify haplotype carriers from SNP genotypes in cattle
populations. Very few misclassifications were observed, which indicates that this is a very reliable approach for
potential applications in cattle breeding.

Background
Nanotechnology applications such as next-generation
sequencing [1], microarray genotyping [2] and geno-
typing-by-sequencing [3] generate increasing amounts of
single nucleotide polymorphisms (SNP) data. This has a
profound impact on modern agriculture, specifically in
animal genetics and breeding [4]. Several SNP panels have
been designed for the major livestock species [5] and
are available at increasingly lower prices. For Bos tau-
rus (cattle) only, there are as many as six commercial
SNP chips [6]. This wealth of genomic information (“big
data”) has prompted the use of advanced bioinformatics
and statistical techniques for data storage, manipulation
and analysis in animal genetics [7]. The combination of
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large amounts of SNP data and sophisticated analyti-
cal and computation methods has given rise to a range
of applications in animal genetics such as, for instance,
genome-wide association studies (GWAS) for monogenic
and complex traits [8], genome-based prediction of breed-
ing values (“genomic selection”) [9], or the investigation of
relationships between populations and their evolutionary
history [10].
One application is the prediction of haplotypes or gene

alleles from marker genotypes. In humans, for instance,
some alleles of the HLA (Human Leukocyte Antigen)
complex [11] play an important role in the evalua-
tion of organ transplantation compatibility. Haplotype or
gene allele prediction is relevant also in livestock animal
species. In dairy cattle, alleles at the K-casein locus deter-
mine the casein isoforms that will be synthesized, which
are associated with cheese yield and quality [12]. Again
in cattle, specific haplotypes are known to be associated
with embryo losses or perinatal mortality [13]. Thus, it
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is valuable for cattle selection programmes to identify
accurately which haplotypes or alleles the animals carry
(and can transmit to the offspring). Traditionally, spe-
cific laboratory assays are used to detect gene alleles (e.g.
either microsatellite markers [14] or, in cows, directly the
casein isoforms in milk samples [15], for the casein exam-
ple mentioned above). Haplotypes can be reconstructed
in silico from marker genotypes using family and/or
population information [16,17] from which identical-by-
descent (IBD) probabilities can be computed to track
co-inherited adjacent marker alleles. These approaches
usually require extended pedigree information, which is
not always available. Also, IBD calculations can become
impractical -or even hardly feasible- with high-density
SNP-chip data. Especially for less related individuals,
a proportion of genotypes may be left unphased thus
reducing the accuracy of haplotype reconstruction. More
sophisticated techniques do exist that increase the reli-
ability of reconstructed haplotypes and computation
efficiency [18], but may not be implementated straight-
forwardly. Therefore, since allele detection and haplotype
reconstruction can be expensive, time-consuming and
computationally demanding, it would be convenient to
use SNP data—which are often already available for other
purposes, e.g. genomic selection—to predict directly hap-
lotypes or gene alleles of interest.
Previous studies on the prediction of haplotypes or gene

alleles using SNP data in cattle have been reported: for
instance, Pirola et al. [19] used SNP genotypes together
with pedigree records to predict K-casein alleles in a
robust combinatorial formulation of the problem.
In this paper, we describe the use of linear discriminant

analysis (LDA) for the prediction of specific haplotype
carriers from SNP data. Linear discriminant analysis is
a powerful classification technique that is suited when
classes are well-separated and predictors have a com-
mon covariance structure [20]. LDA has been successfully
applied to bovine breed assignment for traceability pur-
poses [21]. Here we present a classification procedure that
combines variable selection (i.e. the selection of which
predictive SNP loci to include) and linear discriminant
analysis for the accurate identification of haplotype car-
riers. A haplotype known to be linked to reduced cow
fertility in a population of Brown Swiss cattle was used to
test the methodology.

Methods
Experimental data
SNP genotypes and haplotype information were available
for a dairy cattle population of 3645 Italian Brown Swiss
cows (1476) and bulls (2169; see Table 1).
All animals were genotyped with the BovineSNP50 v2

(54K) Illumina BeadChip. From this chip, the 6858 SNPs
corresponding to the Illumina BovineLD BeadChip (7K)

Table 1 Description of the experimental Brown Swiss
cattle population and SNPmarker genotypes

Number of individuals 3645

Haplotype carriers 513

Non-carriers 3132

Bulls (carriers) 2169 (323)

Cows (carriers) 1476 (190)

Number of SNPs 54K SNP-chip v2 54609

7K SNP-chip (extracted) 6858

Number of SNPs on BTA 19

54K SNP-chip 1512

7K SNP-chip 211

were extracted. In this way, all animals had data for both
the 54K and 7K (extracted) SNP-chips. Only SNPs on
BTA19 (Bos taurus autosome 19) were used for the analy-
sis. A total of 1512 and 211 SNPs were located on BTA19
with the 54K and 7K SNP chips, respectively. No individ-
ual animal had a call-rate lower than 95%. SNPs with a
call-rate lower than 95% were removed from the analy-
sis. The remaining missing SNP genotypes were imputed
based on linkage disequilibrium [22]. Editing for allele
frequency was performed within the variable selection
procedure (see next section).
The chosen haplotype was BH2, that is ∼ 909 kb long

and is located at the beginning of BTA19 (10.140 - 11.049
Mb). BH2 was previously reported to be associated with
stillbirth and calf survival rate [23]. Animals were iden-
tified as carriers (coded as 1) or not (coded as 0) of
the haplotype. Since the causal mutation contained in
the BH2 haplotype is still not known, the status of the
animals was based on the haplotype and can be prone
to errors with respect to carrying or not the underly-
ing mutation. There were 513 carriers (14.1%) and 3132
non-carriers (85.9%). Haplotype carriers were evenly dis-
tributed between bulls (323, 14.9%) and cows (190, 12.9%).
Haplotypes were inferred from previously phased SNP
genotypes based on allele frequency and linkage disequi-
librium [22,24]. Phased SNP genotypes on BTA19 that
matched the haplotype described by Schwarzenbacher et
al. [23] were used to identify carriers.
Data for the present study were provided by the Italian

Brown Swiss Breeders Association (ANARB, www.anarb.it).

Identification of haplotype carriers
Two complementary multivariate statistical tecniques
were used for the identification of haplotype carriers:
Backward Stepwise Selection (BSS) to select the SNPs
that best fit the model, and Linear Discriminant Analy-
sis (LDA) to classify observations, based on the selected
SNPs, into carriers and non-carriers.

www.anarb.it
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In order to explore the minimum-sized set of SNPs that
still correctly identifies haplotype carriers, different pro-
portions of SNP markers were tested: 2.5, 10, 15, 30, 50
and 100% of the total number of SNPs for both the 7K
and 54K chips. For each proportion of SNPs, BSS and
LDA were applied, and the classification error rate was
estimated in a 10-fold cross-validation scheme. This pro-
cess was repeated 100 times -for each proportion of SNPs-
each time sampling a different subset of markers (e.g. at
each of the 100 repetitions with say 10% of the markers,
a different 10% of the SNPs were randomly selected: this
random SNP sample was used to run BSS and LDA in the
10-fold cross-validation routine).

Variable selection
Backward stepwise selection (BSS) is a method especially
designed for coping with variable selection. It is applied to
define the subset of variables that best fit the model. In the
present work, BSS was used to select a subset of SNPs that
best discriminate among groups. In particular, the min-
imum number of SNPs that still efficiently discriminate
between haplotype carriers and non-carriers and correctly
assign new observations was determined.
The BSS model was built step-by-step. In the first step,

all m SNPs were used and the m − 1 SNPs that con-
tributed most to correct group assignment were selected.
In the following steps, the least relevant SNP was itera-
tively removed from the model, one at a time, until the
SNP subset that best fitted the data was identified. Best
fit was defined as the model with the lowest residual sum
of squares in a linear regression model. Details of the
algorithm can be found in James et al. [25].
The BSS algorithm described above was applied to each

tested proportion of SNPs (see Table 2).

Classification
Linear discriminant analysis (LDA) is a multivariate sta-
tistical technique whose main objective is to assess how
good any specific classification in k distinct groups is,
given a specific set P ofm predictors. LDA is a supervised
statistical learning technique which –unlike unsupervised
methods such as cluster analysis– makes use of a priori
knowledge on which observation belongs to which group.
LDA tests the hypothesis of whether groups can be recon-
structed based on the available set P of predictors. In the
present study, the predictors were SNP genotypes and the
two groups in which to classify observations were carriers
or non-carriers of the BH2 haplotype on BTA19 associ-
ated with reduced cow fertility. LDA involves the deter-
mination of a linear equation –the discriminant function
(DF)– used to predict which group an observation belongs
to. The general form of the discriminant function is a
linear combination of the P predictors:

DF = f (P) = d1P1 + d2P2 + · · · + dmPm (1)

where for i in {1 : m} the di are the discriminant coef-
ficients of DF and Pi are the values of the m predictors
involved. Group centroids are then obtained by averag-
ing f(P) within groups. The larger the difference between
group centroids, relative to the grand centroid (the aver-
age of f(P) over all groups), the greater the discrimi-
nant power. The discriminant coefficients dm are thus
chosen to minimize the within-group variation (around
the group centroids) and, at the same time, maximize
the between-group variation (around the grand cen-
troid). This is achieved by maximizing -through matrix
differentiation- the ratio λ = d′Bd

d′Wd , where B is the
between-group (co)variance matrix and W is the within-
group (co)variance matrix. Given k groups, k − 1 discrim-
inant functions are defined. In the present study, k = 2
(carriers/non-carriers) and only one discriminant func-
tion is defined. The criterion to classify observations into
one of the two groups is obtained by applying Equation 1
to each individual observation which results in a value
called the discriminant score. An observation is assigned
to a specific group if its discriminant score is lower than
the cutoff value obtained by calculating the weighted
mean distance among group centroids [26].

Prediction accuracy
In order to estimate the discriminant power of LDA
and identify the minimum number of SNPs required
to correctly identify haplotype carriers, a 10-fold cross-
validation procedure was adopted. Data were split in 10
subsets of approximately equal size. The first subset was
treated as validation set, while the model was fit on the
remaining nine subsets (the training set). Prior to fitting
the model, monomorphic and collinear (correlation >

0.99) SNPs were edited out of the training set, to remove
non-informative and redundant predictors and avoid
problems due to linear dependencies. This procedure was
repeated 10 times, using a different subset each time
as validation set. For each fold, the error rate (ER) was
estimated both in the training and validation set.
The overall 10-fold cross-validation (CV) error in both

the training and validation sets was then estimated by
averaging the individual-fold error rates:

CV = 1
10

10∑
i=1

ERi (2)

For each SNP panel (7K and 54K), six proportions of
SNPs were tested to estimate the classification error rate
on both the training and validation sets. Each 10-fold
CV was repeated 100 times per proportion, eventually
generating 6000 replicates per SNP-chip (10-fold × 100
repetitions × 6 proportions).
To recap, the whole-procedure is summarised in

Table 2.
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Table 2 Procedure HaplotypeCarrierIdentification(P,C)

Step Action

1 foreach proportion P and SNP-chip C (7K and 54K) do

2 for n = 1 · · · 100 do
3 randomly split the data into 10 subsets of roughly equal size (S = {1 : 10})

[10-fold cross-validation]

4 for k = 1 · · · 10 do
5 use s : s �= k subsets from S to train the model and subset k for validation;

6 in the training set:

7 - delete monomorphic and collinear SNPs;

7 - select the best combinations of SNPs using BSS until p ⊂ P SNPs are left;

7 - use BSS-selected SNPs to classify haplotype carriers with LDA;

7 - save SNP discriminant coefficients;

7 - compute the average training error rate;

8 in the validation set:

9 - use BSS-selected SNPs and their discriminant coefficients to classify haplotype carriers;

9 - compute the average validation error rate;

Three different error rates were measured: (1) the Total
Error Rate (TER) defined as the total number of misclas-
sifications over the total sample size; (2) the False Positive
Rate (FPR) defined as the number of non-carriers misclas-
sified as carriers over the total number of non carriers;
and (3) the False Negative Rate (FNR) defined as the num-
ber of carriers misclassified as non-carriers over the total
number of carriers.

Comparison with another classification method
The linear discriminant classifier in Equation 1 was com-
pared to a logistic regression model for binary outcomes.
The probability of carrying the haplotype given the SNP
genotypes (P(Y = 1|X) = p(x)) was modeled as a lin-
ear combination of the predictors (SNPs) through a logit
link-function in a generalised linear model:

logit(p(xi)) = log
(

p(xi)
1 − p(xi)

)
= μ +

m∑
j=1

zijSNPj (3)

where p(xi) is the P(Y = 1|X) for individual i with vector
of predictors xi; SNPj is the effect of the jth marker; zij is
the genotype of individual i at locus j (0, 1 or 2 for AA, AB
and BB genotypes). Equation 3 returns the odds of p(x)
which are backtransformed to P(Y = 1|X) through the
cumulative distribution function of the logistic distribu-
tion (i.e. the logistic function). Individuals with p(x) > 0.5
were classified as carriers of the haplotype, and vice versa.
Equation 3 substituted Equation 1 in the algorithm 2

and was run in the same cross-validation scheme yielding
(100 folds, 100 repetitions, 6 proportions of SNPs) 6000
replicates per SNP-chip.

Software and computation architecture
All statistical analyses were performed using the R pro-
gramming environment. The functions regsubsets and lda
from the R packages leaps andMASS were used for back-
ward stepwise variable selection and linear discriminant
analysis, respectively. The function glm of base R was
used to fit logistic regression. The R packages foreach and
doParallel were used for coarse-grained parallelization of
the code to speed up computation.
The analyses were run on the bioinformatics platform at

PTP, which includes a high performance computing clus-
ter with 600 CPUs, 2.5 TB of RAM and 100 TB of data
storage for archiving and backup.

Results
The size of predictive SNP-sets ranged from 207 to 5 and
from 699 to 17 with the 7K and 54K SNP-chip, respec-
tively. The number of SNPs that best predicted haplotype
carriers for each proportion of SNPs in the procedure (2.5,
10, 15, 30, 50 and 100%) are reported in Tables 3 and 4 for
the 7K and 54K SNP-chip.
Figure 1 shows the total error rate (TER) as a function of

the number of predictors (SNPs) in the linear discrimant
analysis classification model. TER in the training (dotted
line) and testing (solid line) subsets is reported for both
the 7K (left) and 54K (right) SNP chips. TER decreases
continuously in the training set (from 1.55% to 0.50%
and from 0.38% to 0.20% with the 7K and 54K SNP-chip,
respectively). However, the test error rate is on average
higher than the training error rate (0.15 percentage points
with both the 7K and 54K SNP chips), and appears to
reach a minimum thereafter either stabilising (7K SNP-
chip) or beginning to increase again (54K SNP-chip).
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Table 3 Total error rate, false positive and false negative
rate for the prediction of haplotype carriers in the training
and testing sets using the bovine LD (7k) SNP-chip

LD-chip Training set Testing set

# SNPs TER FPR FNR TER FPR FNR

5 1.55 1.33 2.91 1.59 1.36 3.03

21 0.84 0.69 1.73 0.94 0.79 1.87

31 0.71 0.57 1.57 0.83 0.68 1.77

62 0.59 0.46 1.38 0.81 0.66 1.72

104 0.52 0.40 1.29 0.78 0.61 1.81

207 0.50 0.37 1.27 0.75 0.57 1.82

Results are averages over 6000 cross-validation replicates (10 folds, 6 proportions,
100 repetitions). TER: total error rate; FPR: false positive rate; FNR: false negative
rate.

It is often interesting to look not only at the total error
rate, but also at the error rates within the two groups:
haplotype carriers and non-carriers (see Tables 3 and 4).
These are usually referred to as the false positive (true
non-carriers predicted as carriers) and false negative (true
carriers predicted as non-carriers) error rates (FPR, FNR).
False negative carriers tended to be more frequent than
false positive carriers when using the 7K SNP-chip (test
FNR on average 1.23 percentage points higher than the
test FPR). Interestingly, with the 54K chip it was the other
way around: the test FNR was on average 0.25 percentage
points lower than the test FPR).

Discussion
In this paper, a general procedure for the identification
of carriers of a given haplotype, mutation or gene allele
from SNP genotypes in farm animals is described. The
interest lies in the combination of a variable selection
algorithm and a classification method to accurately pre-
dict carrier status, rather than in the specific haplotype

Table 4 Total error rate, false positive and false negative
rate for the prediction of haplotype carriers in the training
and testing sets using the bovine 54k SNP-chip

54K-chip Training set Testing set

# SNPs TER FPR FNR TER FPR FNR

17 0.38 0.41 0.20 0.46 0.48 0.28

70 0.28 0.32 0.00 0.39 0.43 0.13

105 0.27 0.32 0.00 0.38 0.42 0.15

210 0.24 0.28 0.00 0.40 0.44 0.17

350 0.21 0.25 0.00 0.41 0.45 0.19

699 0.20 0.24 0.00 0.44 0.47 0.28

Results are averages over 6000 cross-validation replicates (10 folds, 6 proportions,
100 repetitions). TER: total error rate; FPR: false positive rate; FNR: false negative
rate.

that was chosen for illustration. The procedure is in prin-
ciple applicable to any diploid organism (animals, plants,
humans).
On average, a very low error rate for the prediction

of haplotype carriers was estimated in this study under
all models (average total test error rate ∼≤ 1%). Low
error rates for allele prediction at the HLA -humans
(∼ 0 − 5%)- and casein -cattle (∼ 6%)- loci were
reported in previous studies [11,19]. SNP genotypes are
expected to be good predictors for genomic sequences
(haplotypes, gene alleles) and a high prediction accu-
racy can therefore be reasonably achieved. The results
presented here are in line with those in the literature,
and confirm that this is a highly effective approach
bound to achieve a predictive ability close to 100%, thus
making it a potentially very effective tool for practical
applications.
Some relevant aspects of the methodology and results

are discussed below. Our procedure aims at classifying
individuals -based on their SNP genotypes- in two classes,
which in the chosen example are carriers or not of the BH2
haplotype. This does not preclude that the underlying
causative mutation may be in high linkage disequilibrium
(as is the case for the JH1 haplotype and the CWC15 gene
in Jersey cattle) or not (as the mutation responsible for
CVM in Holstein cattle) with the BH2 haplotype. Indeed,
this has an impact on the identification of carriers of the
mutation through the haplotype. This is discussed in the
paragraph “Extension to another mutation”.

Cross-validation: the right way
The key objective of this paper was to estimate the error
that can be incurred when classifying individuals into two
mutually exclusive groups: carriers and non-carriers of a
given haplotype, in the chosen example. A valid estimate
of the error rate is obtained when the model trained on
some experimental data is tested on an independent set of
data (not used in the training process). The training and
test error rates can be quite different indeed. As the num-
ber of predictors increases, the risk of overfitting the data
becomes higher, thereby increasing the chance of find-
ing models that look good on the training data but which
will have a low predictive ability on independent data. K-
fold cross-validation is a powerful method to ensure the
validity of the estimated error rate. However, it is crucial
that cross-validation is carried out in the “right way” [27].
If cross-validation of statistical models is carried out in
the “wrong way”, it can lead to non-reproducible results
and underestimation of the prediction error; this can have
serious consequences (see for instance genespurportedly
reported to be predictive of survival in patients with
follicular lymphoma [28]). Especially when p >> n (many
more parameters p than observations n), it is tempt-
ing to preselect predictors based on their relation with
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Figure 1 Total error rate. Average total error rate (TER) for haplotype carrier identification in the training (grey dotted line) and testing (red solid
line) sets; 7K (left) and 54K (right) SNP chips.

the phenotype, and then to apply cross-validation to the
reduced dataset.
In this work, our aim was to obtain a valid estimate

of the error in identifying haplotype carriers. A 10-fold
cross-validation scheme was adopted: observations were
assigned to the training and testing sets before the variable
selection and classification steps. Each fold was in turn
included in the training set and used for validation.

Training and testing error
The training error rate -primarily as a consequence of
overfitting the data- tends to be lower than the test error
rate and underestimates the true classification error. The
error is given by the bias and variance of the classi-
fier: E(y − f̂ (x))2 = Var(f̂ (x)) + [Bias(f̂ (x))]2. Therefore,
besides a more or less accurate fit to the data (“bias”),
there will be variability between successive estimates of
the error.
This can be seen in Figures 2 and 3 which show the test

(red solid line) and training (grey dotted line) error rates
over the 100 repetitions of the 10-fold cross-validation
scheme for the 7K and 54K SNP chips. At each repetition,
the average training and test error rates over the 10-fold
CV replicates were computed. Although the training error
is generally lower than the test error, the opposite can
sometimes occur, unexpectedly leading to a lower error in
the test than in the training set. The two lines -training
and test error- intersect relatively often when small pro-
portions of SNPs are used in the predictive model. This
is especially true with the 7K SNP-chip: 27 and 5 times
out of 100, the cross-validated test error was lower than

the training error when using respectively 2.5 and 10%
of the SNPs. With the 54K SNP-chip, the test error was
lower than the training error 7 times out of 100 only when
using 2.5% of the SNPs. At higher SNP densities, the test
error was always higher than the training error with both
SNP chips. Training and test error rates tended to progres-
sively drift farther apart with increasing SNP density. This
highlights the importance of resampling in order to have
multiple validation sets, particularly at low SNP densities.

SNP density
Two SNP-chips with different marker densities were eval-
uated in this study for their predictive ability in Bos taurus:
the 7K and 54K SNP chips. The two chips differ in number
(211 vs 1512) and density of SNPs on BTA19.
Haplotype carriers could be best identified with the

54K SNP-chip: the total error rate and the false positive
and false negative rates were all lower compared to those
obtained with the 7K SNP-chip (averages over the six pro-
portions of SNPs included in the model: 0.41, 0.44 and
0.24 vs 0.95, 0.77 and 2.00). This was not surprising, con-
sidering that the 54K is more informative than the 7K
chip, since it contains more SNPs that are closer to the
haplotype.
The two SNP-chips showed a different behaviour with

respect to the number of false positive and false negative
carriers. With the 7K SNP-chip, the test FNR was always
higher than the test FPR, while the opposite was true
with the 54K SNP-chip. In other words, the 54K SNP-chip
appears to have higher “statistical power”, and is relatively
better able to identify true carriers of the haplotype. This
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Figure 2 Error rate across replicates with the 7K SNP-chip. Total error rate (TER) in the training (grey dotted line) and testing (red solid line) sets
for each of the 100 repetitions of the 10-fold cross-validation with increasing proportions of SNPs (2.5, 10, 15, 30, 50 and 100%) included in the
model when using the 7K SNP-chip.

might be linked to the fact that, compared to the 7K chip,
in the 54K chip there are more SNPs in the region of the
haplotype, which are likely to be in stronger linkage dis-
equilibrium (LD) with it. The degree of LD in a genomic
region is in fact directly related to marker density [29]:

with lower marker densities, LD patterns in the bovine
genome are only poorly estimated, and higher SNP densi-
ties are required for LD patterns to emerge and for SNPs
to be in moderate to high LD with genes or haplotypes in
the region [30].

Figure 3 Error rate across replicates with the 54K SNP-chip. Total error rate (TER) in the training (grey dotted line) and testing (red solid line) sets
for each of the 100 repetitions of the 10-fold cross-validation with increasing proportions of SNPs (2.5, 10, 15, 30, 50 and 100%) included in the
model when using the 54K SNP-chip.
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The haplotype used in this work has been reported to
lie between 10.140 and 11.049 Mb on BTA19 [23]. The
average estimated LD between adjacent markers in the
region of the haplotype -measured as r2- was 0.107 with
the 7K chip and 0.126 with the 54K chip, which suggests
that LD between the SNPs and the haplotype to be iden-
tified may account for different predicting performances
with different SNP densities.

Dimensionality of the problem
The procedure outlined in this paper can be applied
directly to problems where n > p, i.e. the number of data
points exceeds the number of parameters to be estimated.
When there are more parameters than observations, espe-
cially if p >> n, different approaches are needed. Back-
ward stepwise selection (BSS) of variables, for instance,
requires that the number of observations n is larger than
the number of predictors p, so that the full model can
be fit using least squares. BSS, in fact, starts with the full
model containing all predictors, and then goes backwards
removing one predictor at a time, until the best fitting
model is obtained. If p > n, this approach would clearly
not work and a different variable selection procedure
would have to be used: for example, forward step-wise
selection [25], which begins with a reduced model con-
taining only one predictor and then progressively keeps
on adding predictors until the best model is found. Alter-
natively, a different method to fit the model should be
adopted, such as penalized likelihood [31], that can han-
dle high dimensional problems and avoid inconveniences
due to unidentifiable parameters.
Also standard classification methods, such as linear dis-

criminant analysis, are bound to result in no solution at
all or unstable results [32] when p > n. When this is the
case, redundant variables may be present in the data, that
contribute no additional information to the problem at
hand, and issues with linear dependencies might emerge.
To circumvent such difficulties, either the dimension of
the problem is reduced (e.g. by deleting some variables
or by computing M < p linear combinations of the orig-
inal variables, like in principal components regression),
or some regularization techniques are applied, such as
L1-norm (e.g. lasso) or L2-norm (e.g. ridge regression)
regularization [20].

Subset of predicting SNPs
In SNP-based predictive models it can be of interest
to identify which SNPs are actually relevant for accu-
rate predictions. When resampling strategies are adopted
to obtain a valid estimate of the classification error,
the relevance of individual predictors can be indirectly
inferred from how often they are present in the dif-
ferent replicates of the model. Figures 4, and 5 report,
for the 7K and 54K SNP-chips respectively, the absolute

frequency with which each SNP was included in the pre-
dictive model, plotted against the position in Mb along
BTA19. For each proportion of SNPs to be used for pre-
dictions, the number of times each SNP was included
in the model in the 1000 test replicates (10-fold CV ×
100 repetitions) was counted: dark orange/red and light
orange/yellow points in the plot correspond to SNPs most
and least frequently used in the predictive models. In this
way, genomic regions that harbour SNPs most relevant
for prediction can be identified. In Figure 4 and, more
clearly, in Figure 5 a region at the beginning of BTA19
emerges as relevant for haplotype prediction. This region
is known to contain the BH2 haplotype between 10.140
and 11.049 Mb [23]: the signal was detected by analysing
results from the classification procedure. This approach,
based on several resampling replicates, is likely to be quite
robust and could complement genome-wide association
studies (GWAS) for categorical traits (e.g. calving ease in
cattle, case/control studies). GWAS is in fact known to
potentially suffer from some limitations, like susceptibil-
ity to spurious associations and poor reproducibility of
results [33,34].

Comparison with logistic regression
The classification step in the linear discriminant analysis
of the procedureHaplotypeCarrierIdentification (Table 2)
can in principle be replaced by any other linear or non-
linear classification method (e.g. quadratic discriminant
analysis, support vector machines). In the present work,
LDA was compared with a logistic regression classifier.
Logistic regression models directly the probability p(x)
of belonging to either class given the predictors, whereas
linear discriminant analysis models the distribution of
predictors separately in each class and then uses Bayes’
theorem to flip these around and obtain p(x). Logistic
regression was tested with both the 54K and 7K SNP
chips, and the results for the identification of haplo-
type carriers were similar to those obtained with LDA.
The average test error rate was equal to 1.25 with the
7K SNP-chip and 0.58 with the 54K SNP-chip, which
are slightly higher than with LDA. Also the propor-
tions of false positive and false negative carriers were in
line with the results of LDA. With both classifiers, the
overall test error rate was very low, close to or lower
than 1%.

Extension to another mutation
It is usually important to assess the validity of research
results, i.e. how well they can actually translate to the real
phenomenon that was modeled, and to what extent they
can be generalised. The described statistical methodology
for the identification of carriers was therefore applied to
another mutation of interest in dairy cattle: spinal dys-
myelination on BTA11 (SDM, [35]). Three hundred and
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Figure 4 Predictive SNPs with the 7K SNP-chip. Frequency of inclusion in the model at each of the 6000 cross-validation replicates for individual
SNPs, plotted against their position on BTA19. 7K SNP-chip.

five Brown Swiss bulls typed for SDM (8 carriers, 297
non-carriers) were available for validation. All bulls had
genotypes from the 7K SNP-chip (337 SNPs on BTA11).
The total test error rate for SDM, with different propor-

tions of SNPs in the model, ranged from 1.64% to 38.01%.

The highest prediction accuracy was achieved when the
smallest number of SNPs (i.e. 8) was included in the
model.
Overall, the procedure proved to be effective even when

tested on a different mutation. However, compared to the

Figure 5 Predictive SNPs with the 54K SNP-chip. Frequency of inclusion in the model at each of the 6000 cross-validation replicates for
individual SNPs, plotted against their position on BTA19. 54K SNP-chip.
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results for the BH2 haplotype, a higher test error rate was
estimated for SDM. In particular, a larger discrepancy due
to overfitting was observed between the training (where
the error rate approached 0) and the test error rate. This
is likely related to the different frequency of carriers in the
population: the ratio of carriers relative to non-carriers
was 0.164 for BH2 and as low as 0.027 for SDM. Highly
unbalanced data are expected to yield worse predictive
performances. This was especially true in the case of SDM
for which there were only eight carriers. Also, the smaller
sample size available for SDM probably played a role in
the higher prediction error rates relative to BH2. Finally,
BH2 is a haplotype that spans ∼ 909 kb, whereas SDM
is a point mutation: this may have an impact on link-
age disequilibrium, phase concordance and likelihood of
a recombination event between the SNPs and the genome
segment to be predicted. Sonstegard et al. [36] pointed out
that the concordance between a haplotype and the asso-
ciated mutation varies from case to case: it can be as high
as 99.3% between the JH1 haplotype and the CWC15 gene
in Jersey cattle; or it may be far less reliable if two ver-
sions of the associated haplotype exist, one with and one
without the causative mutation, as is the case for complex
vertebral malformation (CVM) in Holstein cattle. In this
latter case, our procedure would likely be less accurate
than for haplotype BH2.

Application to cattle breeding
In cattle breeding, it is important to identify carriers of
undesired mutations in order to select them out of the
population [37]. In this perspective, false negative may be
more critical than false positive carriers: if the mutation is
harmful, it is worse to retain a carrier in the breeding pop-
ulation and have it spread the defect, rather than selecting
out a non-carrier.
A method to accurately identify carriers is therefore

essential. In this paper, a method that is highly accu-
rate, simple to implement and inexpensive was described.
Bulls and cows in breeding programmes are often rou-
tinely genotyped for parentage verification, estimation of
genomic breeding values and a variety of other purposes.
It would therefore be very cost-effective to use already
available genotype data to identify mutation or haplotype
carriers.
The results of the present study showed that even at

low SNP densities the prediction accuracy is about 99%,
although an excess of false negative carriers was observed
with the 7K SNP-chip compared to the 54K chip. How-
ever, mixed genotyping strategies can be adopted by which
most of the population is genotyped with the 7K SNP-chip
and only relatively few animals are genotyped with the
54K chip: imputation techniques [38,39] can then be
used to obtain the missing genotypes thereby improv-
ing prediction accuracy while minimizing costs. Possible

imputation errors are expected to have a negligible impact
on prediction accuracy, since imputation accuracy in cat-
tle is close to 99%. Mixed genotyping strategies are cur-
rent standard practice in several national dairy selection
schemes (e.g. Canada [40]).
Another possibility is to use the identified subset of pre-

dictive SNPs on BTA19 to include them, together with
SNPs predictive of other traits of interest, in the design of
custom SNP-chips for cattle breeding (an example is the
Geneseek Genomic Profiler [41]).
The procedure described in this paper can be applied

to the identification of carriers of any mutation or hap-
lotype of interest to breeders. Public repositories do exist
that report lists of carriers for specific haplotypes ormuta-
tions in cattle, like BH2 [42]. These animals are usually
genotyped -being top sires or dams- and could therefore
be used as training population for the predictive model in
order to identify carriers among genotyped animals with
unknown status.

Conclusions
This paper describes a procedure to select relevant SNPs
for the identification of carriers of a given haplotype.
A haplotype associated with perinatal mortality in cat-
tle was chosen as illustration. The procedure combined
the selection of progressively smaller sets of SNPs and
the classification of animals into carriers and non-carriers,
thus allowing to assess the predictive ability of the model
as a function of the number of SNPs. Very few misclassi-
fications were observed for all subsets of SNPs. The total
test error was about 1% or lower with both the 7K or
the 54K bovine SNP-chips. The test error rate was only
slightly higher -especially the false negative rate- when
using the lower density SNP-chip. Such high accuracy,
together with genotype imputation techniques to optimise
genotyping strategies, could potentially make this a very
effective and efficient tool for the identification of carri-
ers of any mutation or haplotype of interest in Bos taurus.
The presented procedure could in principle be extended
to any other diploid organism, for agriculture applica-
tions in farm animals, crops and trees, and for medical
applications in humans.
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