
Ge n e t i c s
Se lec t ion
Evolut ion

Esfandyari et al. Genetics Selection Evolution  (2015) 47:16 
DOI 10.1186/s12711-015-0099-3
RESEARCH Open Access
Maximizing crossbred performance through
purebred genomic selection
Hadi Esfandyari1,2*, Anders C Sørensen1 and Piter Bijma2
Abstract

Background: In livestock production, many animals are crossbred, with two distinct advantages: heterosis and
breed complementarity. Genomic selection (GS) can be used to select purebred parental lines for crossbred
performance (CP). Dominance being the likely genetic basis of heterosis, explicitly including dominance in the GS
model may be an advantage to select purebreds for CP. Estimated breeding values for CP can be calculated from
additive and dominance effects of alleles that are estimated using pure line data. The objective of this simulation
study was to investigate the benefits of applying GS to select purebred animals for CP, based on purebred
phenotypic and genotypic information. A second objective was to compare the use of two separate pure line
reference populations to that of a single reference population that combines both pure lines. These objectives were
investigated under two conditions, i.e. either a low or a high correlation of linkage disequilibrium (LD) phase
between the pure lines.

Results: The results demonstrate that the gain in CP was higher when parental lines were selected for CP, rather
than purebred performance, both with a low and a high correlation of LD phase. For a low correlation of LD phase
between the pure lines, the use of two separate reference populations yielded a higher gain in CP than use of a
single reference population that combines both pure lines. However, for a high correlation of LD phase, marker
effects that were estimated using a single combined reference population increased the gain in CP.

Conclusions: Under the hypothesis that performance of crossbred animals differs from that of purebred animals
due to dominance, a dominance model can be used for GS of purebred individuals for CP, without using crossbred
data. Furthermore, if the correlation of LD phase between pure lines is high, accuracy of selection can be increased
by combining the two pure lines into a single reference population to estimate marker effects.
Background
One of the main limitations of many livestock breeding
programs is that selection is carried out in purebred nu-
cleus lines or breeds that are housed in high-health envi-
ronments, whereas the goal of selection is to improve
crossbred performance (CP) under field conditions. Due
to genetic differences between purebred and crossbred
animals and to environmental differences between nu-
cleus and field conditions, performance of purebred par-
ents can be a poor predictor of the performance of their
crossbred descendants [1]. Several methods have been
proposed as alternatives to pure line selection to obtain
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greater response in crossbred populations. These
methods can be classified into three groups: reciprocal
recurrent selection, combined crossbred and purebred
selection (CCPS) and genomic selection (GS).
Numerous studies have provided encouraging results

regarding the application of GS in purebred populations
[2,3]. However, in livestock production systems, many
animals are crossbred, with two distinct advantages i.e.
heterosis and breed complementarity. Different GS
models have been proposed and used to select purebred
animals for CP [1,4]. Dekkers [1] demonstrated that
marker-assisted selection or GS with marker effects de-
rived at the commercial crossbred level can lead to sub-
stantially higher gain in CP and a lower rate of
inbreeding compared to CCPS when marker effects were
estimated accurately.
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If one accepts that GS is an appropriate tool to select
animals for CP, then another issue to solve is: should
marker effects be estimated from purebred or crossbred
animals? Using simulated data on training populations
that consisted of crossed or mixed breeds, Toosi et al.
[5] reported that the accuracy of GS by using crossbred
data for training was lower than using purebred data for
training, but not substantially lower. However, the GS
model used in [5] assumed that single nucleotide poly-
morphism (SNP) allele effects were the same in all
breeds. In crossbred populations, effects of SNPs may be
breed-specific because the extent of linkage disequilib-
rium (LD) between SNPs and quantitative trait loci
(QTL) can differ between breeds. SNP effects may also
differ due to dominance and epistasis. Moreover, the LD
may not be restricted to markers that are tightly linked
to the QTL. Both these problems have been addressed
by using a model with breed-specific effects of SNP al-
leles (BSAM) [1] and the performance of BSAM has
been studied by stochastic simulations [4,6]. Under addi-
tive gene action, fitting BSAM was beneficial only when
the parental breeds were distantly related and the num-
ber of SNPs was small relative to the size of the training
population [4].
In most studies, additive gene action or perfect know-

ledge of allele substitution effects or both are assumed
[4,5]. It has been argued that dominance is the likely
genetic basis of heterosis [7], therefore explicitly in-
cluding dominance in the GS model may be an advan-
tage to select purebred animals for CP. With
dominance, allele substitution effects and individual
breeding values depend on allele frequency and, thus,
change over time, which alters the ranking of individ-
uals. This problem can be overcome by applying a
dominance model, which provides estimates of both
additive and dominance effects and, therefore, enables
the computation of allele substitution effects using ap-
propriate allele frequencies. Once SNP effects are esti-
mated for the training population, they can be
successively applied over generations with updated al-
lele frequencies to develop prediction equations specific
to a given generation [8]. Zeng et al. [8] compared
additive and dominance models for GS of purebred ani-
mals for CP and came to the conclusion that, when
dominance is the sole driver of heterosis, using a dom-
inance model for GS is expected to result in greater cu-
mulative response to selection of purebred animals for
CP than either BSAM or the additive model. The ex-
tent of this additional response to selection depended
on the size of dominance effects at the QTL and the
power of detection of dominance effects through SNP
genotypes. The results of [8] suggested that in the pres-
ence of dominant gene action, compared with BSAM
and additive models, GS with a dominance model is
better at maximizing CP through purebred selection,
especially when no retraining is carried out at each
generation.
Previous studies on the selection of purebred animals

for CP [4,8] focused on crossbred data to estimate
marker effects, which requires collecting genotypes and
phenotypes on crossbred animals. This can substantially
increase the required financial investment of the breed-
ing program, since crossbred animals are usually not in-
dividually identified and individual performance is not
recorded. It is interesting to evaluate the potential bene-
fit of GS within purebred lines when the objective is to
improve performance of crossbred animals, by using
marker effects that are estimated from pure line data. In
other words, additive and dominance effects of alleles
can be estimated from pure line data, and subsequently
breeding values for CP can be estimated by using the ap-
propriate allele frequencies. Thus, our objective was to
investigate the benefits of GS of purebred animals for
CP based on purebred information and using dominance
model, compared to traditional selection for purebred
performance. A second objective was to compare the
use of two separate pure line reference populations with
that of a single reference population that combined the
pure lines. These objectives were investigated under two
conditions, i.e. either a low or a high correlation of LD
between the pure lines.
Methods
Population structure
Using the QMSim software [9], a historical population
was simulated forward in time. Subsequent generations,
GS, and evaluation were simulated using a script devel-
oped in R version 2.15.2 [10] (Table 1 and Figure 1). In
the first simulation step, 1000 discrete generations with
a constant population size of 2000 were simulated,
followed by 1000 generations with a gradual decrease in
population size from 2000 to 100 in order to create ini-
tial LD. The number of individuals of each sex remained
the same in this step and the mating system was based
on random union of gametes that were randomly sam-
pled from the male and female gamete pools. Therefore,
only two evolutionary forces were considered in this
step: mutation and drift. To simulate the two recent
purebred populations (referred to as breeds A and B,
hereafter), two random samples of 50 animals were
drawn from the last generation of the historical popula-
tion and each animal was randomly mated for another
100 generations (step 2).
In the next simulation step (step 3), in order to enlarge

population size for breeds A and B, eight generations
were simulated with ten offspring per dam. The mating
within each breed was again based on random union of



Table 1 Parameters of the simulation process

Population structure

Step 1: Historical generations (HG)

Number of generations(size) - phase 1 1000 (2000)

Number of generations(size) - phase 2 1000 (gradual decrease)

Selection and mating Random

Step 2: Breed formation (BF)

Number of founder males from HG 50

Number of founder females from HG 50

Number of generations 100

Number of offspring per dam 5

Selection and mating Random

Step 3*: Expanded generations (EG)

Number of founder males from BF 100

Number of founder females from BF 100

Number of generations 8

Number of offspring per dam 10

Selection and mating Random

Step 4: Purebred A0 and B0

Number of founder males/females from
EG breed A

100/200

Number of founder males/females from
EG breed B

100/200

Number of offspring per dam 5

Mating system Random

Selection and mating Random

Step 5: Purebred A and B

Number of males/females from A0 100/200

Number of males/females from B0 100/200

Number of offspring per dam 5

Selection GEBV

Mating system Random

Heritability of the trait 0.3

Phenotypic variance 1

Genome

Number of chromosomes 1

Number of SNPs 1000

SNP distribution Random

Number of QTL 100

QTL distribution Random

MAF of SNPs 0.05

MAF of QTL 0.05

Additive allelic effects for SNPs Neutral

Additive allelic effects for QTL Gamma

Rate of recurrent mutation 2.5 × 10−4

*All of the individuals from the last generation of step 3 (Generation 8) was
the training set.
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gametes and no selection was considered in this step.
Within each breed, all animals in generation 8 of this
step were considered as training population for the esti-
mation of marker effects.
In the next step (step 4), for each breed, 100 males

and 200 females were sampled randomly from the last
generation of step 3 and mated randomly to produce
1000 purebred animals (A0 and B0). In the subsequent
generations (step 5), a two-way crossbreeding program
with five generations of selection was simulated, as illus-
trated in Figure 1. The goal was to improve CP through
selection in the two parental breeds (breeds A and B
acted as sire and dam breeds, respectively). The selection
criterion in the purebred population was either the rank
of the individual’s genomic estimated breeding value
(GEBV) for purebred performance (GEBVP), or its
GEBV for crossbred performance (GEBVC). SNP effects
for the prediction of GEBV for each breed were esti-
mated only once, using the purebred reference popula-
tion of generation 8 of step 3 (these are the parents of
generations A0 and B0). These estimates of SNP effects
were then repeatedly applied to predict either GEBVP or
GEBVC in the following five generations of selection of
the pure breeds. In generation 1 through 5, 300 animals
(the top 100 males and top 200 females) were selected
from the 1000 available candidates in each parental
breed, based on their GEBV. Thus, the selected propor-
tions were 20% (100 out of 500) in males and 40% in fe-
males (200 out of 500). The selected animals were
randomly mated within each breed to produce 1000
purebred replacement animals for the next generation.
Meanwhile, the 100 selected males of breed A were ran-
domly mated to the 200 selected females of breed B to
produce 1000 crossbred progeny (step 5). The pheno-
typic mean of crossbred animals was computed for each
generation of selection (AB1 to AB5) to evaluate the cu-
mulative response to selection.

Genome and trait phenotypes
A genome consisting of one chromosome of 1 Morgan
with 100 segregating QTL and 1000 markers was simu-
lated (Table 1). Both QTL and markers were randomly
distributed over the chromosome. To reach the required
number of segregating loci after 2000 generations, about
two to three times as many bi-allelic loci were simulated
with starting allele frequencies sampled from a uniform
distribution and a recurrent mutation rate of 2.5 × 10−4.
To build the SNP panel, 1000 SNPs were randomly
drawn from segregating SNPs that had a minor allele
frequency (MAF) of at least 0.05, in the last historical
generation. The additive effect (a) of a QTL was defined
as half the difference in genotypic value between alter-
nate homozygotes and the dominance effect (d) as the
deviation of the value of the heterozygote from the mean



Generation  Populations 
0  N=2000  Step 1: Historical generations (HG) 

Random union of 
gametes 
Equal number of 
males and females 

1000  N=2000   
Gradual decrease in 
size: Creating initial 
LD 

Random union of 
gametes 
Equal number of 
males and females 

2000  N=100   

2101  Breed A  Breed B Step 2: Breed formation (BF) 

2100  Breed A  Breed B Step 3: Expanded generations (EG) 

2108  Breed A     Breed B Training set 

2109  A0     B0 Step 4: Purebred A (A0) and B (B0) 

2110  A     B Step 5: Purebred A and B 

 AF          AM  BF          BM

 A1 AB1   B1

2114 A4 AB4   B4

 AF          AM     BF       BM

2115  AB5

Figure 1 Schematic representation of the simulation steps. The crossbreeding program started in step 5 and consisted of five generations of
purebred selection for crossbred performance; individuals from the last generation of step 3 (Generation 2108) constitutes the training
population; AM and BM represent the males selected from breeds A and B, respectively; AF and BF represent the females selected breeds A and B,
respectively; lines with arrows denote reproduction, while lines without arrows denote selection.
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of the two homozygotes [7]. A gamma distribution with
shape and scale parameters of 0.4 and 1.66, respectively,
was used to generate the unsigned value of the additive
effect for each QTL. This provided an L-shaped distribu-
tion of QTL effects. With equal probability, one of the
two alleles was chosen to be positive or negative.
Previous studies have not shown a consistent relation-
ship between additive and dominance effects of QTL
[11]. Similar to Wellmann and Bennewitz [12,13], we
simulated relative dominance degrees hi that were nor-
mally distributed, N(0.5, 0.1), and independent of the
additive effects. Next, absolute dominance effects were
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di = hi.|ai| where |ai| is the absolute value of the additive
effect. Thus, additive and dominance effects were
dependent. Additive and dominance effects were scaled
in each replicate of each scenario such that additive and
dominance variances were equal to 0.3 and 0.1, respect-
ively. This was done to ensure that each scenario had
the same genetic variance, such that this could not con-
tribute to differences among scenarios. After scaling, 10
to 15% of QTL showed overdominance. Trait pheno-
types were simulated by adding a standard normal re-
sidual effect to the genotypic value of each animal. The
variance of the residual effects was chosen such that
broad-sense heritability H2 of the trait was equal to 0.4.
As a result, phenotypic variance ( σ2p ) was 1, narrow-

sense heritability h2 was equal to 0.3 and dominance
variance was 0.1 σ2p.

Estimation of marker effects
The Bayesian LASSO proposed by Park and Casella [14]
and developed by de los Campos et al. [15] was used to
estimate marker effects. The difference between Bayes-
ian LASSO and the Bayesian approaches developed by
Meuwissen et al. [2] (BayesA and BayesB) stems from
the specification of the a priori variance of the marker-
specific regression coefficient. We used the BLR “Bayes-
ian linear regression” R package developed by Perez
et al. [16]. The following model was used to estimate the
genetic effect associated with each marker:

yi ¼ μþ
X

Xijaj þ
X

Zijdj þ ei;

where yi is the phenotypic value of individual i in the
training data, μ is the overall mean, Xij is the copy num-
ber of a given allele of marker j, coded 0, 1 and 2 for aa,
aA and AA, respectively, aj is the random unknown
additive effect for marker j, Zij is the indicator variable
for heterozygosity of individual i at marker j, with Zij = 0
when individual i is homozygous at marker j (aa or AA)
and Zij = 1 if individual i is heterozygous at marker j
(aA), dj is the random unknown dominance effect for
SNP j, and ei is the residual effect for animal i and Σ de-
notes summation over all marker loci j.
The prior distribution of the residual variance was a

scaled inverse χ2 such that σ2e eχ−2 df e; Seð Þ. The degrees
of freedom (dfe) and the scale parameter (Se) for residual
variance were set at 3.5 and 3, respectively. The condi-
tional prior distribution of the marker effects was a
Gaussian distribution with prior variance specific to each
marker: ajeN ð0; σ2�τ2j Þ for j = 1,…, m, with τj

2 following

an exponential prior distribution defined by τ2j eexp λ2
� �

.

The regularisation parameter λ2 followed a Gamma dis-
tribution, as suggested in [14]. In addition, an inverted
Chi-square distribution was used for the variance of
dominance effects: σ2d eχ−2 df d; Sdð Þ with dfd = 3 and Sd
= 0.0005. The parameters of the prior distributions were
computed according to the guidelines of the BLR package
[15,16]. The BLR method used an MCMC algorithm to
generate 10 000 samples, with the first 1500 samples dis-
carded as burn-in.

True and genomic estimated breeding values
Two types of true breeding values (TBV) were calcu-
lated, i.e. TBV for purebred performance (TBVP) and
TBV for crossbred performance (TBVC). The TBV were
calculated as the expected genotypic value of the off-
spring of a parent carrying a certain QTL-genotype,
when this parent is mated at random to its own line
(TBVP) or to the other pure line (TBVC). Thus, for ani-
mal i from breed r, the TBV for purebred performance
was calculated as:

TBVPir ¼
X100
j¼1

xij
� �

pjraj þ qjrdj

� �h i

þ yij
� �

0:5pjraj þ 0:5qjrdj þ 0:5pjrdj−0:5qjraj
� �h i

þ zij
� �

−qjraj þ pjrdj

� �h i
;

ð1Þ

where xij, yij and zij are indicator functions of the
genotype of the jth QTL of the ith individual, with xij = 1
when the genotype is AA and otherwise 0, yij = 1 when
the genotype is Aa or aA and otherwise 0, and zij = 1
when the genotype is aa and otherwise 0. Moreover, pjr
and qjr are the allelic frequencies (A and a) for the jth

QTL in breed r, and aj and dj are true additive and dom-
inance effects of the jth QTL. For example, for an AA
parent at locus j, a fraction pjr of its offspring will have
genotype AA, while a fraction qjr of its offspring will
have genotype Aa. Hence, for locus j, the breeding value
of this parent equals (pjraj + qjrdj), which is the first term
in Equation 1.
For crossbred offspring, the expected genotype fre-

quencies of the offspring of a parent depend on the allele
frequency in the other pure line (denoted r’ here). Thus,
for animal i from breed r, the TBV for CP was calculated
using Equation 1, however pjr and qjr were replaced by
pjŕ and qjŕ, where pjŕ and qjŕ are the allele frequencies (A
and a) for the jth QTL in breed r’. We also calculated the
correlation (rtbvp,tbvc) between TBVP and TBVC, which
is known as the purebred-crossbred genetic correlation,
denoted as rpc by Wei and Vanderwerf [17].
Genomic estimated breeding values were calculated in

the same way, but using SNP genotypes rather than
QTL genotypes, and estimated effects rather than true
effects. Thus, from the estimates of additive (â) and



Table 2 Simulated scenarios
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dominance effects ( d̂ ), the GEBVP (for purebred per-
formance) for animal i from breed r was calculated as:

GEBVPir ¼
X1000
j¼1

xij
� �

pjrâj þ qjrd̂ j

� �h i

þ yij
� �

0:5pjrâj þ 0:5qjrd̂ j þ 0:5pjrd̂ j−0:5qjrâj

� �h i

þ zij
� �

−qjrâj þ pjrd̂ j

� �h i
:

ð2Þ
For the calculation of GEBVC (for crossbred perform-

ance), SNP frequencies in the other breed were used i.e.
pjr and qjr in Equation 2 were replaced by pjŕ and qjŕ
where pjŕ and qjŕ are the allele frequencies (A and a) for
the jth marker in breed r’. SNP frequencies in the other
breed were calculated based on marker genotypes of all
selection candidates in that breed.

Accuracies of additive and dominance effects
In order to evaluate the accuracy of estimated additive
and dominance effects separately, both true and esti-
mated breeding values of an individual were partitioned
into components of additive and dominance effects. For
example, according to Equation 1, the TBV of an indi-
vidual i is a function of additive effects, dominance ef-
fects and allele frequencies, and can be written as TBVi

= ∑TBVAdd + ∑TBVDom, where ∑TBVAdd is the compo-
nent of the TBV of animal i that is due to additive ef-
fects, and ∑TBVDom is the component of the TBV of
animal i that is due to dominance effects. Equations 3
and 4 show the calculation of the TBV due to additive
and dominance effects for animal i respectively:

TBVAdd ¼
X100
j¼1

xij
� �

pjraj
� �h i

þ yij
� �

0:5pjraj−0:5qjraj
� �h i

þ zij
� �

−qjraj
� �h i

ð3Þ

Scenarios Selection criterion Training population

structure

Breed A Breed B

Reference scenario GEBVP GEBVP Separate

Scenario 1 GEBVC GEBVP Separate

Scenario 2 GEBVC GEBVC Separate

Scenario 3 GEBVC GEBVP Common

Scenario 4 GEBVC GEBVC Common

GEBVP: selection in purebred breeds A and B is based on genomic estimated
breeding value for purebred performance; GEBVC: selection in purebred
breeds A and B is based on genomic estimated breeding value for crossbred
performance; separate training means that each breed had its own training
set; common stands for the combination of animals from breeds A and B to
estimate marker effects.
And

TBVDom ¼
X100
j¼1

xij
� �

qjrdj

� �h i

þ yij
� �

0:5qjrdj þ 0:5pjrdj

� �h i
þ zij

� �
pjrdj

� �h i
ð4Þ
Symbols used in Equations 3 and 4 are the same as in
Equation 1. Similarly, the GEBV of an individual i was
calculated as GEBVi = ∑GEBVAdd + ∑GEBVDom, where
∑GEBVAdd and ∑GEBVDom are the components of the
estimated breeding value of animal i due to estimated
additive and dominance effects, respectively. GEBV due
to additive and dominance effects were calculated in the
same way as in Equations 3 and 4, but using SNP geno-
types rather than QTL genotypes, and estimated effects
rather than true effects. After partitioning the breeding
value of each individual, the accuracy of estimated addi-
tive effects was calculated as the correlation between the
TBV due to additive effects (TBVAdd ) and the GEBV
due to additive effects (GEBVAdd ). Similarly, the accur-
acy of estimated dominance effects was calculated as the
correlation between the TBV due to dominance effects
(TBVDom ) and the GEBV due to dominance effects
(GEBVDom ).

Scenarios
Response to selection in CP was examined in five sce-
narios (Table 2). Simulated scenarios differed in struc-
ture of the training population and also in the criterion
of selection. In all scenarios, breed A acted as the sire
breed and breed B acted as the dam breed. In the refer-
ence scenario, both pure lines were selected for purebred
performance, and both pure lines had their own refer-
ence population. In all other scenarios, breed A was se-
lected for CP. Selection in breed B was for purebred
performance in scenarios 1 and 3, and for CP in scenar-
ios 2 and 4. In scenarios 1 and 2, both populations had
their own reference population, while the reference
population was combined in scenarios 3 and 4. In order
to increase resolution between scenarios, we used the
same population simulated from step 1 to step 3
(Figure 1) for a given replicate of each scenario. Each
scenario was replicated 30 times.
We compared our scenarios under two conditions, i.e.

low and high correlation of LD phase between the two
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breeds. In order to increase the correlation of LD phase
between the two breeds, we increased LD in the com-
mon ancestral population by decreasing effective popula-
tion size. Sved et al. [18] showed that, if two populations
diverge from a common ancestral population, their correl-
ation of LD phase is approximately equal to r0

2(1 − c)2T,
where r0

2 is LD in the common ancestral population, c is
the recombination rate between markers, and T is the
time since breed divergence in generations.

LD and correlation of LD phase
To evaluate the extent and magnitude of LD in the
training populations and its impact on accuracy, LD was
measured by r2 [19]. Only markers with a MAF greater
than 0.1 were considered in this analysis, because the
power of detection of LD between two loci is minimal
when at least one of the loci has an extreme allele fre-
quency [20]. To determine the decay of LD with increas-
ing distance between SNPs, the average r2 within each
breed was expressed as a function of distance between
SNPs. SNP pairs were grouped by their pairwise distance
into intervals of 1 cM, starting from 0 up to 100 cM.
The average r2 for SNP pairs in each interval was esti-
mated as the mean of all r2 within that interval.
To estimate persistence of LD phase between two

breeds, only segregating SNPs (MAF > 0) in both breeds
were included in the analysis. Persistence of LD phase
was estimated following Badke et al. [21] as:

RAB ¼
X

i;jð Þ∈p rij Að Þ−�rA
� �

rij Bð Þ−�rB
� �

sd Að Þsd Bð Þ ;

where RA,B is the correlation between rij(A) in breed A
and rij(B) in breed B, sd(A) and sd(B) are the standard de-
viations of rij(A) and rij(B), respectively, and �rA and �rB are
the average rij across all SNPs i and j within interval p
for breeds A and B, respectively. Correlation of LD be-
tween the two lines was estimated for intervals of 1 cM
(from 0 to 50 cM). SNPs with a pairwise distance greater
than 50 cM were excluded since estimates of average r2

at greater distances are close to 0, which would result in
the correlation of LD phase to be close to 0 as well.

Results
Distribution of marker allele frequencies
Figure 2 shows the distribution of marker allele frequen-
cies for the last generation of the historical population.
Since the initial allele frequencies were sampled from a
uniform distribution, a kind of uniform distribution was
expected with some fluctuations after 2000 generations
of random mating, under a balance between mutation
and random genetic drift due to finite population size.
Although, a U-shaped distribution is typically observed
with sequence data [22], allele frequencies on SNP chips
tend to be uniform [23].

Linkage disequilibrium
To estimate LD, we used SNP genotypes of animals in
the training set of both breeds. An average r2 of 0.43
and 0.42 for adjacent SNPs was found for breeds A and
B, respectively. These average r2 between adjacent SNPs
are similar to those reported by Badke et al. [21] for four
US pig breeds that ranged from 0.36 to 0.46 for animals
genotyped using the Illumina PorcineSNP60 (number of
markers M = 62 163). Another study by Du et al. [24]
that investigated the range and extent of LD in six com-
mercial pig lines (two terminal sire lines and four mater-
nal lines) for 4500 autosomal SNPs, reported an average
r2 of 0.2 and 0.07 for all pairs of SNPs that were approxi-
mately 1 and 5 cM apart, respectively, whereas we found
average r2 of 0.29 and 0.08 at those distances. Figure 3
displays an overview of the decline of r2 over distance in
both breeds. As expected, in both breeds the most
tightly linked SNP pairs had the highest average r2, and
the observed average r2 decreased rapidly as the map
distance increased.

Persistence of LD phase
Persistence of LD phase among breeds can be used to
infer on the history of a species and relatedness of
breeds within that species, as well as on the reliability of
across-population prediction of genome-wide association
studies (GWAS) and GEVB [25]. Figure 4 shows the per-
sistence of LD phase between adjacent SNPs, measured
by the correlation of r between the two breeds. A greater
correlation implies that the SNP-SNP (and most prob-
ably the SNP-QTL) LD is more consistent between the
two breeds. As distance in time between subpopulations
increases, there is a greater chance for recombination to
break down the LD that was present in the ancestral
population and for drift to create new LD within each
subpopulation. Both mechanisms decrease the correl-
ation of LD phase between the two breeds [26,27]. For
SNPs with a pairwise distance of 1 cM, persistence of
LD phase between breeds A and B was estimated 0.2
and 0.7 for cases with a low and high correlation of LD
phase, respectively. Persistence of LD phase has been re-
ported for Duroc, Landrace, Yorkshire pig breeds. For
SNPs with a pairwise distance less than 50 kb, Badke
et al. [21] reported a correlation of LD of 0.85 between
Landrace and Yorkshire breeds and of 0.82 between
Duroc and Landrace and between Duroc and Yorkshire
breeds. Assuming 1 cM is approximately 1 Mb, we
found correlations of LD phase equal to 0.38 and 0.87
for SNPs with a pairwise distance less than 50 kb for
cases with low and high correlations of LD phase be-
tween two breeds, respectively. The correlation of LD
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Figure 2 Distribution of allele frequencies in the last generation of the historical population for a low (a) and a high correlation of LD
phase (b). The bounds are 0.01 and 0.99. The plots are the result of one replicate.
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phase between pig breeds in different studies ranged
from 0.80 to 0.92 for SNPs with a pairwise distance less
than 10 kb. In a study on the extent and persistence of
LD phase in Holstein-Friesian, Jersey, and Angus cattle,
de Roos et al. [25] reported a correlation of LD phase
that ranged from 0.7 to 0.97 between two breeds for
SNPs with a pairwise distance less than 10 kb and a de-
cline of this correlation as the distance between SNPs or
divergence between breeds increased. In our study, as
distance between SNPs increased, the correlation of LD
phase between the two breeds decreased (0.5 at an aver-
age pairwise SNP distance of 1 cM). It has been reported
that, while correlation of LD phase is similar for pig
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Figure 3 Decay of average r2 over distance for a low (a) and a high c
breed B at various distances in base pairs ranging from 1 to 100 cM. The p
breeds and dairy cattle at short distance ranges (<10 kb),
pig breeds generally show greater correlations of LD
phase than dairy cattle at larger SNP distances [21].

Response to selection in crossbred animals
The purebred-crossbred genetic correlation, i.e. the cor-
relation between TBVP and TBVC (rtbvp,tbvc), was equal
to 0.66 and 0.70 on average for low and high correlations
of LD phase, respectively. Figure 5 shows the mean
values of phenotypes for crossbred animals in five gener-
ations under the five simulated scenarios with either a
low (r = 0.2 in 1 cM) or a high correlation of LD phase
(r = 0.7 in 1 cM) between the two breeds. When the
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lots are the result of one replicate.
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correlation of LD phase was low between the two
breeds, the ranking of scenarios in terms of mean
phenotype of crossbred animals shows that breeding for
CP led to higher gains in crossbred animals. By gener-
ation 5, scenario 2, in which both breeds were selected
for CP, had a higher mean phenotype in the crossbred
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Figure 5 Mean phenotype of crossbred individuals. (a) Results for a low
1 cM apart). (b) Results for a high correlation of LD phase between breeds
means from 30 replicates. Sc. Ref: Selection criteria in both breed A and B
training sets. Sc.1: Selection criteria in breed A was for crossbred performa
and both breeds had separate training sets. Sc.2: Selection criteria in both
separate training sets. Sc.3: Selection criteria in breed A was for crossbred
performance and both breeds had a Common training sets. Sc.4: Selection
both breeds had a common training set. Standard error of phenotypic mea
offspring than other scenarios. Scenario 1 also resulted
in higher gain than the reference scenario since, in this
scenario, one of the breeds was selected for CP. In the
reference scenario, in which both breeds were selected
for purebred performance, response to selection was
lower than the other scenarios. Graph a in Figure 5
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correlation of LD phase between breeds A and B (r = 0.2 for markers
A and B (r = 0.7 for markers 1 cM apart). The plotted responses are
was for purebred performance (P) and both breeds had Separate
nce (C) and selection criteria in breed B was for purebred performance
breed A and B was for crossbred performance and both breeds had
performance and selection criteria in breed B was for purebred
criteria in both breed A and B was for crossbred performance and
ns for simulated scenarios in generation 5 ranged from 0.03 to 0.04.
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shows that, when each breed had a separate training set to
estimate marker effects (scenarios 1 and 2), the perform-
ance of their crossbred offspring improved compared to
that with the alternative scenarios for which a common
reference was used to estimate marker effects (scenarios 3
and 4). For example, although in scenarios 1 and 3 one of
the breeds (breed A) was selected for CP and because in
scenario 1 each breed had its own training set, the re-
sponse for scenario 1 was greater than for scenario 3.
In addition, when the correlation of LD phase was

high between the two breeds, selection for CP improved
the response in crossbred animals and the use of a com-
bined reference population of the two breeds improved
response even more. For scenarios 3 and 4, response in
crossbred animals was greater than for the other scenar-
ios, since these scenarios used a common training set to
estimate marker effects.

Heterosis in crossbred animals
Based on the definition of heterosis, expected CP can be
written as CP = BA +H, where BA denotes the breed
average of pure lines and H the heterosis present in the
crossbred animals. Thus, the observed advantage of se-
lection for CP in some scenarios may be due to greater
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Figure 6 Heterosis in crossbred individuals. (a) Results for a low correla
apart). (b) Results for a high correlation of LD phase between breeds A and
means from 30 replicates. Sc. Ref: Selection criteria in both breed A and B
training sets. Sc.1: Selection criteria in breed A was for crossbred performa
and both breeds had separate training sets. Sc.2: Selection criteria in both
separate training sets. Sc.3: Selection criteria in breed A was for crossbred
performance and both breeds had a Common training set. Sc.4: Selection
both breeds had a common training set.
response in BA or in H, or in both. Heterosis was calcu-
lated at each generation of the crossbred population
(Figure 6) and Table 3 shows BA values for each sce-
nario. Since heterosis was simulated due to dominance,
total heterosis was simply the sum of heterosis at each
locus, H = ∑ dl(pA,l − pB,l)

2, where dl is the dominance ef-
fect at QTL l, pA,l is the allele frequency at QTL l in
breed A, and pB,l is the allele frequency at QTL l in
breed B [7]. For both low and high correlations of LD
phase, the amount of heterosis in the reference scenario
was constant over generations but in other scenarios in
which at least one breed was selected for CP, the amount
of heterosis increased in each generation, which indi-
cates that selection for CP resulted in greater heterosis
and finally in improved performance of crossbred animals.
Since heterosis depends on the difference in allele frequen-
cies between the two breeds, these results suggest that selec-
tion for CP moves allele frequencies in the two breeds in
opposite directions and causes divergence in allele frequen-
cies between both breeds.

Accuracy of selection
Prediction accuracy, i.e. correlation between the breeding
values predicted by GS and the TBV obtained from
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B (r = 0.7 for markers 1 cM apart). The plotted heterosis values are
was for purebred performance (P) and both breeds had Separate
nce (C) and selection criteria in breed B was for purebred performance
breed A and B was for crossbred performance and both breeds had
performance and selection criteria in breed B was for purebred
criteria in both breed A and B was for crossbred performance and



Table 3 Mean phenotypic average of breeds A and B in simulated scenarios

Low correlation of LD phase High correlation of LD phase

G Sc. Ref Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. Ref Sc. 1 Sc. 2 Sc. 3 Sc. 4

1 1.33 1.25 1.33 1.21 1.37 1.12 1.19 1.04 1.04 0.93

2 1.97 1.88 1.94 1.79 1.96 1.81 1.84 1.68 1.71 1.60

3 2.02 2.04 2.11 1.96 2.12 2.04 2.03 1.86 1.90 1.80

4 2.32 2.14 2.21 2.07 2.20 2.18 2.17 1.97 2.12 1.95

5 2.40 2.21 2.28 2.15 2.26 2.29 2.24 2.03 2.23 2.05

G = generation; Sc. Ref = reference scenario; Sc. 1 = scenario 1; Sc. 2 = scenario 2; Sc. 3 = scenario 3; Sc. 4 = scenario 4.
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simulation, ranged from 0.69 to 0.86 in the validation popu-
lation (generation 1) across the different scenarios analysed
(Figure 7). It should be noted that accuracies in Figure 7 al-
ways refer to the selection criterion. In other words, when
selection is for purebred performance, accuracy is the correl-
ation between TBVP and GEBVP, i.e. (rtbvp,gebvp). Conversely,
when selection is for CP, accuracy is the correlation between
TBVC and GEBVC, i.e. (rtbvc,gebvc). Hence, this comparison
shows whether selection for CP is, or is not, more difficult
than selection for purebred performance.
For a low correlation of LD phase, Figures 7a and 7b show

that accuracy of selection for breed A was greater in the ref-
erence scenario (in which breed A was selected for purebred
performance) than in the other scenarios (in which breed A
was selected for CP. Accuracy of selection in breed B
(Figure 7b) was also greater when selection in this breed
was for purebred performance (reference scenario and sce-
narios 1 and 3) than when selection was for CP (scenarios 2
and 4). Thus, predicting GEBVC based on purebred data is
more difficult than predicting GEBVP on such data.
For a high correlation of LD phase (Figure 7c and 7d),

accuracies ranged from 0.78 to 0.88 in the first gener-
ation, which suggests that when the correlation of LD
phase between breeds is high, there is a smaller differ-
ence in accuracy between purebred and crossbred selec-
tion (rtbvp,gebvp ~ rtbvc,gebvc). Finally, for both low and high
correlations of LD phase, prediction accuracy declined
over generations in all scenarios.
Accuracies of additive and dominance effects
The accuracies reported above are correlations between
TBV and GEBV and include both additive and domin-
ance components of the breeding values per se. In order
to compare the accuracy of estimates of additive and
dominance effects separately, both true and estimated
breeding values of an individual were partitioned into
components due to additive and dominance effects.
Table 4 includes accuracies of estimated breeding values,
as well as accuracies of the additive and dominance
components of estimated breeding values for low and
high correlations of LD phase between the two breeds. It
should be noted that accuracies of estimated breeding
values in Table 4 always refer to the selection criterion.
In other words, when selection in a breed is for pure-
bred performance, accuracy is the correlation between
TBVP and GEBVP. Conversely, when selection in a
breed is for CP, accuracy is the correlation between
TBVC and GEBVC. Generally, in all scenarios, accur-
acies of estimated breeding values due to additive effects
were greater than accuracies of estimated breeding
values due to dominance effects. These differences in ac-
curacies were clearer for scenarios in which selection
within a breed was for CP (e.g. breed B in scenarios 2
and 4 in Table 4). However, when selection in a breed
was for purebred performance, accuracies of estimated
breeding values due to additive and dominance effects
were not very different (e.g. breed B in the reference sce-
nario and scenarios 1 and 3). In summary, for both se-
lection criteria, accuracies of estimated breeding values
were as high as accuracies due to additive effects. How-
ever, when selection within a breed was for purebred
performance, accuracies due to dominance effects were
higher than accuracies due to dominance effects for se-
lection on CP. The same trend was observed with a high
correlation of LD phase between the two breeds [See
Additional file 1].
Response to selection in purebred animals
Figure 8 shows the response to selection in both pure-
bred populations of breeds A and B over five genera-
tions. For a low correlation of LD phase between breeds
A and B (Figures 8a and 8b), response to selection in
both breeds in the reference scenario was higher than in
the other scenarios, since selection in this scenario was
for purebred performance. In the other scenarios, re-
sponse to selection was lower for breed A than in the
reference scenario, since in these scenarios the selection
criterion was CP (Figure 8a). Figure 8b shows that re-
sponse to selection for breed B in scenarios 3 and 4,
which used a common reference population, was lower
than in the other scenarios.
For a high correlation of LD phase between breeds A

and B, response to selection for breed A was lower in
scenario 2 than in the other scenarios (Figure 8c).
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Figure 7 Accuracy of selection in breeds A and B in five scenarios. (a) and (b) Results for a low correlation of LD phase between breeds A
and B (r = 0.2 for markers 1 cM apart) (c) and (d) Results for a high correlation of LD phase between breeds A and B (r = 0.7 for markers 1 cM
apart). The plotted accuracies are means from 30 replicates. Sc. Ref: Selection criteria in both breed A and B was for purebred performance (P)
and both breeds had Separate training sets. Sc.1: Selection criteria in breed A was for crossbred performance (C) and selection criteria in breed
B was for purebred performance and both breeds had separate training sets. Sc.2: Selection criteria in both breed A and B was for crossbred
performance and both breeds had separate training sets. Sc.3: Selection criteria in breed A was for crossbred performance and selection criteria
in breed B was for purebred performance and both breeds had a Common training set. Sc.4: Selection criteria in both breed A and B was for
crossbred performance and both breeds had a common training set. It should be noted that accuracies in this Figure are correlations between
the selection criterion and the EBV of interest. Thus, when selection is for purebred performance, accuracy is the correlation between GEBVP and
TBVP, while when selection is for crossbred performance, accuracy is the correlation between GEBVC and TBVC.
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Figure 8c also shows that for a high correlation of LD
phase between breeds, the use of a common reference
population to estimate marker effects improved the per-
formance of purebred animals, i.e. scenario 3 performed
better than scenario 1, and scenario 4 performed better
than scenario 2.
In conclusion, for both low and high correlations of

LD phase, selection for CP generated a loss in response
to selection in purebred animals.
Discussion
The purpose of this study was to evaluate the potential
benefit of GS within purebred lines, when the objective
is to improve performance of crossbred populations at
the commercial level and phenotypic information is col-
lected only on purebred animals. We compared response
to selection in crossbred animals in five scenarios, where
individuals were selected either on GEBVP or GEBVC,
and marker effects were estimated either from two



Table 4 Partitioning accuracies of breeding values due to additive and dominance effects for a low correlation of LD phase

Ref scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4

Breed A G BV Add Dom BV Add Dom BV Add Dom BV Add Dom BV Add Dom

1 0.86 0.81 0.53 0.73 0.80 0.22 0.69 0.80 0.15 0.70 0.78 0.26 0.72 0.76 0.31

2 0.64 0.69 0.56 0.57 0.65 0.20 0.46 0.69 0.19 0.59 0.69 0.27 0.54 0.65 0.22

3 0.48 0.63 0.57 0.48 0.50 0.23 0.39 0.63 0.20 0.47 0.61 0.21 0.47 0.61 0.22

4 0.37 0.59 0.60 0.42 0.52 0.24 0.33 0.57 0.21 0.34 0.54 0.18 0.40 0.58 0.24

5 0.31 0.56 0.61 0.36 0.47 0.23 0.25 0.52 0.20 0.28 0.48 0.20 0.32 0.52 0.26

Ref scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4

Breed B G BV Add Dom BV Add Dom BV Add Dom BV Add Dom BV Add Dom

1 0.85 0.77 0.47 0.87 0.81 0.56 0.74 0.81 0.13 0.88 0.85 0.60 0.72 0.82 0.19

2 0.64 0.65 0.43 0.60 0.64 0.55 0.55 0.68 0.16 0.71 0.76 0.59 0.54 0.69 0.18

3 0.50 0.58 0.49 0.42 0.59 0.55 0.45 0.59 0.18 0.59 0.70 0.63 0.40 0.62 0.16

4 0.38 0.58 0.53 0.37 0.56 0.54 0.37 0.54 0.19 0.49 0.65 0.68 0.36 0.56 0.15

5 0.30 0.55 0.56 0.24 0.54 0.58 0.32 0.49 0.18 0.35 0.60 0.68 0.28 0.48 0.14

Reference scenario = selection criteria in both breeds A and B were for purebred performance (P) and both breeds had each a separate training set; scenario
1 = selection criteria in breed A was for crossbred performance (C) and selection criteria in breed B was for purebred performance and both breeds had each a
separate training set; scenario 2 = selection criteria in both breeds A and B were for crossbred performance and both breeds had each a separate training set;
scenario 3 = selection criteria in breed A was for crossbred performance and selection criteria in breed B was for purebred performance and both breeds had a
common training set; scenario 4 = selection criteria in both breeds A and B were for crossbred performance and both breeds had a common training set.
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separate purebred reference populations or a combined
purebred reference population. In a two-way crossbreed-
ing system, we found that selection for GEBVC in-
creased response in crossbred animals compared to
selection for GEBVP. We also investigated the effect of
the correlation of LD phase between the two pure
breeds on the consequences of combining both reference
populations. The results revealed that, for a high correl-
ation of LD phase, combining both populations into a
single reference population increased response to selec-
tion in crossbred animals.

Persistence of LD phase
The value of SNPs effect estimated for populations other
than the reference population depends on the persist-
ence of LD phase between the reference population and
the other population [28]. For example, a SNP that was
identified as being in LD with the QTL in one breed
may not be in LD with the QTL in another breed. The
level of LD is more likely to be different between two
populations when these populations have diverged for
many generations and the effective population size be-
comes small, and when distance between the SNP and
the QTL is large, since these factors will either break
down LD in the ancestral population or create new LD
within the subpopulation [3,26].
For a low correlation of LD phase, combining data

from both breeds to estimate marker effects (scenarios 3
and 4) had no effect on the accuracy of GS. It has been
reported that using multiple breeds to predict GEBV can
be effective to increase the size of the reference popula-
tion and in turn increase accuracy of selection [29].
However, the benefit of combining reference populations
depends on the size of the reference population, since
there is a diminishing return relationship between size
and accuracy of reference populations. Hence, if the ref-
erence population is small, combining populations may
help when the correlation of LD phase is sufficiently
high but will have a limited benefit or may even be detri-
mental when the reference population is large.
For a high correlation of LD phase, combining animals

from the two breeds in the training set improved the ac-
curacy of selection in scenarios 3 and 4. These results
are consistent with those of de Roos et al. [30], who con-
cluded that across-population evaluations were preferred
to within-population evaluations when the populations
were closely related, marker density was high, or the num-
ber of animals with phenotypic records was small.

Non-additive effects and response to selection
It has been argued that dominance is the likely genetic
basis of heterosis [7], therefore explicitly including dom-
inance in the GS model may be an advantage when
selecting purebred animals for CP, i.e. it may increase
heterosis. In this study, we assumed dominance variance
to be one third of the additive genetic variance. This ra-
tio resulted in 10 to 15% of loci showing overdominance.
When overdominance is present, crossbred perform-
ance is maximized if alternate alleles are fixed in the
two purebred populations. In fact with overdomi-
nance, allele substitution effects may have opposite
signs in the parental breeds, depending on allele fre-
quencies in the two breeds. In this case, the two par-
ental breeds are expected to be fixed for alternate
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Figure 8 Mean phenotype of purebred individuals. (a) and (b) Results for a low correlation of LD phase between breeds A and B (r = 0.2 for
markers 1 cM apart). (c) and (d) Results for a high correlation of LD phase between breeds A and B (r = 0.7 for markers 1 cM apart). The plotted
responses are means from 30 replicates. Sc. Ref: Selection criteria in both breed A and B was for purebred performance (P) and both breeds had
Separate training sets. Sc.1: Selection criteria in breed A was for crossbred performance (C) and selection criteria in breed B was for purebred
performance and both breeds had separate training sets. Sc.2: Selection criteria in both breed A and B was for crossbred performance and both
breeds had separate training sets. Sc.3: Selection criteria in breed A was for crossbred performance and selection criteria in breed B was for
purebred performance and both breeds had a Common training set. Sc.4: Selection criteria in both breed A and B was for crossbred
performance and both breeds had a common training set.

Esfandyari et al. Genetics Selection Evolution  (2015) 47:16 Page 14 of 16
alleles of overdominant QTL, which increases the fre-
quency of favourable heterozygotes in crossbred pro-
geny and can explain the benefit of selection based on
GEBVC. However, it should be noted that existence of
overdominance is not the only driver of divergence in
allele frequencies in parental breeds. It has been
shown that partial dominance can play a role in influ-
encing changes in allele frequencies and have
favourable effects on heterosis, especially when the
number of QTL that affect the trait is large [31].

Genotype-by-environment and genotype-by-genetic
interactions
In our simulation, we assumed that the additive and
dominance effects of the QTL alleles were similar in
both breeds. For some QTL, which have been traced to
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known mutations, the alleles do act reasonably similarly
in different breeds and populations [32]. However, this
assumption is violated when there are QTL-by-
environment interactions or QTL-by-genetic background
interactions (epistasis). With substantial QTL-by-
environment interactions or epistasis, it will be less advan-
tageous to combine populations in a training set, because
marker effects will differ between populations [30]. In
addition, with genotype-by-environment (G × E) inter-
action and epistasis, the main complication is that the
dominance model does not fully explain the incomplete
genetic correlation between crossbred and purebred indi-
viduals (rpc). In fact, an incomplete genetic correlation be-
tween purebred and crossbred performance can be due to
both non-additive effects (dominance and epistasis), and
G × E interaction. In our simulation, the correlation be-
tween TBVP and TBVC (rtbvp,tbvc) was 0.66 and 0.7 on
average for low and high correlations of LD phase between
two breeds, respectively, which was purely due to domin-
ance and differences in allele frequencies between the two
purebred lines.
In this study, we focused on using purebred data to

improve CP. In fact, selection at the purebred level re-
duces the need for the crossbred testing that is required
for CCPS, thereby saving important test resources and
enabling the short generation intervals of purebred se-
lection. However, Dekkers and Chakraborty [33] dis-
cussed the benefit of GS for improving CP and
suggested that it may be limited if marker effects are
estimated from purebred nucleus data since the result-
ing EBV are strictly relevant to the studied population
and environment only and may not help much to im-
prove selection for CP if substantial G × E and
genotype-by-genetic (G × G) background interactions
are present. In this study, we considered the G × G due
to dominance and not that due to differences in the
physical environment. In principle, one could use a
dominance model and multitrait analysis to partition
the purebred-crossbred genetic correlation into a com-
ponent due to dominance and a remaining component
due to G × E and epistasis. However, accurate partition-
ing would require a small standard error of the estimated
purebred-crossbred genetic correlation, and thus very
large datasets [34].
In this study, directional dominance was simulated

since dominance coefficients (hi) were normally distrib-
uted with a positive mean, N(0.5, 0.1). Consequently,
dominance effects (di) were on average greater than 0
(d > 0). However, in the statistical model used to esti-
mate the genetic effects associated with each marker,
dominance effects were considered as random unknown
effects with a mean of 0. The simulation of dominance
effects that are on average greater than 0 has two conse-
quences. First, the overall average trait value may
increase. This will be accounted for by the fixed effects
component of the model Xb. Second, directional dom-
inance leads to inbreeding depression. Thus, animals
with different inbreeding levels will have systematically
different trait phenotypes. This probably means that our
model could be improved by including a regression on
inbreeding coefficients. However, we think this effect is
probably limited since we simulated only five discrete
generations of data with random mating among selected
animals. Thus, the range of inbreeding coefficients may
not have been sufficiently large to affect the results.

Conclusions
Under the hypothesis that crossbred animals differ from
purebred animals because of dominance, GS can be ap-
plied to select purebred individuals for CP without col-
lecting crossbred phenotypic or genotypic data, by using
a dominance model. We found that in a two-way cross-
breeding system, response to selection in crossbred indi-
viduals was higher when selection was for GEBV for CP,
although data were collected on purebred individuals.
Furthermore, if the correlation of LD phase between two
breeds is high, there can be an added benefit in terms of
accuracy of GEBV if animals from both breeds are com-
bined into a single reference population to estimate
marker effects.
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