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Abstract

reference population.

performance is not part of the breeding objective.

Background: In crossbreeding programs, genomic selection offers the opportunity to make efficient use of
information on crossbred (CB) individuals in the selection of purebred (PB) candidates. In such programs, reference
populations often contain genotyped PB animals, although the breeding objective is usually more focused on CB
performance. The question is what would be the benefit of including a larger proportion of CB individuals in the

Methods: In a deterministic simulation study, we evaluated the benefit of including various proportions of CB
animals in a reference population for genomic selection of PB animals in a crossbreeding program. We used a pig
breeding scheme with selection for a moderately heritable trait and a size of 6000 for the reference population.

Results: Applying genomic selection to improve the performance of CB individuals, with a genetic correlation
between PB and CB performance (rpc) of 0.7, selection accuracy of PB candidates increased from 0.49 to 0.52 if the
reference population consisted of PB individuals, it increased to 0.55 if the reference population consisted of the
same number of CB individuals, and to 0.60 if the size of the CB reference population was twice that of the
reference population for each PB line. The advantage of using CB rather than PB individuals increased linearly with
the proportion of CB individuals in the reference population. This advantage disappeared quickly if roc was higher
or if the breeding objective put some emphasis on PB performance. The benefit of adding CB individuals to an
existing PB reference population was limited for high rpc.

Conclusions: Using CB rather than PB individuals in a reference population for genomic selection can provide
substantial advantages, but only when correlations between PB and CB performances are not high and PB

Background

Traits expressed in purebred (PB) and crossbred (CB)
individuals are genetically not the same [1]. PB and
CB performances can be considered as two genetically
correlated traits; the correlation between PB and CB
performances (rpc) is affected by the extent of non-
additive genetic effects (particularly dominance) and
the genetic distance between lines or breeds crossed. This
correlation also often reflects genotype by environment
interactions due to nucleus PB and commercial CB
animals being exposed to different environments. Wei
and van der Werf [2] proposed to consider PB and CB
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performances as two correlated traits and to use a
multi-trait model for their genetic evaluation. The
breeding objective usually focuses on the performance
of CB animals.

In practice, it is often difficult to use CB information
since both performance and pedigree records can be
difficult to obtain on CB animals. Moreover, selection
for CB performance is either on half-sibs, which does
not exploit variation within the half-sib family, or on
progeny information, which would lengthen the gener-
ation interval if it was used. Bijma and van Arendonk [3]
showed that extensive use of sib information on CB indi-
viduals can lead to increased rates of inbreeding.

Genomic selection could benefit crossbreeding pro-
grams since it allows using information on CB animals
that is available at an early age and the method uses
within-family variation [4,5]. Dekkers [6] proposed to
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use marker information that was calibrated based on the
performance of commercial CB animals. He found a
significant increase in the rates of genetic gain compared
to using only PB phenotypic information, or combined
PB and CB information, whereas the rate of inbreeding
decreased.

Genomic selection uses marker genotypes and pheno-
types in a reference population to predict breeding values
of selection candidates that have been genotyped [7]. The
effectiveness of genomic selection will depend on the size
and composition of the reference population used for
genomic predictions [8,9]. In crossbreeding programs,
the breeding objective often includes CB performance, or
in some cases, both PB and CB performance. Therefore, it
seems reasonable to recommend the use of performance
and genotypic data on CB individuals for genomic selec-
tion in crossbreeding programs. However, although large
amounts of phenotypic as well as genotypic information
on PB animals are usually already available, collecting CB
information might be difficult, expensive and time-
consuming. Thus, it is relevant to evaluate the benefit of
using CB information in a reference population compared
to that of PB information.

Dekkers [6] found that genetic gains were substantially
less when genomic prediction was based on PB pheno-
typic data compared to CB phenotypic data. However,
this assessment was based on comparisons for which the
molecular breeding value (mbv) was combined with PB
phenotypic information only, and the mbv was based on
either PB or CB individuals with phenotypes, but not on
both. Also, accuracies of mbv based on PB or CB indi-
viduals were assumed to be the same. However, if the
linkage phase between a marker and a quantitative trait
locus (QTL) is not consistent across breeds or selection
lines, then a CB animal will have only one haplotype that
is potentially informative to predict the mbv of a PB
selection candidate whereas a PB animal has two rele-
vant haplotypes. For a reference population of same size,
phenotyping the CB individuals would require the esti-
mation of twice the number of chromosome segments,
therefore contributing less information per animal to a
particular PB line. Nevertheless, the information pro-
vided is for the more relevant trait (CB performance).

This study aimed at assessing more generally the benefit
of including CB information in the reference population
of a crossbreeding program using genomic selection. The
efficiency of investing in CB information to enable gen-
omic selection of PB animals for CB performance was
explored by varying the proportion of PB and CB animals
in a reference population, or by adding CB individuals to
an existing PB reference population. The size of the refer-
ence population, the size of the correlation between PB
and CB performance and the emphasis on PB perform-
ance in the breeding objective were varied. Additionally,
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two examples of hard-to measure traits, relevant to pig
breeding schemes, were considered.

Methods

Selection index methodology provides a suitable frame-
work to predict the accuracy of estimated breeding values
for various breeding program scenarios, including the use
of genomic information [10]. Deterministic simulation
was used to predict the accuracy of estimated breeding
values of selection candidates in a two-way crossing sys-
tem. PB animals were selected for an index that included
varying amounts of records and genotypes on CB and PB
individuals. In scenarios with genomic selection, the
make-up of the reference population was varied in terms
of size, and proportion of CB individuals.

Breeding program

We assumed a pig breeding nucleus with two PB lines that
included 500 breeding females and 25 females mated to
one male. We assumed that in each full-sib family, two
males and two females were measured to become selection
candidates for nucleus replacement. Nucleus replacements
were selected on an index measured at a fixed time of
selection.

For the base situation, we considered a trait that could
be measured on both sexes before selection started. The
trait heritability was 0.25. When selection started, pheno-
typic information was available on own performance, sire
and dam performance, three full-sib records and 40 half-
sib records of PB family members. To be able to compare
the results of our study with those reported in [6], these
parameters were set to the same values as in [6]. PB ani-
mals were mated to produce CB animals. The breeding
goal was to improve the performance of CB animals,
although, in some breeding schemes, PB performance also
had some economic value. PB individuals had 10 CB half-
sibs that were phenotypically measured at the time of their
selection (no CB progeny). PB animals could also be geno-
typed before selection and the reliability of their genomi-
cally estimated breeding values depended on size and
composition of the reference population. We assumed a
reference population of varying size and with a varying
proportion of CB animals.

We considered PB performance and CB performance as
two genetically correlated traits, with correlation rpc.
Parameters for the base scenario are described in Table 1.

We also studied two single-trait examples relevant to
pig breeding schemes that can be considered as ‘hard-to-
measure traits’ and which therefore are expected to benefit
more from genomic selection. We considered two sow
traits that had different heritabilities and that could be
measured within the breeding program. These traits were
number of piglets born alive in first parity (PBA1) and
length of productive life (LPL). PBA1 phenotypes were
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Table 1 Base parameters used in the simulations

PB/CB

Heritability, h? 0.25
Phenotypic standard deviation, SD 1
Common environment among full-sibs, I 0.15
Economic value, PB_EV / CB_EV 0/1
Effective population size, Ne 100
Reference population size, np 6000
Purebred-Crossbred correlation, rpc 0.7

available for young sows and the heritability was 0.12
[11]. We evaluated scenarios based on accuracy of male
selection. Males were selected based on information on
the dam, two full-sib records, 20 half-sib records and
five half-sib CB records. For genomic selection, we
assumed that a total of 4000 records were available in
the reference population of which 1000 were PB records
and 3000 were individuals with a varying proportion of
CB animals (pcp).

LPL is a measure of longevity that is only available on CB
sows (because PB dams are kept only for a short time to
limit generation interval) and late in life. Without genomic
selection, this trait cannot be selected for in breeding pro-
grams. Genomic selection creates the potential to select on
CB performance via genomic breeding values. LPL was as-
sumed to have a heritability of 0.06 in CB individuals [11].
For genomic selection, we assumed a reference population
of 6000 individuals, with pcp ranging from 0 to 1. We as-
sumed that, for the purpose of creating a reference popula-
tion, some PB sows will be kept longer and measured for
the trait, without actually being used as nucleus dams. The
size of this reference population may seem unrealistically
large, but such a size is required in order to obtain a rea-
sonable genomic prediction accuracy for such a lowly herit-
able trait. For both traits, rpc and EV_PB were varied.

Accuracy of molecular breeding values

The accuracy 7,, of the estimated breeding values based on
genomic information (g) was derived from the size and com-
position of total reference population. We considered two
reference populations, one for PB and one for CB of size
(1-pcp) - np and pcp-np respectively, np is the size of the
combined reference population. We used the formula of
Daetwyler et al. [8] to predict 7,4 of both gpz and gep: rag =
h?*/(h* + ), where h” is the trait heritability and A =ng/N
where N is size of reference population (N = (1-pcp) - np for
purebreds and N =pcg - np for crossbreds), ng refers to the
effective number of chromosome segments (independent
loci). As suggested by Hayes et al. [12], ng can be approxi-
mated as 2N.L, where N, is the effective population size
and L is the genome length in Morgans. For the pure line
breeding population, we assumed an effective size of
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Ne = 100. We assumed that in the CB reference population,
the number of chromosome segments to be estimated is
twice that in the PB reference population, since, at each
segment of the genome, the haplotypes originate from two
different breeds or lines. Note that this is equal to assuming
that each CB individual is half as informative as a PB
individual (as 2ng/N = ng/ (N/2)).

Selection index

Following Dekkers [6,10], multi-trait selection indices were
derived to predict the accuracy of the selection index. We
combined phenotypic information with genomic predic-
tions of breeding value, i.e. the molecular breeding value
(¢), from both PB and CB information sources to estimate
breeding values for PB (apg) and CB (acp) performances.
For the selection index, the molecular breeding value g was
considered as a separate trait, which is correlated to the
breeding value it predicts, with the correlation between a;
and g; (1) equal to the accuracy of the molecular breed-
ing value; the heritability of g was equal to 0.999. Hence,
the multi-trait model used for the selection index con-
tained four traits: app, acp, gpp and gcg. The correlation
between app and acp was equal to rpc and the correlation
between gpp and gcp was assumed to be equal to r pgepe.
raceeee-I'pc; Which are similar to those in [6] but we
assumed that all the additive genetic variance was cap-
tured by markers, which in turn is an assumption con-
sistent with Daetwyler et al. [8]. The selection index
was optimized for the breeding objective with various
degrees of emphasis on apg and acp and no emphasis
on any of the g. The accuracy of the selection index
was used as a criterion to compare the performance of
different scenarios.

We varied the size of the total reference population
(np), the degree of emphasis put on PB performance in
the breeding objective (PB_EV), and the correlation be-
tween PB and CB performances (rpc). In all compari-
sons, we plotted the index accuracy versus pcg.

Results

Reference population structure

For the base scenario, where rpc =0.7 and the breeding
objective aimed at improving CB performance, the index
accuracy based on PB phenotypic information alone was
0.45. Combining phenotypic information on PB and CB
animals gave an accuracy of 0.491, i.e. 10% higher than
that obtained with PB information alone. Index accuracy
increased to 0.526 if, in addition, genomic selection was
based on a PB reference population of 6000 individuals.
The best scenario used genomic selection based on 6000
CB individuals, giving an index accuracy of 0.554. In gen-
eral, increasing the proportion of CB animals in the refer-
ence population increased the index accuracy (Figure 1),
but this increase was relatively small in the base scenario.
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Figure 1 Effect of the proportion of CB animals in the reference population on index accuracy of a breeding program using PB selection
candidates selected on CB performance for various sizes of reference population.

The relative increase in index accuracy due to genomic
selection was 7.3% (0.491 vs. 0.526) if the reference popu-
lation included PB animals and was 12.8% (0.491 vs 0.554)
if a CB reference population of equal size was used. For a
large reference population (nj, = 6000), the difference be-
tween using a PB reference population versus a CB refer-
ence population was a relative increase in accuracy of
5.2% (0.526 vs 0.554). The increase was nearly linear with
the proportion of CB individuals in the reference popula-
tion (pcp); a 50% CB/PB reference population resulted in
about 2.8% greater accuracy than a pure PB reference
population. The index accuracy also increased almost
linearly with the size of the reference population (np). For
example, compared to no genomic selection, the index
accuracy increased by 6.9% and 12.8% with a reference
population of 3000 and 6000 CB individuals, respectively,
and it increased by 3.9% and 7.3% with a reference popula-
tion 3000 and 6000 PB, respectively.

Breeding objective

Figure 2 compares the index accuracy for different breeding
objectives and with the relative emphasis put on PB per-
formance (PB_EV) ranging from 0 to 0.4. When PB per-
formance had some economic value in the breeding
objective (PB_EV > 0), then the benefit of having CB ani-
mals in the reference population decreased (Figure 2). The
index accuracy increased by 5.2% when using a CB rather
than a PB reference population if PB_EV =0 but only by
1.8% (0.583 vs. 0.593) if PB_EV = 0.2, and there was a small
loss of 1% in accuracy (0.633 vs. 0.626) if PB_EV =0.4.
This loss in accuracy is explained by the lower amount
of information on genomic prediction accuracy deliv-
ered per CB animal since more haplotypes need to be
estimated in a CB population. Accuracy of genomic
prediction of gpp from 6000 PB animals was predicted
to be 0.46, whereas that of gcz was only 0.33 when
using 6000 CB animals.

Correlation between PB and CB performances

Figure 3 shows the effect of rpc on index accuracy and
how the accuracy changes with pcp. For a high rpc of
0.9, the effect of replacing PB by CB animals in the refer-
ence population was negative, again because of the lower
prediction accuracy of gcp vs. gpg. The index accuracy of
genomic breeding programs using a PB reference popu-
lation differed from a CB reference population with 5.2%
for rpc=0.7 and 14.8% (0.434 vs. 0.498) for rpc=0.5.
Again, the increase was nearly linear in pcg, so with pcg
= 0.5, this additional accuracy was about halved.

Effect of CB individuals in a reference population

In practice, PB information is often available. Therefore,
it would be interesting to estimate the benefit of adding
CB individuals to an existing (potential) reference popu-
lation when selecting for CB performance. Figure 4
shows the effect of adding CB animals to a PB reference
population of 2000 individuals. The results show that
index accuracy increased considerably if no phenotypic
information was available on selection candidates, but
this increase was relatively small if individual phenotypic
measurements on selection candidates were available
(either on PB only or on both PB and CB individuals).
This illustrates that an increase in genomic prediction
accuracy is less useful when more information is already
available to estimate genetic merit. Although, the benefit
of adding CB individuals to PB individuals in the refer-
ence population was small when phenotypes on the ref-
erence animals (either on PB only or on both PB and CB
individuals) were available, the marginal benefit of add-
ing CB animals to the reference population was higher
than the benefit of adding PB individuals. For example,
increases in index accuracy resulting from the addition
of 2000 CB or 4000 PB to a reference population of
2000 PB individuals were the same. In the absence of
phenotypic data on selection candidates, increases in
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Figure 2 Effect of the proportion of CB animals in the reference population on index accuracy of PB selection candidates when the
emphasis put on PB performance varies in the breeding objective (PB_EV as fraction of CB_EV).

index accuracy from adding 2000 CB or 2325 PB indi-
viduals to a reference population of 2000 PB are about
the same, thus the benefit of adding CB over PB individ-
uals was smaller for that scenario.

Hard-to-measure traits

Results for PBA1 are in Figures 5a and b and those for
LPL are in Figures 6a and b. Results for these hard-to-
measure traits confirm the earlier conclusion that the
value of CB over PB individuals in the reference popula-
tion depends highly on the rpc. Compared with the base
scenario, the value of CB individuals in the reference
population was slightly smaller compared to that of PB
individuals in the reference population for the trait
PBA1l and significantly smaller for the trait LPL. For
both traits, there was no added value of CB over PB
individuals in the reference population, unless the rpc
value was less than 0.7 (Figures 5b and 6b). Although
less phenotypic information was available for PBA1 and
LPL than for the base trait, the added accuracy obtained
from the genomic information did not increase much

compared to the base situation because either the size of
the reference population was also smaller due to the
sex-limited character of the trait (PBA1) or heritability
of the trait was low (LPL). Because no phenotypic data on
LPL was available for PB selection candidates, accuracies
were the same for all rpc values when reference popula-
tions consisted of only CB animals (Figure 6a). Figures 5a
and 6a compare accuracies for breeding objectives with
varying relative emphasis on PB performance (PB_EV).
Since there was less phenotypic information on PB ani-
mals for LPL than for PBAI1, the benefit of having PB
information in the reference population was relatively
greater for LPL (Figures 5a and 6a). This result is consist-
ent with that of Figure 4, which shows that the benefit of
replacing PB with CB individuals decreased when there
was less phenotypic information on selection candidates.

Discussion

Genomic selection can be very valuable in crossbreeding
programs since it allows efficient selection on CB per-
formance. In general, a larger proportion of CB animals
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Figure 3 Effect of the proportion of CB animals in the reference population on index accuracy of a breeding program using PB
selection candidates selected on CB performance for various purebred-crossbred correlations (rpc).
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3000 4000

in the reference population will increase the selection
accuracy when the breeding goal is focussed on CB per-
formance. However, it might be difficult and expensive
to collect phenotypes and genotypes on CB individuals,
whereas most breeding programs have routine pheno-
typing measurement and genotyping of nucleus animals

in the pure lines. We found that the effect of replacing
PB with CB animals in the reference population was
highly positive but only when the correlation between
PB and CB performance was low (rpc<0.7) and the
breeding objective emphasis was mainly focused on im-
proving CB performance. In our example, with an rpc of
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Figure 6 Effect of the proportion of CB animals in the reference population on index accuracy of PB males for length of productive life (LPL)
when varying the emphasis put on PB performance in the breeding objective (PB_EV as fraction of CB_EV) (a) or when varying purebred-
crossbred correlations (rpc) (b).

0.7 and a breeding objective that focused only on CB
performance, the index accuracy increased from 0.526 to
0.554 when using a CB instead of a PB reference popula-
tion. With an rpc of 0.9, the index accuracy decreased
slightly from 0.635 to 0.626 for a CB compared to a PB
reference population. Therefore, the additional gain from
using CB rather than PB individuals in the reference
population decreased rapidly with higher values of rpc
and also when emphasis was put on PB performance in
the breeding objective. The increase in index accuracy
from including genomic information was also relatively
low when selection of PB animals was already based on
phenotypic information from selection candidates and
their relatives (including CB).

Dekkers [6] concluded that marker-based selection in
crossbreeding programs was much more effective when
molecular prediction was based on commercial CB data
rather than on PB data, which contradicts our findings
that the additional gain from using CB animals in the
reference set is in many cases only modest. Dekkers [6]
used an rpc of 0.7 and a breeding objective that targeted
CB performance only. One difference between our study
and that of Dekkers [6] is that Dekkers assumed that ac-
curacies of gpg and gcp were equal whereas we assumed

an equal number of phenotypes, which led to a lower
prediction accuracy of gcp versus gpp If we assumed
accuracies of gpp and gcp were equal, the index accuracy
increased from 0.49 to 0.60 (23% increase) with a CB
versus a PB reference population, instead of an increase
from 0.49 to 0.55 (13% increase; Figure 1). One could
argue that in practice a breeder would be interested in
improving both selection lines, in which case the choice
is between investing in genotyping n PB individuals in
each line, or 2n CB individuals, the latter providing
information for both lines. In that case, the molecular
breeding values gpz and gcp would be equally accurate,
and the benefit of investing the same genotyping effort
in CB rather than PB animals would be higher than
shown here. However, we also showed that knowledge of
the rpc is critical in assessing this benefit.

Another difference is that Dekkers [6] assumed accur-
acies of 0.6 for predictions of gpp and gcp, which is higher
than what we used here. Higher genomic prediction
accuracy gives more gain in accuracy when replacing PB
by CB animals in the reference population, as shown in
Figure 1. Furthermore, Dekkers [6] compared the gains
from using molecular information only, or adding molecu-
lar information to PB phenotypic information on the
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selection candidates. We assumed that some phenotypic
information was known on 10 CB half-sibs, which makes
the relative value of adding molecular information based
on CB phenotypes smaller. If the phenotypic information
on 10 CB half-sibs was discarded, the increase in index ac-
curacy due to introducing genomic selection was 17%
(from 0.445 to 0.520) if it was based on a CB reference
population) but only 9% (from 0.445 to 0.486) if it was
based on a PB reference population. If CB performance
is measured, then there is some advantage in genotyping
the same individuals, but similarly, if CB performance is
measured for the reference population, then this infor-
mation should be used to predict the breeding value of
PB relatives. Genomic information can be used to predict
relatedness, which alleviates the need for pedigree record-
ing in the CB animals. Hence, genomic testing and pheno-
typing of CB individuals might provide more information
than predicted by the Daetwyler et al. [8] formula (which
assumes prediction from unrelated individuals), since it
facilitates the use of information on close CB relatives.

We used a selection index approach to predict the
additional gains from genomic information in breeding
programs. The selection index model combines informa-
tion from phenotypic data on relatives with genomic
prediction, and assumes that these sources of information
are independent. In practice, this is often not the case, e.g.
CB animals can contribute to a reference population,
but they can also directly affect predictions of relatives
through pedigree relationships. A dependency between
these sources of information needs to be accounted for
in genetic evaluation procedures, e.g. in ad-hoc “blending”
methods [13], or more appropriately in the so-called “sin-
gle-step” method [14], to avoid bias and inflation of the
accuracy of the combined breeding value. Such depend-
ence may exist for some individuals, but not for others, so
it is difficult to account for it in a deterministic modelling
study. Moreover, ignoring this dependence may inflate
genomic prediction accuracy, and therefore the benefit of
genomic information, but it is unlikely to affect the rela-
tive value of CB vs PB records in the reference population.

In practice, breeding objectives often put emphasis on
PB performance, in which case the added value of adding
CB animals in the reference population becomes very
small. The benefit of increasing the percentage of CB indi-
viduals in the reference population depends on rpc, as well
as on PB_EV. In our examples, we found that if rpc is not
very low (~0.8) and PB_EV is greater than 0, which is a
realistic scenario, then the benefits of using PB or CB ani-
mals in the reference population are similar.

In this study, we assumed an effective population size of
100. With Ne = 500, the added value of genomic selection
based on a PB reference population was only 1.7% and
increased to 2.9% if the reference population consisted of
only CB animals. The accuracy of genomic prediction of
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gpp based on 6000 PB animals was predicted to be 0.22 for
Ne =500, whereas that of gcg was only 0.16 based on
6000 CB animals. Both predictions assume no direct
pedigree relationships between the reference population
and selection candidates and probably underestimate
the accuracy achieved in practice.

The effective population size affects the estimated
number of effective chromosome segments or independ-
ent loci (ng), and this can have a large effect on the pre-
dicted accuracy of molecular breeding values (r,g).
However, estimating n, from N, is not straightforward
and approximations used in the literature differ [9,15-17].
We used ng =2N.L, following Hayes et al. [12]. Other
approximations were proposed, e.g. Goddard [9] sug-
gested n, = 2NeL/log(4NeL), Goddard et al. [15] used
ng = 2NeLk/log(2Ne.L) and Meuwissen et al. [16] pro-
posed n, =2NeLk/In(2Ne), where L is the number of
chromosomes and k is the average length per chromo-
some (i.e. their Lk is the same as our L). The latter
approximation leads to a considerably smaller estimate
for ng and therefore higher accuracies. It might be use-
ful to use empirical evidence to verify these predictions.
However, the approximation of r,, has an impact on the
benefit of genomic selection in breeding programs by
affecting the size of the reference population required to
achieve a certain benefit, but we showed that it has only a
small impact on the optimal composition in terms of the
proportion of CB phenotypes in the reference population.

This study did not take the Bulmer effect in consider-
ation, which would reduce the gain due to the phenotypic
information on CB half-sibs [17]. Hence, the benefit of
genotyping CB animals rather than just using their pheno-
types will be higher in reality than presented in this paper.
Also, the effect on inbreeding will be favourable when ap-
plying genomic selection in crossbreeding programs. These
advantages have been pointed out by Dekkers [6]. The main
focus of this paper was to look at the effect of different pro-
portions of PB and CB animals in the reference population,
when applying genomic selection in CB programs, and
these would not be much affected by the Bulmer effect.

Based on deterministic simulations, this paper shows
the potential benefit of including CB information in cross-
breeding programs, using pig breeding as an example. The
main aim of the paper was to evaluate this benefit in rela-
tion to some key parameters. The actual value for these
parameters, and therefore the value of using CB informa-
tion will be case dependent. Some recent papers [18,19]
discussed the use of genomic selection in pig breeding
programs and the opportunities and challenges it brings
along.

Conclusions
Genomic selection for CB performance can significantly
increase rates of genetic gain in crossbreeding programs.
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The rate of genetic gain increases more when CB animals 16
are included in the reference population compared to a

. 17.
PB reference population. However, we found that the
benefit of replacing PB animals with CB animals in the
reference population is small, unless the correlation be- &
tween PB and CB performance is lower than ~0.8 and PB
performance is not considered in the breeding objective. 19.
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