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Abstract

Background: Mixed models are commonly used for the estimation of variance components and genetic evaluation
of livestock populations. Some evaluation models include two types of additive genetic effects, direct and maternal.
Estimates of variance components obtained with models that account for maternal effects have been the subject of
a long-standing controversy about strong negative estimates of the covariance between direct and maternal
effects. Genomic imprinting is known to be in some cases statistically confounded with maternal effects. In this
study, we analysed the consequences of ignoring paternally inherited effects on the partitioning of genetic
variance.

Results: We showed that the existence of paternal parent-of-origin effects can bias the estimation of variance
components when maternal effects are included in the evaluation model. Specifically, we demonstrated that
adding a constraint on the genetic parameters of a maternal model resulted in correlations between relatives that
were the same as those obtained with a model that fits only paternally inherited effects for most pairs of
individuals, as in livestock pedigrees. The main consequence is an upward bias in the estimates of the direct and
maternal additive genetic variances and a downward bias in the direct-maternal genetic covariance. This was
confirmed by a simulation study that investigated five scenarios, with the trait affected by (1) only additive genetic
effects, (2) only paternally inherited effects, (3) additive genetic and paternally inherited effects, (4) direct and
maternal additive genetic effects and (5) direct and maternal additive genetic plus paternally inherited effects. For
each scenario, the existence of a paternally inherited effect not accounted for by the estimation model resulted in a
partitioning of the genetic variance according to the predicted pattern. In addition, a model comparison test
confirmed that direct and maternal additive models and paternally inherited models provided an equivalent fit.

Conclusions: Ignoring paternally inherited effects in the maternal models for genetic evaluation can lead to a
specific pattern of bias in variance component estimates, which may account for the unexpectedly strong negative
direct-maternal genetic correlations that are typically reported in the literature.

Background
Genetic evaluation based on mixed models [1] has become
the main tool for prediction of breeding values in livestock
populations. The most commonly used parameterization
accounts for the direct polygenic additive genetic effect in-
herent to each individual and for several systematic effects
(e.g., sex, herd, season, etc.), as well as a residual source of
variation. However, some traits may also be affected by ma-
ternal genetic effects that refer to the influence from the

genome of the dam (e.g., milk production of the dam).
These maternal genetic effects are commonly considered in
genetic evaluation models for some livestock populations
[2, 3]. Nevertheless, variance components estimates that
are obtained with models that account for maternal effects
have been the subject of a long-standing controversy about
the unexpectedly strong negative estimates of the covari-
ance between direct and maternal genetic effects [4–6].
Genomic imprinting [7, 8] is the total or partial silen-

cing of paternal or maternal alleles in the progeny. Sev-
eral specific genes with imprinted inheritance have been
identified in livestock species [9], such as the callipyge
mutation in sheep [10, 11] and the insulin-like growth
factor 2 (IGF2) gene in pig [12, 13]. Imumorin et al. [14]

* Correspondence: lvarona@unizar.es
1Unidad de Genética Cuantitativa y Mejora Animal, Universidad de Zaragoza,
50013 Zaragoza, Spain
2Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013
Zaragoza, Spain
Full list of author information is available at the end of the article

Ge n e t i c s
Se lec t ion
Evolut ion

© 2015 Varona et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this
article, unless otherwise stated.

Varona et al. Genetics Selection Evolution  (2015) 47:63 
DOI 10.1186/s12711-015-0141-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-015-0141-5&domain=pdf
mailto:lvarona@unizar.es


also reported that genomic imprinting is involved in the
determinism of quantitative trait loci (QTL) in cattle.
More generally, genomic imprinting has been described
as a widespread phenomenon in other mammals [15].
Studies on pig growth [16] and bovine fatness traits [17]
have also provided statistical evidence for the existence
of genetic variation associated with paternal parent-of-
origin inheritance that can account for over 10 % of the
phenotypic variability in these traits. More recently,
Neugenbauer et al. [18, 19] and Tier and Meyer [20]
confirmed this result on other cattle and pig traits.
Maternal effects can be statistically confounded with

maternal inheritance, as noted by Hager et al. [21]. Fur-
thermore, Meyer and Tier [22] suggested that ignoring
parent-of-origin effects may be one of the possible
causes for the unexpectedly large negative estimates of
the correlation between direct and maternal genetic
effects. In this paper, we provide further evidence that
supports this latter argument by showing how the exist-
ence of a paternal parent-of-origin inheritance caused by
the silencing of the alleles in the maternal gametes by
imprinting can bias estimates of variance components in
models that account for maternal effects. Specifically, we
show that for any two individuals that were not related
within the paternal lineage, direct and maternal additive
genetic effects may generate the same expected covari-
ance between relatives as paternal parent-of-origin or
gametic effects. For most livestock pedigrees, the conse-
quence of this is a downward bias in the estimate of the
direct-maternal genetic covariance when paternal inherit-
ance occurs and is not properly accounted for. To confirm
this postulate, we developed a simulation experiment. In
addition, we analysed a dataset of weight records at 210 days
for the Pirenaica beef cattle population and we discuss the
results in the light of this new evidence.

Methods
Quantitative genetic models
Consider a model with direct and maternal additive gen-
etic effects. Hereafter, we use the subscripts “o” and “m”
to differentiate between direct and maternal compo-
nents, respectively. In addition, capital letters are used to
identify different individuals. Under this model, the
phenotypic values of individuals A and B are defined as:

yA ¼ μþ aoA þ amAD þ eA
yB ¼ μþ aoB þ amBD þ eB

;

where μ is the general mean, aoX and amX are the direct
and maternal additive genetic effects, respectively, and
eX is the residual for individual X = {A, B, AD, BD}. Ac-
cording to this notation, AD and BD stand for the dams
of A and B, respectively.

Information for the estimation of variance compo-
nents estimation originates from covariances between
relatives. Under the model with maternal effects de-
scribed above, and assuming independence of the resid-
uals, the covariance between the phenotypic values of
individuals A and B is:

cov yA; yb
� � ¼ cov aoA; aoBð Þ þ cov aoA; amBD

� �
þcov amAD ; aoBð Þ þ cov amAD

; amBD

� �
¼ r A;Bð Þσ2

a þ r A;Bð Þσam þ r AD;Bð Þσam
þr AD;BDð Þσ2

m;

where σa
2, σm

2 , and σam are the direct additive genetic
variance, the maternal additive genetic variance, and the
direct-maternal genetic covariance, respectively, and
r(X,Y) represents the additive relationship between indi-
viduals X and Y. In this context, the main sources of in-
formation to estimate maternal parameters are the
observed correlations between phenotypes of full sibs
(FS), maternal half sibs (MHS) and dam-offspring (DO)
pairs. Equated to their expectations under the maternal
model, the following expressions are obtained:

cov FSð Þ ¼ 1
2
σ2a þ σam þ σ2m;

cov MHSð Þ ¼ 1
4
σ2a þ σam þ σ2m;

cov DOð Þ ¼ 1
2
σ2a þ

5
4
σam þ 1

2
σ2m:

Now, let:

σ2a ¼ 4σ2m ¼ −2σam: ð1Þ

A little algebra shows that under condition (1) the pre-
vious expressions reduce to:

cov FSð Þ ¼ 1
4
σ2a ;

cov MHSð Þ ¼ 0;
cov DOð Þ ¼ 0:

This is exactly the expectation of the covariance be-
tween relatives for these same relationships under a pa-
ternal gametic model of inheritance. In the Appendix
section, we show that this result can be generalised to
any genealogical relationship between a pair of individ-
uals, on the condition that one was not an ancestor of
the other within the paternal lineage. Specifically, the co-
variance between the phenotypic values of any two indi-
viduals (say A and B) under the condition set by
Equation (1) is:
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cov yA; yBð Þ ¼ 1
4
r AS;Bsð Þσ2a ;

where AS and BS are the sires of A and B, respectively.
This striking result implies that the parameterization

of the genetic covariance under the standard maternal
animal model is confounded with a model that explains
the whole genetic variation as paternally inherited; i.e.

covðyA; yBÞ ¼ rgðAP;BPÞσ2s ;

where rg(A
p,Bp) is the gametic relationship [23] between

paternal gametes of individuals A and B (Ap and Bp) and
σs
2 is the variance caused by paternally inherited gametic
effects. Stated the other way around, the existence of pa-
ternally inherited variation that is not accounted for by
the maternal model will tend to be assigned to the
remaining variance components according to Equation
(1) in order to accommodate the observed correlations
between relatives. As a consequence, variance compo-
nent estimation will explicitly inflate estimates of the
direct and maternal additive genetic variances, with a
magnitude close to twice and one half the paternally
inherited variance, respectively, and it will reduce the
direct-maternal genetic covariance by a value equal to
the paternally inherited variance. The following section
describes a simulation experiment that we developed in
order to test this result.

Simulation study
Each simulated dataset consisted of a base population of
1000 individuals (500 males and 500 females) and two
generations of 5000 phenotyped individuals that com-
prised 2500 males and 2500 females. Phenotypic records
were generated for the individuals of the last two gener-
ations based on the following model:

y ¼ μþ Zaao þ Zmam þ Zssþ e;

where y is the vector of phenotypic data, μ is the general
mean, set to 100 units, ao and am are vectors of the dir-
ect and maternal genetic effects, s is a vector of pater-
nally inherited gametic effects, and e is the vector of
residuals, while Za, Zm and Zs are incidence matrices.
Covariances between genetic (ao and am) and gametic ef-
fects (s) were assumed to be zero and

Var eð Þ ¼ Iσ2e;

where I is the identity matrix and σe
2 is the residual

variance. The variances of the direct and maternal addi-
tive genetic effects are:

Var
ao
am

� �
¼ A⊗T;

where A is the numerator relationship matrix and

T¼ σ2a σam
σam σ2

m

� �
;

For the paternally inherited gametic effects (s):

Var sð Þ ¼ Gσ2s ;

where G is the gametic relationship matrix
Five simulation scenarios were developed:
Scenario 1 corresponds to a pure direct additive model

of inheritance with the following simulated parameters:

σ2a ¼ 500; σ2m ¼ 0; σam ¼ 0; σ2s ¼ 0; σ2e ¼ 1000:

Scenario 2 assumes that the only source of genetic
variation is the paternally inherited variance:

σ2a ¼ 0; σ2m ¼ 0; σam ¼ 0; σ2
s ¼ 250; σ2e ¼ 1000:

Scenario 3 combines both sources of genetic variation,
direct additive and paternally inherited variance. The
simulated parameters were:

σ2a ¼ 500; σ2m ¼ 0; σam ¼ 0; σ2s ¼ 250; σ2e ¼ 1000:

Scenario 4 corresponds to the covariance structure
that is assumed in a standard maternal animal model. A
strong negative covariance between direct and maternal
additive genetic effects was also simulated in order to
mimic estimates that are frequently achieved in livestock
populations for maternally influenced traits:

σ2a ¼ 500; σ2m ¼ 250; σam ¼ −250; σ2s ¼ 0; σ2
e ¼ 1000:

Finally, Scenario 5 includes all three types of genetic
effects: direct and maternal additive and paternally
inherited. The simulated parameters were:

σ2a ¼ 500; σ2m ¼ 250; σam ¼ −250; σ2s ¼ 250; σ2
e

¼ 1000:

For each of these simulation scenarios, a total of 10 in-
dependent populations were generated.

Pirenaica beef cattle data
In addition to the simulated scenarios, we analysed data for
phenotypic records on the Pirenaica beef cattle breed. The
Pirenaica breed is a meat-type beef population from north-
ern Spain with an approximate census of 20 000 individuals
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that are typically reared under extensive conditions [24].
The dataset consisted of 17 069 records for weight at
210 days (W210), with an average value of 266 kg and a
raw standard deviation of 52.9 kg. Phenotypic records were
adjusted according to the recommendations of the Beef
Improvement Federation [25]. In addition, a pedigree file
including 125 974 individual-sire-dam records was used.
This information was provided by the National Breeders
Confederation (Confederación Nacional de Asociaciones
de Ganado Pirenaico-CONASPI; http://www.conaspi.es).
Ethical approval for animal care and use was not required
for this study since all data was field data from the Yield
Recording System of the Pirenaica breed; furthermore, data
was recorded by the stockbreeders themselves, under stan-
dard farm management, with no additional requirements.
An additional simulation study was performed based on

the same scenarios as described in the previous section,
but using genealogical information of the Pirenaica beef
cattle breed and replacing each phenotypic record by a
simulated value. The aim was to replicate the same struc-
ture of relationships between individuals of the real dataset.

Statistical models of estimation
Although a realistic implementation of all potential
genetic sources of variation in the same hierarchical
mixed linear model may result in non-estimable func-
tions, the description of the full model is essential to
understand the simplified parameterizations that are
used below. The full statistical model is:

y¼XbþZaaoþZmamþZssþZddþZppþZhhþe;

where y is the vector of phenotypic data, b is the vector of
systematic effects, consisting of the general mean for the
simulated dataset and the two sexes and 16 age-groups of
dam age of parity for the Pirenaica beef cattle data, and ao,
am, s and d are vectors of direct additive genetic, maternal
additive genetic, paternal gametic and maternal gametic ef-
fects, respectively. Finally, p and h are vectors of random
permanent maternal (9224 levels) and herd-year-season
(2781 levels) environmental effects (not included in the
simulated datasets), e is a vector of residuals, and X, Za,
Zm, Zs, Zd, Zp, and Zh are incidence matrices that link the
effects with the phenotypic data. Variances and covariances
for random sources of variation were defined as follows:

var

ao
am
s
d
p
h
e

2
666666664

3
777777775
¼

Aσ2a Aσam 0 0 0 0 0
Aσam Aσ2

m 0 0 0 0 0
0 0 Gσ2s Gσ sd 0 0 0
0 0 Gσsd Gσ2

d 0 0 0
0 0 0 0 Iσ2

p 0 0
0 0 0 0 0 Iσ2

h 0
0 0 0 0 0 0 Iσ2

e

2
666666664

3
777777775
;

where σp
2 and σh

2 represent the variances of the perman-
ent maternal and herd-year-season effects, σd

2 is the

variance of maternal gametic effects, and σsd is the co-
variance between paternal and maternal gametic ef-
fects. All other parameters were defined previously.
Note that under a pure direct additive model:

σ2s ¼ σ2d ¼ σsd ¼ 1
2
σ2a : ð2Þ

A number of models based on reduced parameteriza-
tions of this full model were fitted to both the simulated
and the real data:

Model A: y = Xb + Zaao + e,
Model S: y = Xb + Zss + e,
Model AS: y = Xb + Zaao + Zss + e,
Model SD: y = Xb + Zss + Zdd + e,
Model AM: y = Xb + Zaao + Zmam + e,
Model AMS: y = Xb + Zaao + Zmam + Zss + e,

When the Pirenaica beef data was used, all models
also included the terms zpp and zhh.
For statistical analysis, we applied a Bayesian approach

through a Gibbs sampler [26]. The prior distributions
for systematic effects and variance components were
assumed to be bounded uniform, and the prior distribu-
tions for the genetic effects were multivariate Gaussian
distributions with mean zero and variance as defined in
the previous section. Analyses were run for each simu-
lated or real dataset as a single chain of 525 000 cycles
with the first 25 000 iterations being discarded. Conver-
gence was checked by visual inspection of the chains
and by applying the test of Raftery and Lewis [27]. All
samples were stored to calculate summary statistics.

Model comparison
Models were compared using the pseudo log-marginal
probability of the phenotypic data [28]. If we consider the
data vector y = (yi,y-i), where yi is the ith datum and y-i is
the vector of data with ith datum deleted, the conditional
predictive distribution has a probability density equal to:

p yijy−i
� � ¼ Z

p yijy−i
� �

f θjy−ið Þdy;

where θ is the vector of parameters. Therefore, p(yi|y-i)
can be interpreted as the probability of each datum
given the rest of the data and is known as the condi-
tional predictive ordinate (CPO) for the ith datum. The
pseudo log-marginal probability of the data (LogCPO) is
then:X

i

lnp yijy−ið Þ:

The collection of conditional predictive densities is
equivalent to the marginal probability of the data [29]. A
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Monte Carlo approximation of the LogCPO suggested
by Gelfand [28] is:

X
i

lnp̂ yijy−ið Þ;

where p̂ yijy−ið Þ ¼ N
XN
j¼1

1

p yijθj
� �

" #−1

;

and N is the number of Markov chain Monte Carlo
(McMC) draws, and θj is the jth draw from the poster-
ior distribution of the corresponding parameter. The
interpretation of the results of this test is that the lar-
ger is LogCPO, the higher is the marginal probability
of data and, thus, the better is the relative fit.

Results
Scenario 1: additive model of inheritance
In Scenario 1, all genetic variation was generated as dir-
ect additive; there were no maternal genetic or pater-
nally inherited effects. The average posterior mean
estimates of variance components and ratios of compo-
nents of variance are in Table 1. When Model A was
used, the estimate of the direct additive genetic variance
almost matched the simulated value. Furthermore, when
the estimation model only included paternal gametic ef-
fects (Model S), a significant proportion of the variation
was assigned to these effects and the remaining additive
variation was incorporated into the residual variance.
Implementation of a more complex parameterization,
such as Model AS, attributed a small, although negli-
gible, amount of the simulated variability to the pater-
nally inherited effects. As expected, Model SD absorbed
close to half of the additive genetic variance of the pater-
nal gametic effects and another half of the maternal ef-
fects. In addition, the correlation between paternal and

maternal effects was close to 1. Finally, the models that
included an additive maternal genetic effect (AM and
AMS) also correctly assigned most genetic variation to
the direct additive effects, and only small amounts to
other variance components. The results of the model
comparison test showed that Models A and SD pre-
sented the best fit, followed closely by Models AM, AS
and AMS. Model S had the worst fit.

Scenario 2: paternal inheritance model
Scenario 2 (Table 2) only included a variance of pater-
nally inherited effects of 250, without considering any
other source of genetic variance. The average posterior
mean estimate of variance due to paternally inherited ef-
fects under Model S was close to the simulated value.
However, with Model A, estimates of direct additive
genetic variance were on average close to 150, although
this variance component was not included in the simula-
tion process. Model AS assigned most of the variance to
paternally inherited effects and a small amount to the
direct additive effect. Model SD assigned most of the
genetic variance to paternal gametic effects, although
negligible amounts of variability were also assigned to
the gametic maternal variance component. Model AM,
which corresponds to the standard maternal animal model,
strongly overestimated the direct and maternal additive
genetic variances, and resulted in a negative estimate of the
covariance between direct and maternal additive genetic ef-
fects, which resulted in a negative correlation close to −1.
This tendency was reduced when paternally inherited ef-
fects were included in the model (Model AMS). Average
posterior mean estimates of variances of both direct and
maternal additive genetic effects and the covariance be-
tween them were smaller than in Model AM. However,
the genetic correlation was still negative (−0.90) and a
substantial percentage of variability was assigned to pater-
nally inherited effects. It should be noted that the residual

Table 1 Averages of posterior means (and standard deviations) of (co)variance components for Scenario 1 (σa2 = 500, σe2 = 1000)

Parameter Model of estimation

A S AS SD AM AMS

σa2 514.8 (33.2) - 498.7 (34.8) - 512.5 (43.0) 469.6 (51.5)

σm2 - - - - 28.6 (9.6) 25.5 (8.9)

σam - - - - −14.9 (18.65) 0.88 (19.5)

σs2 - 292.4 (27.5) 27.4 (16.3) 239.7 (24.2) - 30.4 (19.2)

σd2 - - - 284.7 (25.2) - .

σsd - - - 239.8 (21.9) - -

σe
2 1010.8 (26.4) 1212.8 (26.5) 1001.8 (26.8) 1001.3 (29.89) 1003.7 (29.0) 1005.8 (29.0)

L −50209.08 −50517.54 −50210.99 −50208.96 −50213.5 −50215.8

σa
2 and σm

2 are the direct and maternal additive genetic variances and σam is the direct-maternal genetic covariance. σs
2 and σd

2 are the paternal and maternal
gametic variances and σsd is the covariance between the paternal and maternal gametic effects. Finally, σe

2 is the residual variance and L is the average logCPO
across 10 replicates.
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variance was inflated in Model A and smaller than the
simulated value in Model AM. The model with the best fit
was Model S, which mimicked the simulation model, and
was closely followed by Models AS and SD, which in-
cluded paternally inherited effects, and by Model AM.
Model A had the worst fit.

Scenario 3: additive and paternal inheritance model
Scenario 3 included an additive genetic variance compo-
nent of 500 and a paternally inherited component with
variance equal to 250. The results are in Table 3. The first
and second models of estimation (Models A and S) clearly
overestimated the additive genetic variance and the pater-
nal gametic variance, respectively. This overestimation
disappeared with Model AS, which replicated the model
of simulation by including a paternal gametic effect, and
the estimates were close to the simulated values. Models
AM and AMS overestimated the additive genetic variance

and assigned some of the variance to the maternal genetic
effects. Furthermore, these models generated a negative
covariance between additive and maternal genetic effects.
This overestimation of variances was reduced with Model
AMS, for which a substantial amount of the variability
was assigned to the paternally inherited effects, although
less than the simulated value. The model comparison
test indicated that Models AS, SD, AM and AMS had
the best fit, with similar average LogCPO values,
whereas Models A and S had a substantially poorer fit.

Scenario 4: maternal animal model
Scenario 4 corresponds to the standard maternal animal
model. Direct and maternal additive genetic variances of
500 and 250 were generated, but with a strong negative
correlation between these two effects (−0.707). Average
posterior mean estimates are in Table 4. As expected,
the average posterior mean estimates from Model AM

Table 2 Averages of posterior means (and posterior standard deviations) of (co)variance components for Scenario 2 (σs2 = 250,
σe2 = 1000)

Parameter Model of estimation

A S AS SD AM AMS

σa
2 147.5(18.7) - 21.3(13.6) - 372.2 (43.8) 111.4 (50.7)

σm2 - - - - 105.7 (21.8) 40.8 (19.0)

σam - - - - −191.9 (16.6) −60.9 (29.8)

σs2 - 242.0 (31.5) 208.1(22.9) 218.6(16.6) - 162.0 (30.2)

σd2 - - - 14.6(9.8) - -

σsd - - - 1.7(16.6) - -

σe2 1101.6(21.9) 990.3(31.1) 1019.7(23.1) 1016.1(23.6) 960.8 (30.1) 997.3 (26.9)

L −49730.0 −49609.5 −49612.4 −49614.0 −49613.2 −49613.3

σa
2 and σm

2 are the direct and maternal additive genetic variances and σam is the direct-maternal genetic covariance. σs
2 and σd

2 are the paternal and maternal gam-
etic variances and σsd is the covariance between the paternal and maternal gametic effects. Finally, σe

2 is the residual variance and L is the average logCPO across
10 replicates.

Table 3 Averages of posterior means (and posterior standard deviations) of (co)variance components for Scenario 3 (σa2 = 500,
σs2 = 250, σe2 = 1000)

Parameter Model of estimation

A S AS SD AM AMS

σa2 672.1 (37.6) - 536.7 (39.8) - 872.0 (60.0) 692.4 (97.8)

σm2 - - - - 96.1 (22.8) 57.7 (21.1)

σam - - - - −181.1 (35.7) −94.5 (44.6)

σs2 - 566.3 (40.5) 201.4 (38.0) 475.5 (35.7) - 116.8 (60.4)

σd2 - - - 256.0 (26.2) - -

σsd - - - 281.3 (30.8) - -

σe
2 1091.0 (28.8) 1185.7 (37.0) 1025.8 (32.6) 1034.5 (35.1) 972.9 (37.0) 992.4 (35.4)

L −50857.1 −51040.3 −50811.7 −50810.5 −50813.5 −50812.9

σa
2 and σm

2 are the direct and maternal additive genetic variances and σam is the direct-maternal genetic covariance. σs
2 and σd

2 are the paternal and maternal
gametic variances and σsd is the covariance between the paternal and maternal gametic effects. Finally, σe

2 is the residual variance and L is the average logCPO
across10 replicates.
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almost matched the simulated values for the direct and
maternal additive genetic effects, and the covariance be-
tween them. Moreover, all models except AM gave
biased estimates of variance components. In particular,
Model A resulted in an average posterior mean estimate
of the direct additive genetic variance that was smaller
than the simulated value. Model S assigned a significant
proportion of the variation to paternally inherited ef-
fects, although they were not included in the simulation
model. This was confirmed with Model AS, which
assigned a significant proportion of the variation to the
paternally inherited effects. Model SD assigned a signifi-
cant proportion of the variance to both paternal and ma-
ternal gametic effects, but the covariance between them
was almost null. Finally, with Model AMS, the presence
of a significant amount of variation in the paternal gam-
etic effects reduced the magnitude of the direct and ma-
ternal additive genetic variance components compared
to the results obtained with Model AM. For this sce-
nario, the models with the best fit were SD and AM,
followed by Models AS and S. The models that fitted the
simulated data worst were A and AMS.

Scenario 5: direct, maternal and paternal inheritance
model
Scenario 5 included direct and maternal additive genetic,
and paternal gametic effects. Direct and maternal addi-
tive genetic effects with variances of 500 and 250 were
generated, with a strong negative correlation between
them (−0.707). The paternally inherited variance was
250. The average posterior mean estimates are in Table 5.
The average results of Model AMS were very close to
the simulated values. However, the standard deviation of
the estimates was substantially higher than for the other
models and also than for the previous scenarios. The re-
sults of Model A were very close to the simulated value

for the direct additive genetic effect (510.8 vs 500), al-
though residual variance was significantly overestimated.
Model S, AS and SD overestimated the paternal gametic
variance, which captured the sources of variation that
were ignored in the estimation model. It is remarkable
that Model SD provided almost a null covariance be-
tween sire and dam gametic effects. Finally, the results
of Model AM reflected a redistribution of the ignored
paternally inherited variance by increasing the direct and
maternal additive genetic variances (to 924.6 and 371.0,
respectively), and by generating a strong negative direct-
maternal genetic covariance (−473.5). The results of the
LogCPO test indicated that Model AMS, which repli-
cated the simulation model, had the best fit. It was
closely followed by Models AM and SD, whereas Models
AS, S and A fitted the simulated data worst.

Pirenaica beef cattle breed data
The results of the analysis using real data on the Pire-
naica beef cattle breed are in Table 6. With Model A,
the posterior mean estimate of the direct heritability
(h2d) was equal to 0.367, but with Model AS, it was
only equal to 0.174, whereas the posterior mean esti-
mate of paternal gametic heritability was 0.379, which
increased to 0.505 with Model S that did not take dir-
ect additive genetic effects into account. Model SD
returned the highest posterior mean estimate of the
paternal heritability (0.463), a lower value for maternal
heritability (0.130) and a very low estimate of the
direct-maternal genetic correlation (0.059). The stand-
ard maternal animal model (AM) produced a very large
posterior estimate of direct additive heritability (0.471),
along with a smaller posterior estimate of maternal herit-
ability (0.157), and the correlation between direct and ma-
ternal effects was strong and negative (−0.734). Finally, with
Model AMS, both heritabilities fell to very low values

Table 4 Averages of posterior means (and posterior standard deviations) of (co)variance components for Scenario 4 (σa2 = 500,
σm2 = 250, σam = − 250, σe2 = 1000)

Parameter Model of estimation

A S AS SD AM AMS

σa
2 348.0 (28.5) - 264.0 (24.2) - 523.4 (47.0) 367.5 (76.5)

σm2 - - - - 268.8 (30.2) 228.8 (38.2)

σam - - - - −266.3 (33.1) −187.1 (49.4)

σs2 - 282.6 (25.7) 173.3 (29.2) 284.5 (29.8) - 92.9 (41.3)

σd2 - - - 237.4 (25.3) - -

σsd - - - 0.3 (25.3) - -

σe2 1159.0 (21.1) 1224.6 (24.4) 1077.7 (25.3) 988.6 (24.9) 986.1 (24.6) 1012.0 (23.4)

L −50427.0 −50375.2 −50329.7 −50318.3 −50318.7 −50494.3

σa
2 and σm

2 are the direct and maternal additive genetic variances and σam is the direct-maternal genetic covariance. σs
2 and σd

2 are the paternal and maternal
gametic variances and σsd is the covariance between the paternal and maternal gametic effects. Finally, σe

2 is the residual variance and L is the average logCPO
across 10 replicates.
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(0.045 and 0.056) and a significant proportion of the genetic
variation was assigned to the paternal gametic effects
(0.436). The results of the comparison of models based on
LogCPO showed that Model SD had the best predictive
ability, followed by Models AM and ASs. Model AMS was
next, and Models S and A showed the worst fit.

Discussion
We present a theoretical development that shows that the
structure of the (co) variance components assumed by the
standard maternal animal model is partially confounded
with a model that considers a paternal gametic effect.
Meyer and Tier [22] postulated that this may be one

Table 6 Posterior means (and posterior standard deviations) of (co)variance components for weight at 210 days in the Pirenaica
beef cattle population

Parameter Model of estimation

A S AS SD AM AMS

σa
2 798.3 (52.0) - 418.8 (60.7) - 1317.0 (93.2) 94.0 (35.9)

σm
2 - - - - 426.7 (54.1) 139.3 (30.1)

σam - - - - −553.9 (64.3) 31.2 (26.5)

σs
2 - 1236.2 (93.4) 891.3 (100.5) 1100.0 (96.1) - 1029.8 (90.0)

σd2 - - - 326.3 (43.2) - .

σsd - - - 30.4 (53.4) - -

σh2 534.4 (24.6) 477.6 (23.0) 454.4 (22.1) 446.5 (22.2) 485.7 (23.4) 443.2 (22.0)

σp2 94.5 (17.2) 191.2 (17.2) 109.2 (18.3) 69.1 (20.1) 52.8 (22.9) 47.9 (22.9)

σe2 747.7 (32.4) 539.4 (48.4) 501.9 (43.9) 445.5 (53.9) 492.3 (46.9) 591.1 (47.5)

ha
2 0.367 (0.021) - 0.176 (0.026) - 0.474 (0.023) 0.040 (0.015)

hm
2 - - - - 0.153 (0.016) 0.059 (0.012)

ram - - - - −0.739 (0.016) 0.311 (0.187)

hs
2 - 0.505 (0.030) 0.375 (0.037) 0.460 (0.032) - 0.439 (0.032)

hd
2 - - - 0.137 (0.018) - -

rsd - - - 0.053 (0.091) - -

ch
2 0.246 (0.010) 0.195 (0.010) 0.191 (0.009) 0.187 (0.010) 0.175 (0.009) 0.189 (0.010)

cp
2 0.043 (0.008) 0.078 (0.007) 0.046 (0.008) 0.029 (0.008) 0.019 (0.008) 0.020 (0.010)

LogCPO −86767 −86703 −86513 −86178 −86378 −86647

σa
2 and σm

2 are the direct and maternal additive genetic variances and σam is the direct-maternal genetic covariance. σs
2 and σd

2 are the paternal and maternal
gametic variances and σsd is the covariance between the paternal and maternal gametic effects. σh

2 and σp
2 are the herd and maternal permanent environmental

variances. σe
2 is the residual variance. ha

2, hm
2 , hs

2 and hd
2 are the ratios of the direct additive genetic, maternal additive genetic, paternal gametic and maternal

gametic variances to the phenotypic variance, respectively. ram is the genetic correlation between direct and maternal additive effects and rsd is the correlation
between paternal and maternal gametic effects. ch

2 and cp
2 are the ratios of herd and permanent maternal environmental effects to the phenotypic variance.

Table 5 Averages of posterior means (and posterior standard deviations) of (co)variance components for Scenario 5 (σa2 = 500,
σm2 = 250, σam = − 250, σs2 = 250, σe2 = 1000)

Parameter Model of estimation

A S AS SD AM AMS

σa
2 510.82 (30.39) - 290.21 (24.10) - 924.60 (50.17) 569.54 (121.68)

σm2 - - - - 370.97 (26.72) 279.33 (34.50)

σam - - - - −473.53 (29.09) −292.76 (58.38)

σs2 - 551.14 (37.39) 414.96 (36.31) 544.03 (35.98) - 223.57 (77.09)

σd2 - - - 236.24 (19.56) - -

σsd - - - −5.05 (28.14) - -

σe2 1236.37 (24.73) 1207.52 (29.87) 1056.10 (31.02) 973.73 (33.36) 923.52 (32.99) 973.03 (32.86)

L −51048.4 −51010.0 −50902.3 −50868.6 −50860.6 −50858.1

σa
2 and σm

2 are the direct and maternal additive genetic variances and σam is the direct-maternal genetic covariance. σs
2 and σd

2 are the paternal and maternal
gametic variances and σsd is the covariance between the paternal and maternal gametic effects. Finally, σe

2 is the residual variance and L is the average logCPO
across 10 replicates
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possible cause for the strong negative estimates of the gen-
etic correlation between direct and maternal genetic effects
that are typically obtained. We derived results that show
that, for most of the genetic relationships in livestock pedi-
grees, the covariance between relatives generated by a pa-
ternally inherited effect is mimicked by the maternal animal
model when variance components follow the pattern de-
fined by Equation (1). Thus, when paternally inherited ef-
fects are ignored in the estimation model, its variance is
assigned to the remaining variance components in order to
accommodate the observed correlations between relatives.
Under the maternal animal model, its consequences are an
inflation of the direct and maternal additive genetic vari-
ances, and a downward bias of the direct-maternal genetic
correlation.
These results were confirmed by the simulation study.

When simulation and estimation models were analo-
gous, the Bayesian analysis was able to provide suitable
estimates of the variance components. Furthermore,
when the true simulation structure of the (co)variance
components was included in the estimation model to-
gether with other variance components, the procedure
correctly estimated the true parameters, whereas estimates
of the non-simulated variance components were small.
However, the presence of paternal gametic effects (Scenar-
ios 2 and 3) and their absence in the estimation model re-
sulted in an overestimation of the direct additive genetic
variance, as previously described by other authors [17, 22].
Furthermore, when paternally inherited effects that play a
significant role in the genetic variation were ignored in a
model that included correlated direct and maternal addi-
tive genetic effects, the direct additive genetic variance
component was increased by almost twice the paternal
gametic variance, whereas the genetic covariance between
direct and maternal effects became negative and the esti-
mate of the maternal additive genetic variance increased
by almost one half of the simulated paternal gametic vari-
ance, as was observed in Scenarios 2, 3 and 5. As de-
scribed above, this redistribution of the gametic paternal
variance is linked to the constraint imposed in Equation
(1). These results were also consistent with the presence
of a significant percentage of paternal gametic variance for
Models S, AS, SD and AMS in Scenario 4, where only dir-
ect and maternal additive effects were simulated, and with
the increase of paternal gametic variance in Models S, AS
and SD in Scenario 5. Finally, the decrease in covariance
between paternal and maternal effects under Model SD
in Scenarios 4 and 5 may also be attributed to this
phenomenon.
More generally, when any relevant variance compo-

nent in the simulation model was not considered in the
estimation, substantial biases on the variance component
estimation were noted. For example, ignoring a true dir-
ect additive genetic effect while assuming paternal and

maternal gametic effects in the estimation model, led to
the absorption of close to half of the additive genetic
variance by the paternal gametic variance and half by
the maternal gametic variance. In addition, the increase
in the estimate of the covariance between paternal and
maternal gametic effects was also of this magnitude. This
distribution of the direct additive variance followed the
pattern described in Equation (2) and was exploited in the
model proposed by Neugenbauer et al. [18, 19] in order to
detect paternal and maternal inherited effects.
The model comparison test that we performed pro-

vided support to our main argument. To illustrate this
point, in Scenarios 2 and 3, where paternally inherited
effects were included in the simulation model, the good-
ness of fit of Model AM was very close to that obtained
with Models S and AS, which mimicked the respective
simulation models. Moreover, under Scenarios 4 and 5,
Model SD performed almost as well as Models AM or
AMS, which replicated the true simulation models.
Clearly, the constraint imposed by Equation (1) explains
the similarity observed between the maternal animal
model and the paternally inherited model in those cases.
It should be emphasized that the constraint imposed

by Equation (1) is not a pure parametric equivalence,
since it is limited by the condition that available correla-
tions between relatives do not involve genealogical rela-
tionships where one individual is an ancestor of the
other within the paternal lineage. Therefore, the ability to
separate direct and maternal additive genetic effects and
sire imprinted effects can only be achieved if relevant re-
cords from sires and their offspring are available or, more
generally, if there exist records from individuals that are
genetically linked through the paternal pathway. However,
in beef cattle datasets, phenotypes on sire-offspring pairs
are usually rare. In the Pirenaica beef cattle dataset ana-
lyzed here, there were 527 463 paternal half-sibs, 15 128
maternal half-sibs, 2707 full-sibs, 2411 dam-progeny and
only 4566 sire-progeny pairs with phenotypic information
on both individuals. Thus, most of the information avail-
able for estimation of variance components was provided
by half-sib relatives, whose covariance generated by pater-
nally inherited effects can be also achieved by the mater-
nal animal model under the constraint imposed by
Equation (1).
This latter explanation helps to understand the results

of the analysis of the Pirenaica beef cattle dataset. Esti-
mates of variance components obtained from Model A
were concordant with previous results obtained in the
same [30] and other beef cattle populations [31, 32]. In
turn, alternative estimation models, such as S, AS and
SD, suggested that paternal gametic effects may play an
important role in the variation of weight at 210 days in
this breed. In contrast, under Model AM, maternal addi-
tive effects were also very relevant. Furthermore, when
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both effects were fitted in the estimation model (AMS),
the maternal effects contributed less to the total vari-
ation than the paternal gametic effects. A similar reduc-
tion in the maternal contribution on weaning weight
was also found in the Bruna dels Pirineus beef cattle
breed when paternal gametic effects were considered in
the estimation model [33]. Indeed, more evidence for
the presence of parent-of-origin variation is derived from
the fact that when Model SD was used, a very low cor-
relation between paternal and maternal gametic effects
was obtained. This is in contrast to the results reported
by Neugenbauer et al. [18, 19], which provided a high
correlation between them, as in the outcome of the first
simulation scenario, where a pure additive model was
simulated. However, as observed with Scenarios 4 and 5,
independence between paternal and maternal gametic
effects, together with the presence of a significant pater-
nally inherited variance component can also be due to
the existence of a strong and negative genetic correlation
between direct and maternal genetic effects. Given the
structure of the information in the Pirenaica dataset, the
genetic variance is distributed between paternal gametic
and direct and maternal effects depending on the model
of estimation and, thus, it is very difficult to clearly iden-
tify the true sources of variation. However, at this point,
it is worth mentioning that the results of the simulation
study using the Pirenaica’s breed genealogical structure
were similar to those obtained with the above described
simulation study (results in Tables S1, S2, S3, S4 and S5
[See Additional file 1: Tables S1-S5]). This allowed us to
rule out the possibility of a statistical artefact caused by
the structure of the information. Nevertheless, the model
comparison using logCPO indicated that Model SD was
most suited to the Pirenaica beef cattle data. It should
be noted that this model performed well in all simula-
tion scenarios (Tables 1, 2, 3, 4 and 5), since it can ac-
commodate a significant amount of paternal inheritance
and also a strong negative correlation between direct or
maternal effects, as in Scenario 4. In fact, Model AM
had the second best predictive ability based on the
LogCPO approach and showed a better fit than Model
AS. However, the very large difference in LogCPO be-
tween Models SD and AM (−86178 vs −86378) and the
results of Model AMS suggest that the existence of sig-
nificant paternal gametic effects is plausible in the Pire-
naica population.
Many studies have reported negative estimates of the

genetic covariance between direct and maternal additive
effects for beef cattle populations [4–6]. Several explana-
tions have been proposed, including environmental cor-
relations between progeny performance and maternal
environmental effects [34, 35] and sire × herd interac-
tions [36, 37]. An additional explanation that should be
considered is the presence of paternally inherited effects,

as previously suggested by Meyer and Tier [22]. Our evi-
dence is consistent with the effect associated with
imprinted genes, such as the insulin-like growth factor 2
(IGF2) gene involved in fetal growth [38, 39] or postnatal
growth and fat deposition in pigs [11, 12, 40] and mice
[41]. Genomic imprinting of the IGF2 gene has also been
shown to affect meat quality traits in beef cattle [42, 43]
and some mutations in IGF2 have been associated with
carcass traits [44] and body weight [45].
Furthermore, a wealth of evidence on the role of par-

ental inheritance in fetal and early growth in mammals
supports the imprinting hypothesis [46, 47]. This is re-
lated with parent-offspring conflict theories about the
evolutionary origin of paternal effects [48], which are
based on the hypothesis that the self-interest of the pa-
ternal genome is to increase the growth of the fetus or
young individuals, whereas the aim of the maternal gen-
ome is to sufficiently limit growth to ensure the success
of future offspring without jeopardizing the mother’s
survival. According to this hypothesis, genes that en-
hance growth tend to be more expressed if they are
paternally inherited than when they are maternally
inherited. This phenomenon should be even more
marked in species with a low rate or absence of full sib-
lings and a high frequency of multiple paternity [49], as
is the case for cattle.
Finally, other causes that can explain overestimation of

paternal gametic variance are a large difference in allele
frequencies between sires and dams or the presence of
significant dominance variation. However, these are not
relevant for close populations and that include few full-
sib relationships, respectively. In future studies, a very
promising alternative to distinguish between paternally
and maternally inherited effects arises from the use of
molecular information that may contribute to better dis-
criminate between paternal and maternal alleles.

Conclusions
Ignoring paternally inherited effects in genetic evaluations
with maternal animal models can lead to a specific pattern
of bias in the estimates of variance components. This
phenomenon may account for the unexpectedly strong
negative direct-maternal genetic correlations that are re-
ported in the literature. In addition, we showed that the
existence of paternal effects may play a role in the explan-
ation of the partitioning of genetic variation in growth
traits and possibly in some other relevant traits in live-
stock production. The main implication of this study is
that the presence of relevant paternally inherited variation
should be investigated when the maternal animal model
provided negative correlation estimates between direct
and maternal effects. In addition, in those cases, applying
maternal animal models should be done with caution.
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Appendix
Consider a model that fits direct and maternal additive
genetic effects. As pointed out in the Methods section,
the phenotypic values of any two individuals, say A and
B, are modelled as:

yA ¼ μþ aoA þ amAD
þ eA

yB ¼ μþ aoB þ amBD
þ eB

:

Assuming independence of the residuals, the covari-
ance between both phenotypic values can be described
as a function of the following four pairwise covariances:

cov yA; yBð Þ ¼ cov aoA; aoBð Þ þ cov aoA; amBD

� �
þcov amAD

; aoB
� �þ cov amAD

; amBD

� �
:

Now, we will use the standard regression of an individ-
ual’s breeding value on half the breeding values of its
parents plus a residual due to Mendelian segregation
[49], i.e.

aoX ¼ 1
2
aoXS þ

1
2
aoXD þ ϕoX ;

to expand all the covariance terms to the parental gener-
ation. Replacing first the direct breeding value of indi-
vidual B and working out the resulting expression, the
first term in the right hand side can be expressed as:

covðaoA; aoBÞ ¼ 1
2
covðaoA; aoBSÞ þ

1
2
covðaoA; aoBD

Þ

þcovðaoA;ϕoBÞ:
A further step by replacing the breeding value of indi-

vidual A, results in:

cov aoA; aoBð Þ ¼ 1
4
cov aoAS ; aoBSð Þ þ 1

4
cov aoAD

; aoBS

� �
þ 1
2
cov ϕoA; aoBS

� �þ 1
4
cov aoAS ; aoBD

� �
þ 1
4
cov aoAD ; aoBDð Þ þ 1

2
cov ϕoA; aoBD

� �
þ 1
2
cov aoAS ;ϕoBð Þ þ 1

2
cov aoAD ;ϕoBð Þ þ cov ϕoA;ϕBð Þ

Similarly,

cov aoA; amBDð Þ ¼ 1
2
cov aoAS

; amBD

� �þ 1
2
cov aoAD

; amBD

� �
þ cov ϕoAS

; amBD

� �
;

and

cov amAD ; aoBð Þ ¼ 1
2
cov amAD ; aoBS

� �þ 1
2
cov amAD ; aoBD

� �
þ cov amAD ;ϕoBð Þ:

Collecting all these results,

cov yA; yBð Þ ¼ 1
4
cov aoAS ; aoBSð Þ þ 1

4
cov aoAD ; aoBSð Þ

þ 1
2
cov ϕoA; aoBSð Þ þ 1

4
cov aoAS ; aoBDð Þ

þ 1
4
cov aoAD ; aoBDð Þ þ 1

2
cov ϕoA; aoBDð Þ

þ 1
2
cov aoAS ;ϕoBð Þ þ 1

2
cov aoAD ;ϕoBð Þ

þcov ϕoA;ϕoBð Þ þ 1
2
cov aoAS ; amBDð Þ

þ 1
2
cov aoAD ; amBDð Þ þ cov ϕoA; amBDð Þ

þ 1
2
cov amAD ; aoBSð Þ þ 1

2
cov amAD ; aoBDð Þ

þ cov amAD ;ϕoBð Þ þ cov amAD ; amBDð Þ

Now, recalling that:

cov aoX ; aoYð Þ ¼ r X;Yð Þσ2a;

cov aoX ; amYð Þ ¼ r X;YDð Þσdm;
cov amX ; amYð Þ ¼ r XD;YDð Þσ2

m;

where r(X,Y) stands for the additive relationship between
any two individuals X and Y, the previous expression can be
reformulated as:

cov yA; yBð Þ ¼ 1
4
r AS;BSð Þσ2d þ

1
4
r AD;BSð Þσ2

d

þ 1
2
cov ϕoA; aoBsð Þ þ 1

4
r AS;BDð Þσ2d

þ 1
4
r AD;BDð Þσ2d þ

1
2
cov ϕoA; aoBDð Þ

þ 1
2
cov aoAS ;ϕoBð Þ þ 1

2
cov aoAD ; ;ϕoBð Þ

þ cov ϕoA;ϕoBð Þ þ 1
2
r AS;BDð Þσdm

þ 1
2
r AD;BDð Þσdm þ cov ϕoA; amBDð Þ

þ 1
2
r AD;BSð Þσdm þ 1

2
r AD;BDð Þσdm

þ cov amAD ;ϕoBð Þ þ 1
2
r AD;BDð Þσ2

m

At this point, we introduce the condition set by Equation
(1). Let:

σ2d ¼ −2σdm ¼ 4σ2
m:

Then, after proper cancelations and making use of this
identity:

cov ϕoA; aoBDð Þ
cov ϕoA; amBDð Þ ¼

σ2a
σam

;

the expression of the covariance between the two pheno-
typic values is reduced to the following expression:

Varona et al. Genetics Selection Evolution  (2015) 47:63 Page 11 of 13



cov yA; yBð Þ ¼ 1
4
r As;Bsð Þσ2

d þ
1
2
cov ϕoA; aoBSð Þ

þ 1
2
cov aoAS ;ϕoBð Þ þ cov ϕoA;ϕoBð Þ:

Notice that the cov ϕoX ; aoYSð Þ > 0 only if X is an an-
cestor of Y through the paternal line. In turn, the cov(ϕoX,
ϕoY) > 0 only if X =Y. Thus, for any other two individuals in
the population:

cov yA; yBð Þ ¼ 1
4
r AS;BSð Þσ2d:
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Additional file 1: Table S1. (Co) variance components posterior means
(and posterior standard deviations) for the first case of simulation (σa2 = 500, σe2

= 1000) using the genealogical and phenotypic information of the Pirenaica
dataset. σa2 and σm2 are the direct and maternal additive genetic variances and
σam is the direct-maternal genetic covariance. σs2 and σd2 are the paternal and
maternal gametic variances and σsd is the covariance between the paternal
and maternal gametic effects. σh2 and σp2 are the herd and maternal permanent
environmental variances. σe2 is the residual variance. Table S2. (Co) variance
components posterior means (and posterior standard deviations) for the first
case of simulation (σs2 = 250, σe2 = 1000) using the genealogical and
data structure of the Pirenaica dataset. Description: same as for Table
S1. Table S3. (Co) variance components posterior means (and posterior
standard deviations) for the first case of simulation (σa2 =500, σs2 =250,
σe2 =1000) using the genealogical and data structure of the Pirenaica
dataset. Description: same as for Table S1. Table S4. (Co) variance
components posterior means (and posterior standard deviations) for
the first case of simulation (σa2 = 500, σm2 = 250, = −250, σe2 = 1000)
using the genealogical and data structure of the Pirenaica dataset.
Description: same as for Table S1. Table S5. (Co) variance components
posterior means (and posterior standard deviations) for the first case of
simulation (σa2 =500, σm2 = 250, σam= −250, σs2 = 250, σe2 = 1000) using
the genealogical and data structure of the Pirenaica dataset. Description: same
as for Table S1. (DOCX 168 kb)
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