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Abstract 

Background:   In whole-genome analyses, the number p of marker covariates is often much larger than the number 
n of observations. Bayesian multiple regression models are widely used in genomic selection to address this problem 
of p ≫ n. The primary difference between these models is the prior assumed for the effects of the covariates. Usu-
ally in the BayesB method, a Metropolis–Hastings (MH) algorithm is used to jointly sample the marker effect and the 
locus-specific variance, which may make BayesB computationally intensive. In this paper, we show how the Gibbs 
sampler without the MH algorithm can be used for the BayesB method.

Results:  We consider three different versions of the Gibbs sampler to sample the marker effect and locus-specific 
variance for each locus. Among the Gibbs samplers that were considered, the most efficient sampler is about 2.1 
times as efficient as the MH algorithm proposed by Meuwissen et al. and 1.7 times as efficient as that proposed by 
Habier et al.

Conclusions:  The three Gibbs samplers presented here were twice as efficient as Metropolis–Hastings samplers  
and gave virtually the same results.

© 2015 Cheng et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In whole-genome analyses, the number p of marker 
covariates is often much larger than the number n of 
observations. Bayesian multiple regression models are 
widely used in genomic selection to address this prob-
lem of p ≫ n. The primary difference between these 
models is the prior assumed for the effects of the covari-
ates. These priors and their effects on inference have 
been recently reviewed by Gianola [1]. In most Bayesian 
analyses of whole-genome data, inferences are based on 
Markov chains constructed to have a stationary distribu-
tion equal to the posterior distribution of the unknown 
parameters of interest [2]. This is often done by employ-
ing a Gibbs sampler where samples are drawn from the 
full-conditional distributions of the parameters [3].

It can be shown that in BayesA introduced by Meu-
wissen et  al. [4], the prior for each marker effect fol-
lows a scaled t distribution [5]. However when the prior 
for the marker effect is specified as a t distribution, its 

full-conditional is not of a known form. Fortunately, 
this prior can also be specified as a normally distributed 
marker effect conditional on a locus-specific variance, 
which is given a scaled inverted chi-square distribution. 
When marginalized over the variance, this gives a t dis-
tribution for the marker effect [5]. Thus, the posterior 
for the marker effect would be identical under both these 
priors. The second form of the prior, however, is more 
convenient because it results in the full-conditional for 
the marker effect having a normal distribution.

BayesA is a special case of BayesB, also introduced 
by Meuwissen et al. [4], where the prior for each marker 
effect follows a mixture distribution with a point mass at 
zero with probability π and a univariate-t distribution 
with probability 1− π [5]. When π = 0, BayesB becomes 
BayesA. When the marker effect is non-null, as in BayesA, 
the second form of the prior leads to the full-conditional 
of the marker effect being normal. Nevertheless, Meuwis-
sen et al. [4] used a Metropolis–Hastings (MH) algorithm 
to jointly sample the marker effect and the locus-specific 
variance because they argued that “the Gibbs sampler will 
not move through the entire sampling space” for BayesB. 
In their MH algorithm, they use the prior distribution of 
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the locus-specific variance as the proposal distribution. 
When π is high, the proposed values for the marker effect 
will be zero with high probability. Thus, for each locus, 100 
cycles of MH algorithm were used in their paper, which 
makes BayesB computationally intensive. Habier et al. [6] 
used an alternative proposal, where the marker effect was 
zero with probability 0.5, that leads to a more efficient MH 
algorithm. For each locus, five cycles of MH were used to 
sample marker effects in this efficient MH method.

In this paper, we will show how Gibbs samplers without 
the MH algorithm can be used for the BayesB method. 
Recall that by introducing a locus-specific variance into 
BayesA, the full-conditional for the marker effects becomes 
normal. Similarly, in this paper we show that by introduc-
ing a variable δj in BayesB, indicating whether the marker 
effect for a locus is zero or non-zero, the marker effect 
and locus-specific variance can be sampled using Gibbs. 
We consider three different versions of the Gibbs sampler 
to sample each marker effect, locus-specific variance and 
its indicator variable δj. The objectives of this paper are to 
introduce these samplers and study their performance.

Methods
Statistical methods
BayesB introduced by Meuwissen et al. [4] assumes that 
each locus-specific variance follows a mixture distribu-
tion. However, following Gianola [5], we prefer to specify 
the mixture at the level of the marker effect instead of the 
locus specific variance. In this formulation, the prior for 
the marker effect is a mixture with a point mass at zero 
and a univariate normal distribution conditional on σ 2

j :

where σ 2
j  follows a scaled inverted chi-square distribu-

tion and π is treated as known. Employing the concept of 
data augmentation, it is convenient to write the marker 
effect αj as αj = βjδj, where we introduce a Bernoulli 
variable δj with probability of success 1− π and normally 
distributed variable βj with mean zero and variance σ 2

j , 
which has a scaled inverted chi-square distribution. As 
shown below, Gibbs sampling can be used to draw sam-
ples for these unknowns.

Gibbs samplers for BayesB
Here, we present three Gibbs samplers for BayesB. The 
first is a single-site Gibbs sampler, where all param-
eters are sampled from their full conditional distribu-
tions. The second is a joint Gibbs sampler, where δj ,βj 
are sampled from the joint full-conditional distribution 
f
(
δj ,βj|y,µ,β−j , δ−j , ξ , σ

2
e

)
, where ξ =

[
σ 2
1 , σ

2
2 , . . . , σ

2
k

]
, 

because δj and βj are highly dependent. Carlin and Chib 

(
αj|σ 2

j

){= 0 with probabilityπ

∼ N
(
0, σ 2

j

)
with probability (1− π),

[7] have shown that the prior used for parameters that 
are not in the model does not affect the Bayes factor. 
Thus, this prior, which they call a pseudo prior, can be 
chosen to improve mixing of the sampler. Following Car-
lin and Chib, the third sampler is a Gibbs sampler where 
a pseudo prior is used for βj when δj is zero. Godsill [8] 
has shown that the marginal posterior for a parameter in 
the model does not depend on the choice of pseudo pri-
ors. It has been suggested to choose the full conditional 
distribution for βj when it is in the model as the pseudo 
prior [7, 8]. This choice is justified by showing that 
using this pseudo prior is equivalent to sampling δj from 
f
(
δj|y,µ,β−j , δ−j , ξ , σ

2
e

)
 [8]. However, in BayesB, use of 

the exact full conditional distribution as the pseudo prior 
will require MH to sample σ 2

j  and σ 2
e . Thus in this paper, a 

distribution close to the full conditional is used.

BayesB model with data augmentation model

where yi is the phenotype for individual i, µ is the overall 
mean, k is the number of SNPs, Xij is the genotype covar-
iate at locus j for animal i (coded as 0, 1, 2), βj is the allele 
substitution effect for locus j, δj is an indicator variable 
and ei is the random residual effect for individual i.

Priors
The prior for µ is a constant. The prior for ei is 
ei|σ 2

e

iid∼ N
(
0, σ 2

e

)
 and 

(
σ 2
e |νe, S2e

)
∼ νeS

2
eχ

−2
νe

 . The 

prior for βj is βj|σ 2
j ∼ N

(
0, σ 2

j

)
. The prior for (

σ 2
j |νβ , S

2
β

)
∼ νβS

2
βχ

−2
νβ

. The prior for δj is

Single‑site Gibbs sampler
The full conditional distributions of µ, σ 2

j  and σ 2
e  are 

well-known [4, 9, 10]. Thus they are presented here 
without derivations. The full conditional of µ is a nor-
mal distribution with mean 1

′
eµ
n  and variance σ

2
e
n , where 

eµ = y −
∑k

j=1 Xjβjδj and n is the number of individu-
als. The full conditional distributions of σ 2

j  and σ 2
e  are 

both scaled inverted chi-square distributions; for σ 2
j , 

the scale parameter is 

(
νβS

2
β+β2

j

)

νβ+1  and the degrees of free-

dom parameter are νβ + 1; for σ 2
e , the scale parameter is 

νeS
2
e+e

′

e
νe+n and the degrees of freedom parameter are νe + n, 

where e = y − 1µ−
∑k

j=1 Xjβjδj.

(1)yi = µ+
k∑

j=1

Xijβjδj + ei,

(
δj|π

){= 1 probability (1− π)

= 0 probabilityπ .
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Next, we derive the full conditional distributions of βj 
and δj. These full conditional distributions are propor-
tional to the joint distribution of all parameters and y, 
which can be written as

The full conditional distribution of βj is now obtained by 
dropping factors that do not involve βj, which gives

where w = y − 1µ−
∑

j
′ �=j

X j
′β j

′ δj′. When δj = 1,

(2)

f
(
y,µ,β , δ, ξ , σ 2

e

)

∝ f
(
y | µ,β , δ, ξ , σ 2

e

)
f (β|ξ) f (δ) f (ξ) f

(
σ 2
e

)

∝
(
σ 2
e

)− n
2
exp

(
−

e
′
e

2σ 2
e

)

×
k∏

j=1

1

√
2π

(
σ 2
j

) 1
2

exp

(
−

β2
j

2σ 2
j

)

×
k∏

j=1

π(1−δj)(1− π)δj

×
k∏

j=1

(
S2β

νβ
2

) νβ
2

Ŵ
( νβ

2

)
(
σ 2
j

)(− νβ+2

2

)

exp

(
−
νβS

2
β

2σ 2
j

)

×
(
S2e

νe
2

) νe
2

Ŵ
(
νe
2

)
(
σ 2
e

)(− νe+2
2

)

exp

(
−
νeS

2
e

2σ 2
e

)
.

f
(
βj|y,µ,β−j , δ, ξ , σ

2
e

)

∝ f
(
y | µ,β , δ, ξ , σ 2

e

)
f
(
βj|σ 2

j

)

∝ exp

(
−

e
′
e

2σ 2
e

)
exp

(
−

β2
j

2σ 2
j

)

∝ exp

[
−
(
w − X jβjδj

)′(
w − X jβjδj

)

2σ 2
e

]

× exp

(
−

β2
j

2σ 2
j

)
,

(3)

f
�
βj|y,µ,β−j , δ, ξ , σ

2
e

�

∝ exp

�
−
�
w − Xjβj

�′�
w − Xjβj

�

2σ 2
e

�
exp

�
−

β2
j

2σ 2
j

�

∝ exp


−

1

2

�
βj −

X
′
jw

cj

�2

σ 2
e
cj




where cj = X
′

j Xj +
σ 2
e

σ 2
j

. Now, (3) can be recognized as the 

kernel of a normal distribution with mean 
X
′
jw

cj
 and vari-

ance σ
2
e
cj

. When δj = 0,

and dropping the factor 
[
exp

(
−w

′
w

2σ 2
e

)]
, which is free of βj , 

gives

which is the kernel of a normal distribution with null 
mean and variance σ 2

j . Thus,

where ELSE stands for all the other parameters and y. 
This means when δj = 1, the sampling of βj is identical to 
that in BayesA; when δj = 0, βj is sampled from its prior. 
This is different from the original implementation of 
BayesB introduced by Meuwissen et al. [4].

Similarly, the full conditional distribution of δj can be 
obtained from (2) by dropping all factors free of δj, which 
gives

f
(
βj|y,µ,β−j , δ, ξ , σ

2
e

)

∝ exp

(
−
w

′
w

2σ 2
e

)
exp

(
−

β2
j

2σ 2
j

)
,

f
(
βj|y,µ,β−j , δ, ξ , σ

2
e

)
∝ exp

(
−

β2
j

2σ 2
j

)
,

p(βj|ELSE) =





∼ N

�
X
′
jw

cj
,
σ 2
e
cj

�
when δj = 1,

∼ N
�
0, σ 2

j

�
when δj = 0,

Pr
(
δj = 1 | ELSE

)

∝ f
(
y | µ,β , δ, ξ , σ 2

e

)
Pr

(
δj = 1

)

∝ exp

[
−
(
w − X jβjδj

)′(
w − X jβjδj

)

2σ 2
e

]
(1− π)

∝ exp

[
−
(
w − Xjβj

)′(
w − Xjβj

)

2σ 2
e

]
(1− π),

Pr
(
δj = 0 | ELSE

)

∝ f
(
y | µ,β , δ, ξ , σ 2

e

)
Pr

(
δj = 0

)

∝ exp

[
−
(
w − X jβjδj

)′(
w − X jβjδj

)

2σ 2
e

]
π

∝ exp

(
−
w

′
w

2σ 2
e

)
π .
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Thus,

where dj = exp

[
− (w−Xjβj)

′
(w−X jβj)

2σ 2
e

]
.

Joint Gibbs sampler
The same priors as in single-site Gibbs sampler are used 
here. The only difference is that δj , βj are sampled from 
their joint full conditional distribution, which can be 
written as the product of the full conditional distribution 
of βj given δj and marginal full conditional distribution of 
δj:

Thus, δj is first sampled from f
(
δj|y,µ,β−j , δ−j , ξ , σ

2
e

)
 . 

Then βj is sampled from f
(
βj|δj , y,µ,β−j , δ−j , ξ , σ

2
e

)
 , 

which is identical to the sampling of βj in BayesB with 
single-site Gibbs sampler. The marginal full conditional 
for δj can be written as:

where w = y − 1µ−
∑

j
′ �=j

X j
′βj′ δj′ = e + Xjβjδj. Now 

f
(
w | δj , σ 2

j , σ
2
e

)
 is a multivariate normal distribu-

tion with mean E
(
e + X jβjδj | δj , σ 2

j , σ
2
e

)
 and variance 

Var
(
X jβjδj + e | δj , σ 2

j , σ
2
e

)
. When δj = 1, it becomes 

a multivariate normal with null mean and variance 
X jX

′
jσ

2
j + Iσ 2

e ; when δj = 0, it becomes a multivariate 
normal with null mean and variance Iσ 2

e . Thus, samples 
can be drawn using

Pr
(
δj = 1 | ELSE

)

=
(1− π)dj

(1− π)dj + π exp
(
−w

′

w
2σ 2

e

) ,

f
(
δj ,βj|y,µ,β−j , δ−j , ξ , σ

2
e

)

= f
(
βj|δj , y,µ,β−j , δ−j , ξ , σ

2
e

)

× Pr
(
δj|y,µ,β−j , δ−j , ξ , σ

2
e

)
.

(4)

f
(
δj|y,µ,β−j , δ−j , ξ , σ

2
e

)

∝ f
(
y | δj ,µ,β−j , δ−j , ξ , σ

2
e

)
Pr

(
δj
)

∝ f
(
w | δj , σ 2

j , σ
2
e

)
Pr

(
δj
)
,

(5)

f
(
δj = 1|y,µ,β−j , δ−j , ξ , σ

2
e

)

=
h1 Pr

(
δj = 1

)

h1 Pr
(
δj = 1

)
+ h0 Pr

(
δj = 0

) ,

(6)
=

1

1+ h0Pr(δj=0)
h1 Pr (δj=1)

where hi = f
(
w | δj = i, σ 2

j , σ
2
e

)
. However, evaluating 

the multivariate normal distribution f
(
w | δj , σ 2

j , σ
2
e

)
 is 

computationally intense. An efficient way is to use the 
univariate distribution of X ′

jw, which contains all the 
information from w about βj, instead of the distribution 
of w, which is a multivariate. Thus, (5) can be written as

where mi = f
(
X

′

j w | δj = i,µ,β−j , δ−j , ξ , σ
2
e

)
, m1 is an 

univariate normal distribution with null mean and vari-

ance 
(
X

′

j Xj

)2
σ 2
j + X

′

j Xjσ
2
e , and m0 is an univariate nor-

mal distribution with null mean and variance X ′

j Xjσ
2
e .

Gibbs sampler with pseudo priors
Here, following Carlin and Chib [7], a pseudo prior is 
used for βj when δj is zero. They proposed to use the full 
conditional distribution of βj when δj = 1 as the pseudo 
prior for βj when δj = 0 [7, 8], which results in the prior 
for βj as

We show below that the posterior mean of the marker 
effect, αj = βjδj, does not depend on the pseudo prior. 
This posterior mean can be written as:

The numerator in (7) is free of the pseudo prior: 
f
(
βj | δj = 0

)
. Furthermore, it can be seen from the 

model equation (1) that the value of y is free of βj when 
δj = 0. Thus, the marginal distribution of y, the denomi-
nator of (7), does not depend on the pseudo prior, which 
is the distribution of βj when δj = 0. As both the numera-
tor and denominator of (1) are free of the pseudo prior, it 
follows that the posterior mean of αj does not depend on 
the pseudo prior for βj.

We show here that, given this pseudo prior, the full con-
ditional for δj is identical to the marginal full conditional 

f
(
δj = 1|y,µ,β−j , δ−j , ξ , σ

2
e

)

=
m1 Pr

(
δj = 1

)

m1 Pr
(
δj = 1

)
+m0 Pr

(
δj = 0

) ,

βj|δj

=

{
∼ N

(
0, σ 2

j

)
δj = 1

∼ f
(
βj|δj = 1, y,µ,β−j , δ−j , ξ , σ

2
e

)
δj = 0.

(7)

E
(
βjδj | y

)

=
∑

δj

∫
βjδj f

(
βj , δj | y

)
dβj

=

∑
δj

∫
βjδj f

(
y | βj , δj

)
f
(
βj | δj

)
Pr

(
δj
)
dβj

f (y)

=

∫
βj f

(
y | βj , δj = 1

)
f
(
βj | δj = 1

)
Pr

(
δj = 1

)
dβj

f (y)
.
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distribution of δj, Pr
(
δj|y,µ,β−j , δ−j , ξ , σ

2
e

)
, which is used 

in the joint Gibbs sampler.
The full conditional probability of δj = 1 can be written 

as:

where

with i = 0 or 1.
The ratio in the denominator of (8) is:

In the above equation, (9) is identical to h0 in (5) used in 
the joint Gibbs sampler, because f

(
w | δj = 0,βj , σ

2
e

)
 is 

also a multivariate normal with null mean and variance 
Iσ 2

e . We show below that (10) is identical to h−1
1 . Our pro-

posed prior for βj when δj = 0 (the pseudo prior) can be 
written as:

After replacing the pseudo prior in (10) with (11), it 

becomes 
1

f
(
w | δj = 1, σ 2

j , σ
2
e

) , which is identical to h−1
1 . 

Thus, the ratio g0g1 in (8) is identical to h0Pr(δj=1)
h1Pr(δj=0)

 in (6), 

(8)

Pr
(
δj = 1 | ELSE

)
=

g1

g1 + g0

=
1

1+ g0
g1

,

gi = Pr
(
δj = i | ELSE

)

∝ f
(
y | δj = i,βj , δ−j ,β−j ,µ, ξ , σ

2
e

)

× f
(
βj | δj = i, σ 2

j

)
× p

(
δj = i

)

∝ f
(
w | δj = i,βj , σ

2
e

)

× f
(
βj | δj = i, σ 2

j

)
× p

(
δj = i

)

(9)
g0

g1
= f

(
w | δj = 0,βj , σ

2
e

)

(10)

×
f
(
βj | δj = 0

)

f
(
w | δj = 1,βj , σ 2

e

)
× f

(
βj | δj = 1, σ 2

j

)

×
Pr

(
δj = 0

)

Pr
(
δj = 1

) .

(11)

p
(
βj | δj = 0

)

= f
(
βj|δj = 1, y,µ,β−j , δ−j , ξ , σ

2
e

)

= f
(
βj|δj = 1,w, σ 2

e , σ
2
j

)

=
f
(
w | δj = 1,βj , σ

2
e

)
f
(
βj | δj = 1, σ 2

j

)

f
(
w | δj = 1, σ 2

j , σ
2
e

) .

which proves the full conditional probability (8) of δj = 1, 
when the proposed prior is used, is identical to (6), the 
marginal full conditional probability of δj = 1, which is 
used in the joint Gibbs sampler.

Use of the exact full conditional distribution as the 
pseudo prior in BayesB, however, will require MH to 
sample σ 2

j  and σ 2
e . Thus, a distribution close to the full 

conditional is used here. Here, we use a normal distribu-

tion with mean 
X
′
jw

X
′
jXj+�̃

and variance σ̃ 2
e

X
′
jXj+�̃

, where �̃ = σ̃ 2
e

σ̃ 2
j

, 

and σ̃ 2
e  and σ̃ 2

j  are means of the prior distributions for the 

residual and the marker effect variances, respectively.
Next, we will show the derivation of the full condition-

als, which are proportional to the joint distribution of 
all parameters and y. Here, the joint distribution of all 
parameters and y can be written as:

(12)

f
(
y,µ,β , δ, ξ , σ 2

e

)

∝ f
(
y | µ,β , δ, ξ , σ 2

e

)
f (β | δ, ξ) f (δ) f (ξ) f

(
σ 2
e

)

(13)
∝

(
σ 2
e

)− n
2
exp

(
−

e
′
e

2σ 2
e

)

(14)
×

k�

j=1




1

√
2π

�
σ 2
j

� 1
2

exp

�
−

β2
j

2σ 2
j

�



δj

(15)
×

k�

j=1




1

√
2π

�
�σ 2
e

X
′
jX j+��

� 1
2




1−δj

(16)
×

k�

j=1




exp


−

�
βj −

X
′
jw

X
′
jX j+��

�2

2
�σ 2
e

X
′
jX j+��








1−δj

(17)
×

k∏

j=1

π(1−δj)(1− π)δj

(18)×
k∏

j=1

(
S2β

νβ
2

) νβ
2

Ŵ
( νβ

2

)
(
σ 2
j

)(− νβ+2

2

)

exp

(
−
νβS

2
β

2σ 2
j

)
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It is easy to see that the full conditional distribution of σ 2
e , 

which does not involve δj, is the same as that in the single-
site Gibbs sampler. Although µ also appears in w in (16), 
(16) has no effect on the full conditional of µ because the 
columns of X, which are always centered, are orthogonal 
to the column vectors of ones so that X ′

j 1µ = 0. Thus, 
the full conditional of µ is the same as that in the single-
site Gibbs sampler. When δj = 1, the full conditional dis-
tribution of βj is identical to that in the single-site Gibbs 
sampler. When δj = 0, (16) is the only part that includes 
βj. Thus the full conditional distribution of βj is:

When δj = 1, the full conditional distribution of σ 2
j  is 

the same as that in the single-site Gibbs sampler. When 
δj = 0, (18) is the only part that contains σ 2

j , which means 
it should be sampled from its prior. Thus when δj = 1, 
the full conditional distribution of σ 2

j  is a scaled inverted 

chi-square distribution with scale parameter 
νβS

2
β+β2

j

νβ+1  and 
degrees of freedom parameter νβ + 1; when δj = 0, it is a 
scaled inverted chi-square distribution with scale param-
eter S2β and degrees of freedom parameter νβ. The full 
conditional distribution of δj can be obtained from the 
joint distribution of all parameters and y by dropping all 
factors free of δj, which gives

(19)×
(
S2e

νe
2

) νe
2

Ŵ
(
νe
2

)
(
σ 2
e

)(− νe+2
2

)

exp

(
−
νeS

2
e

2σ 2
e

)
.

p(βj|ELSE) =





∼ N


 X

′
jw

X
′

j Xj+
σ2e

σ2j

,
σ 2
e

X
′

j Xj+
σ2e

σ2j


 δj = 1,

∼ N

�
X
′
jw

X
′

j Xj+��
,

�σ 2
e

X
′

j Xj+��

�
δj = 0.

Pr
(
δj = 1 | ELSE

)

∝ f
(
y | µ,β , δ, ξ , σ 2

e

)
Pr

(
δj = 1

)
f
(
βj | δj = 1

)
,

Pr
(
δj = 0 | ELSE

)

∝ f
(
y | µ,β , δ, ξ , σ 2

e

)
Pr

(
δj = 0

)
f
(
βj | δj = 0

)
.

Compared to the full conditional distributions for δj in 
the single-site Gibbs sampler, the difference is the extra 
factor f

(
βj | δj = 1

)
 and f

(
βj | δj = 0

)
, because they 

cannot be canceled out as in the single-site Gibbs sam-
pler. Thus,

where f
(
βj | δj = 1

)
= 1

√
2π

(
σ 2
j

) 1
2

exp

(
−

β2
j

2σ 2
j

)
 and  

f
�
βj | δj = 0

�
= 1

√
2π

�
�
σ2e

X
′
j Xj+

��

� 1
2

exp


−

�
βj−

X
′
j w

X
′
j Xj+

��

�2

2
�
σ2e

X
′
j Xj+

��


.

Data
Real genotypic data and simulated phenotypic data were 
used here to compare BayesB using MH, efficient MH or 
the three different Gibbs samplers as described above. 
The genotypic data included 3961 individuals with 55,734 
SNPs. The heritability of the simulated trait was 0.25. The 
training data contained 3206 individuals and the remain-
ing individuals were used for testing. A chain of length of 
50,000 was used to estimate parameters of interest. Pre-
diction accuracies were calculated using different sam-
plers. The effective sample sizes [11], which estimate the 
number of independent samples from a chain, were cal-
culated for σ 2

e  to compare convergence rates for different 
methods. Computing time for different methods with the 
same number of iterations were also compared.

Results
The number of effective samples per second of comput-
ing time was obtained for BayesB using MH, efficient MH 
or the three different Gibbs samplers. These three Gibbs 
samplers were almost twice as efficient as Metropolis–
Hastings (Table 1). The prediction accuracies for different 
samplers, which are calculated as the correlation between 

Pr
(
δj = 1 | ELSE

)

=
(1− π)djf

(
βj | δj = 1

)

(1− π)djf
(
βj | δj = 1

)
+ π exp

(
−w

′

w
2σ 2

e

)
f
(
βj | δj = 0

) ,

Table 1  Efficiency of alternative MCMC samplers for BayesB

Efficiency of alternative MCMC samplers for BayesB. Results are given for the computing time in seconds to obtain 50,000 samples, effective sample size and effective 
samples/s for BayesB using Metropolis–Hastings (MH), single-site Gibbs sampler, joint Gibbs sampler and Gibbs sampler with pseudo priors

Alternative MCMC samplers

MH Efficient MH Single-site Gibbs Joint Gibbs Gibbs with pseudo prior

Computing time 90,009 70,714 52,452 44,726 47,043

Effective sample size 25,262 24,588 24,684 26,757 25,036

Effective samples/s 0.280 0.347 0.471 0.598 0.532
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estimated breeding values and simulated phenotypes, 
are all equal to 0.296. Posterior means of µ for these four 
samplers are all equal to 2.508. Posterior means of σ 2

e  for 
different samplers are almost equal, ranging from 0.955 
to 0.957.

Discussion
In the joint Gibbs sampler, δj and βj are sampled jointly, 
which addresses the problem of dependence between δj 
and βj. Thus, the joint sampler had the largest effective 
sample size. However, in the single-site Gibbs sampler, δj 
and βj are sampled from their full conditionals, and thus 
due to the dependence between βj and δj, the single-site 
Gibbs sampler had the smallest effective sample size. 
These differences in effective sample size, however, were 
small.

In the Gibbs sampler with pseudo priors, βj and δj are 
also sampled from their full conditionals. Recall that we 
have shown that the posterior mean of the marker effects 
does not depend on the pseudo prior. Furthermore, God-
sill [8] has shown that the marginal posterior for param-
eters in the model do not depend on the pseudo prior, 
which is the prior for βj when δj = 0. As suggested by 
Carlin and Chib [7], when the full conditional distribu-
tion of βj when δj = 1 is chosen to be the pseudo prior, we 
have shown that the samples of βj and δj are identically 
distributed to those from the joint Gibbs sampler. Thus, 
the Gibbs sampler with pseudo priors will have a similar 
effective sample size as the joint Gibbs sampler.

However, when the full conditional distribution for βj 
when δj = 1 is used as the pseudo prior in BayesB, the full 
conditional distributions of σ 2

e  and σ 2
j  are not of known 

forms because σ 2
e  and σ 2

j  are in the pseudo prior for the 
marker effect. In contrast to BayesB, in the model used by 
Godsill [8] to justify the use of full conditional distribu-
tions as the pseudo priors, for simplicity, hyper-parame-
ters such as σ 2

e  were omitted [8]. Here, we have replaced 
σ 2
e  and σ 2

j  in the pseudo prior with constants such that 
the full conditionals for σ 2

e  and σ 2
j  have scaled inverted 

chi-square distributions. This modification will give a 
pseudo prior whose distribution is close to that of the full 
conditional. In the Gibbs sampler with this pseudo prior, 
the effective sample size was smaller than in the joint 
Gibbs sampler but still larger than in the single-site Gibbs 
sampler.

Conclusions
When a MH algorithm is used to jointly sample the 
marker effect and the locus-specific variance, the BayesB 
method is computationally intensive. After introducing 

a variable δj, indicating whether the marker effect for a 
locus is zero or non-zero, the marker effect and locus-
specific variance can be sampled using Gibbs sampler 
without MH. Among the Gibbs samplers that were con-
sidered here, the joint Gibbs sampler is the most efficient. 
This sampler is about 2.1 times as efficient as the MH 
algorithm proposed by Meuwissen et al. [4] and 1.7 times 
as efficient as that proposed by Habier et al. [6].
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