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Abstract 

Background:  Genetic selection of livestock against infectious diseases can complement existing interventions to 
control infectious diseases. Most genetic approaches that aim at reducing disease prevalence assume that individual 
disease status (infected/not-infected) is solely a function of its susceptibility to a particular pathogen. However, 
individual infectivity also affects the risk and prevalence of an infection in a population. Variation in susceptibility and 
infectivity between hosts affects transmission of an infection in the population, which is usually measured by the 
value of the basic reproduction ratio R0. R0 is an important epidemiological parameter that determines the risk and 
prevalence of infectious diseases. An individual’s breeding value for R0 is a function of its genes that influence both 
susceptibility and infectivity. Thus, to estimate the effects of genes on R0, we need to estimate the effects of genes on 
individual susceptibility and infectivity. To that end, we developed a generalized linear model (GLM) to estimate rela-
tive effects of genes for susceptibility and infectivity. A simulation was performed to investigate bias and precision of 
the estimates, the effect of R0, the size of the effects of genes for susceptibility and infectivity, and relatedness among 
group mates on bias and precision. We considered two bi-allelic loci that affect, respectively, the individuals’ suscepti-
bility only and individuals’ infectivity only.

Results:  A GLM with complementary log–log link function can be used to estimate the relative effects of genes on 
the individual’s susceptibility and infectivity. The model was developed from an equation that describes the probabil-
ity of an individual to become infected as a function of its own susceptibility genotype and infectivity genotypes of all 
its infected group mates. Results show that bias is smaller when R0 ranges approximately from 1.8 to 3.1 and related-
ness among group mates is higher. With larger effects, both absolute and relative standard deviations become clearly 
smaller, but the relative bias remains the same.

Conclusions:  We developed a GLM to estimate the relative effect of genes that affect individual susceptibility and 
infectivity. This model can be used in genome-wide association studies that aim at identifying genes that influence 
the prevalence of infectious diseases.

© 2015 Anche et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
New and existing infectious diseases represent a major 
and increasing threat to domestic plants and animals, 
and to humans. Infectious diseases of animals are a 
worldwide concern, particularly because of their effects 
on the productivity and welfare of livestock and also 

because of their zoonotic threats to human health. In 
spite of the availability of antibiotic and vaccine treat-
ments, the undesirable environmental impact of antibi-
otic treatments, the rapid evolution of bacteria to develop 
resistance to antibiotics and of viruses to escape vaccine 
protection illustrate the need for additional control strat-
egies that can provide a useful complement to the cur-
rently used interventions to control disease [1].

Host susceptibility and tolerance are two of the ways 
that individuals respond to pathogens. Several studies on 
the genetics of diseases in animals have shown that the 
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host’s susceptibility and tolerance to infectious diseases 
have a genetic basis, and thus that genotypic differences 
exist between individuals regarding their susceptibility 
and tolerance to infectious challenges [2]. A number of 
genome-wide association studies (GWAS) have reported 
single nucleotide polymorphisms (SNPs) associated with 
susceptibility to various infectious diseases [3, 4].

Most genetic approaches that aim at reducing the prev-
alence of an infection assume that an individual’s disease 
status (infected/not-infected) is solely a function of its 
own genes and of non-genetic factors [2]. Hence, these 
methods capture only the genetic variation in susceptibil-
ity or tolerance (strictly, this latter statement is restricted 
to the measurement of disease occurrence in groups of 
unrelated individuals [5]). However, the prevalence and 
dynamics of an infection depend also on the infectivity 
of infected individuals in the population. Moreover, accu-
mulating evidence on the existence of “superspreaders” 
in the outbreaks of epidemics suggests that (phenotypic) 
variation in infectivity exists among hosts [6]. Thus, the 
classical quantitative genetic approach of disease analysis 
based on individual disease status will capture only part 
of the heritable variation that is present in the host popu-
lation and affects the dynamics of infectious diseases [7].

Between-host variation in susceptibility and infectivity 
affects the transmission of an infection in the population. 
This effect is measured by the value of the basic repro-
duction ratio R0. R0 is defined as the average number of 
secondary cases produced by one typical infectious indi-
vidual during its entire infectious lifetime, in an other-
wise naïve population [8]. R0 has a threshold value of 1, 
which implies that a major disease outbreak or a stable 
endemic equilibrium can only occur when R0 is greater 
than 1. When R0 is less than 1, the epidemic will die out. 
Thus, in order to reduce disease incidence and therewith 
prevalence, breeding strategies should aim at reducing 
R0, preferably to a value less than 1.

Genetic improvement that aims at reducing R0 should 
be based on individual breeding values for R0. An indi-
vidual’s breeding value for R0 is the sum of the average 
effects of its alleles on R0 [5], which means that investi-
gating the effects of genes on R0 is relevant. Anche et al. 
[5] showed that an individual’s breeding value for R0 is a 
function of its genotype for susceptibility and infectivity, 
and of the population’s average susceptibility and infec-
tivity. Thus, in order to estimate effects of genes on R0, 
the susceptibility and infectivity effects of the different 
alleles must be estimated.

Disease data are often available only in binary form 
(0/1) i.e. the value indicates whether an individual has 
become infected or not. Hence, methods for genetic 
analyses of disease traits have to be tailored to such data. 
Generalized linear models (GLM) are commonly used 

to analyse binary data, where the expected value of the 
binary response variable is linked to the explanatory 
variables (traits) by a linear equation after applying a link 
function [9]. Velthuis et al. [9] showed that the effect of 
susceptibility and infectivity of hosts on the transmis-
sion rate parameter β can be estimated by fitting a GLM 
with a complementary log–log link function to binary 
disease data. Lipschutz-Powell et  al. [10] showed that a 
GLM with a complementary log–log link function can be 
used to link the probability of an individual to be infected 
to the susceptibility genotype of the individual itself and 
the infectivity genotypes of its infectious contacts. How-
ever, they observed that the infectivity component of the 
model was non-linear, and did not provide an explicit 
GLM or investigate the quality of estimates resulting 
from such a GLM.

In this study, we developed a GLM to estimate the 
relative effects of genes on individual susceptibility and 
infectivity, and investigated the quality of the resulting 
estimates in terms of bias and precision. We also inves-
tigated the effect of R0, different sizes of the effects of 
susceptibility and infectivity genes and population struc-
ture with respect to relatedness on bias and precision of 
the estimates. The GLM was fitted to binary disease data 
(0/1) recorded at the end of the epidemic. Thus, the data 
analysed were counts of infected individuals of different 
genotypes. These data were obtained from a simulated 
genetically heterogeneous population in which individu-
als differed in susceptibility and infectivity.

Methods
Population structure
We assumed a diploid population with between-host 
genetic heterogeneity in susceptibility and infectivity. We 
modelled genetic heterogeneity in this population using 
two bi-allelic loci, one locus for the susceptibility effect 
(γ ) with alleles G and g and susceptibility values γG and 
γg , and one locus for the infectivity effect (ϕ) with alleles 
F and f and infectivity values ϕF and ϕf , respectively. Both 
loci were assumed to have multiplicative allelic effects 
and the reason for this assumption is explained in the 
section “Generalized linear models”.

Epidemiological model of disease dynamics
Disease dynamics that are caused by a microparasitic 
infection can be modelled with a basic compartmen-
tal stochastic susceptible, infected and recovered (SIR) 
model. In this model, two possible events can occur: 
infection of a susceptible individual, and recovery of 
an infectious individual [11]. With stochasticity, these 
events occur randomly at a certain rate (probability per 
unit of time) specified by the model parameters and the 
state variables. In the SIR-model, these parameters are 
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the transmission rate parameter (β) for S →  I with rate 
β SI

N , and the recovery rate parameter (α) for I → R with 
rate αI, where N denotes population size, S the number 
of susceptible individuals and I the number of infectious 
individuals (in this study, we assumed that an individual 
will be infectious once it is infected, thus the terms infec-
tious and infected will be used interchangeably; hence, 
the symbols S, I and R are used to denote both the disease 
status and the number of individuals with that disease 
status). The transmission rate parameter β describes the 
probability per unit of time for one infected individual to 
infect any other individual in a totally susceptible popula-
tion [8, 12] (this can be seen from the transmission rate 
dS/dt = −βSI/N , for I = 1 and S = N).

In the following, we will consider binary data at the 
end of an epidemic, which indicates for each individual 
whether it has become infected or not. Thus, binomial 
count data were available to quantify the occurrence of 
infected individuals according to genotype. As a step 
towards the GLM, first we derive the probability of an 
individual to become infected.

In a genetically heterogeneous population, the trans-
mission rate parameter β varies between pairs of individ-
uals, and in addition to the contact rate (c), it will depend 
on the infectivity genotype of the infectious individual, 
and on the susceptibility genotype of the recipient sus-
ceptible individual. The assumption that the transmis-
sion rate depends only on the infectivity of the infectious 
individual and the susceptibility of the recipient indi-
vidual, and not on the combination of these two traits, is 
known as separable mixing [8]. In other words, the two 
individuals that are in contact influence the transmission 
rate independently. Thus, the transmission rate of a spe-
cific susceptible individual with susceptibility genotype i 
from being susceptible to being infected when exposed to 
a single infectious individual with infectivity genotype j 
can be defined as:

where γi denotes the susceptibility of the susceptible 
individual, and ϕj denotes the infectivity of the infec-
tious individual. Note that the transmission rate in Eq. (1) 
refers to a single specific susceptible individual, whereas 
the transmission rate parameter β defined above, refers 
to any susceptible individual among the N candidates. 
Hence, they differ by a factor of N. In Eq. (1), c represents 
the average contact rate between any pair of individu-
als and thus c/N  is the average contact rate of a sus-
ceptible with a single infectious individual in a group of 
size N (this assumes faecal-oral transmission or similar 
routes, where 1/N  of the infectious material ends up with 
the sender itself ). Any variation in contact rate among 

(1)βij
1

N
= γiϕjc

1

N
,

different types of susceptible and infectious individuals is 
included in γi and ϕj because of the assumption of separa-
ble mixing.

When one susceptible individual with susceptibility 
genotype i is exposed to one infectious individual with 
infectivity genotype j, the expected number of trans-
missions is the product of the transmission rate and the 
average length of the infectious period, and is equal to 
γiϕjc

1
N

1
α
, where 1/α is the average length of the infectious 

period. The probability Pij that the individual escapes 
infection follows from the zero term of the Poisson distri-
bution, and is equal to:

Here, it is assumed that the transmission rate parameter 
β (and thus also γ, ϕ, and c/α) is constant over time so 
that there is no over-dispersion and the Poisson distribu-
tion can be used.

At the end of the epidemic, the individual with suscep-
tibility genotype i has been exposed not to only one but 
to all infectious group mates (strictly speaking this is true 
for the individuals escaping infection only). These group 
mates can be categorized by their infectivity genotype, 
j. Let Ij denote the number of infected individuals with 
infectivity genotype j that have become infected during 
the epidemic and have infectivity ϕj. Then the probability 
Pi that the individual escapes all infection exposures by 
individuals of infectivity genotype j and still be suscepti-
ble by the end of the epidemic is equal to:

Thus, the probability Pi that the individual with suscepti-
bility genotype i escapes all infection exposures from all 
genotypes and still be susceptible by the end of an epi-
demic is equal to the product of all the probabilities that 
it escapes infection exposures from its infectious group 
mates of each genotype:

where the summation is over the n infectivity genotypes; 
n = 3 for a single bi-allelic locus in a diploid population.

In Eq. (3), we can replace Ij by I × fj, where I is the total 
number of individuals that have been infected at the end 
of the epidemic and fj is the fraction of infected individu-
als of genotype j. This yields:

(2a)Pij = e−βij
1
N = e−γiϕj

c
α

1
N .

(2b)
Pi,Ij =

∏

Ij

e−γiϕj
c
α

1
N = e−γiIjϕj

c
α

1
N .

(3)Pi =

n∏

j=1

e−γiIjϕj
c
α

1
N = e

−γi
c
α

1
N

n∑
j=1

Ijϕj
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(4)
Pi = e

−γi
c
α

I
N

n∑
j=1

fjϕj

.
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From Eq. (4), the probability that a susceptible individual 
with susceptibility genotype i has been infected by the 
end of the epidemic is equal to:

Thus, the probability that a susceptible individual has 
been infected depends on its own susceptibility, γi, and 
on the arithmetic mean infectiousness 

∑n
j=1 fjϕj of its I 

infectious group mates with different infectivity values ϕj , 
with j = 1, … n.

In [13], equation 10, which is equivalent to our equa-
tion (5), was presented as the final size equation for a 
population that is heterogeneous for susceptibility and 
infectivity (in epidemiology, the so-called final size equa-
tion gives the fraction of infected individuals of each type 
by the end of an epidemic). Our equations  5 and 14 in 
[10] follow a similar derivation but, in our case, the equa-
tion is applied to the end of the epidemic.

Generalized linear model (GLM)
A GLM, in its simplest form, specifies a linear relation-
ship between a function of the mean of the observed var-
iable y, and a set of observed predictor variables, x:

where φ is the so-called link function, c0 is the intercept 
and the ci are the regression coefficients for the explana-
tory variables xi, for i = 1, … n. The aim is to estimate ci 
coefficients.

For binomial data where the probability of failure (to 
escape an infection) P is equal to the zero term of a Pois-
son distribution, as in the above Eq. (4), the complemen-
tary log–log link function is the default link function to 
connect explanatory variables xi with the observed vari-
able y of the linear model [14]. Applying the complemen-
tary log–log link function to 1− Pi based on Eq. (4), yields:

Thus, the dependent variables have now become the 
fraction of each i type of individual that did become 
infected (see below).

The model in Eq.  (6) is linear in log of susceptibil-
ity (γi) but not for infectivity (ϕj), since the logarithm of 
a sum does not equal the sum of the logarithms, as also 
observed by [11]. In Eq.  (6), the term 

∑n
j=1 fjϕj can be 

recognized as the arithmetic mean, since 
∑n

j=1 fj = 1.  
In order to further linearize Eq. (6), the arithmetic mean 

(5)
1− Pi = 1− e

−γi
c
α

I
N

n∑
j=1

fjϕj

.

φ(E(y)) = c0 + c1x1 + · · · cnxn,

(6)

cloglog(1− Pi) = log(− log(Pi)) = log
( c

α

)
+ log(γi)

+ log

(
I

N

)
+ log

n∑

j=1

fjϕj

was approximated by a geometric mean, using the substi-
tution 

∑n
j=1 fjϕj ≈

∏n
j=1 ϕ

fj
j . This yields:

The approximation of the arithmetic mean regression by 
a geometric mean regression was investigated separately 
as explained in the “Appendix”.

In Eq.  (7), the expectation of the response variable, 
cloglog(1− Pi) is a linear expression of log(γi) and log(ϕj).

Equation  (7) is linear in the log of susceptibility (γi) 
and the log of infectivity (ϕj). To be able to formulate the 
model in terms of allele counts within individuals, rather 
than in terms of individual genotypes, it was assumed 
that the two alleles that make up the genotype within an 
individual act multiplicatively, so that their effects are 
additive on the log-scale.

Therefore, the genotypic values will be γGG = γG × γG
= γ 2

G
, γgg = γg × γg = γ 2

g  and γGg = γgG = γG × γg,  
for susceptibility, and ϕFF = ϕF × ϕF = ϕ2

F; 
ϕff = ϕf × ϕf = ϕ2

f  and ϕfF = ϕFf = ϕf × ϕF for infec-
tivity. Furthermore, the effects of the g and f  alleles 
were set to a value of 1, γg = 1 = ϕf = 1, so that 
log(γg ) = log(ϕf ) = 0. This is done without loss of gen-
erality, because the interest lies in the relative effect of 
one allele to the other, that is the effect of γG relative to 
γg and the effect of ϕF relative to ϕf  [note that this does 
not affect the estimates of relative allele effects since the 
absolute scale of the model is accounted for by the log(c/
α)-term]. Using Eq. (7), the GLM for the diploid genetic 
model becomes:

where individuals are aggregated by their genotype, i. The 
cloglog is applied to the expectation of yini, which is the 
fraction of infected individuals of genotype i, by the end 
of the epidemic and yi follows a binomial distribution, c0 
is the intercept measuring log(c/α), and c1 is the regres-
sion coefficient for the indexG, where indexG,i = 0, 1 or 2 
is the number of G alleles at the susceptibility locus of 
individuals of genotype i. The c2 is the regression coef-
ficient for NumF, which is the average of the number 
of F-alleles per individual at the infectivity locus in the 
infected group mates of the individuals of genotype i. It 
is calculated as 2× FracFF + 1× FracfF/Ff  where FracFF 
is the fraction of infected individuals with genotype ”FF” 
and FracfF/Ff  is the fraction of infected individuals with 
genotype “fF” or “Ff”. The “2” arises because individuals 

(7)

log(−log(Pi)) ≈ log
( c

α

)
+ log(γi)+ log

(
I

N

)

+

n∑

j=1

fjlog(ϕj).

(8)

cloglogE

[
yi

ni

]
= c0 + c1indexG,i + c2NumF + log

(
I

N

)
,
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with the ”FF” genotype carry two F alleles, while those 
with the “fF” or “Ff” genotype carry only one F allele. 
The log

(
I
N

)
 corresponds to the total fraction of infected 

individuals in the group, which is used as an offset in the 
GLM. Hence, estimates of c1 and c2 refer to the effect of a 
single allele, and represent the so-called average effect of 
an allele substitution on the log-scale [15]. When fitting 
the model to binomial count data of those individuals of 
each genotype that are infected and estimating c0, c1 and 
c2, the effects of alleles G and F relative to γg = ϕf  = 1 can 
be calculated as γ̂G = eĉ1 and ϕ̂F = eĉ2, respectively.

Simulation
To investigate the bias and precision of the γ̂G and ϕ̂F, one 
generation of a diploid population was simulated based 
on the above assumptions with respect to the effect of 
alleles at both loci. These two loci were the only genetic 
effects simulated. Furthermore, it was assumed that 
allele frequencies at both loci were equal to 0.5, that is, 
pg = pf = 0.5. The population was sub-divided into 100 
groups of 100 individuals each. Each group was set up 
in such a way that group mates showed a certain genetic 
relatedness, r, at both loci. Here, relatedness is defined 
as the correlation of allele counts between group mates, 
irrespective of what causes the correlation. To limit the 
number of scenarios to be tested, relatedness at the sus-
ceptibility locus, rγ, and at the infectivity locus, rϕ , were 
assumed to be the same (note that relatedness at both 
loci is expected to be the same when the loci are not 
under selection). In order to have a certain degree of 
relatedness among group mates, a fraction of fully related 
individuals was added to each group, supplemented by 
randomly selected individuals. Since each individual car-
ries both the susceptibility and the infectivity locus, these 
additions were done jointly (see Appendix 4 in [5] for a 
detailed description of the strategy to make these addi-
tions jointly).

A basic stochastic SIR-model as described above was 
used to simulate the disease dynamics [12]. In each group, 
the epidemic began by one randomly infected individual. 
Then, the next event which could be either infection of 
a susceptible individual or recovery of infected individ-
ual was determined using Gillespie’s direct algorithm 
[16]. The type of event, i.e. either infection or recov-
ery, was decided by drawing a random number v1, from 
a uniform distribution, v1  ~  U(0,1). The next event was 
an infection of a susceptible individual if the random 

number v1 <
∑

i

∑
j βij

SiIj
N

∑
i

∑
j βij

SiIj
N +Iα

, otherwise it was recovery 

of an infected individual. The numerator of this ratio 
represents the total infection rate, and the denominator 
the total rate, i.e., the sum of the infection and recovery 

rates. The sampling of the specific individual that became 
infected depended on individual susceptibility. The prob-
ability that a susceptible individual of genotype i became 

infected was proportional to 
∑

i

∑
j βij

SiIj
N

∑
i

∑
j βij

SiIj
N +Iα

. Hence, the 

transmission rates were updated based on the numbers 
of susceptible and infected individuals of each geno-
type, while the transmission rate parameter βij remained 
constant. The epidemic ended when there was no more 
infectious individual in the population or when there was 
no susceptible individual left to be infected. By the end of 
the epidemic, the number of individuals that got infected 
together with their genotypes for susceptibility and infec-
tivity were recorded. The fraction of individuals of each 
genotype that got infected was the dependent variable in 
the analysis.

We hypothesised that different epidemiological and 
genetic factors will affect the quality of the estimates, 
as measured by the bias and precision of γ̂G and ϕ̂F. For 
that purpose, we simulated different scenarios that are 
described below. The biases of the estimates were cal-
culated by taking the difference between the ‘true’ and 
estimated values and the precision of the estimates 
were calculated using the standard deviation (SD) of the 
estimates.

First, we simulated a basic scenario (scenario 1; 
Table  1), in which groups were created randomly with 
respect to relatedness among group mates. We calculated 
R0 using [5]:

where

and

Population parameters are in Table  1. In the basic sce-
nario, R0 was set to 1.2.

Second, to investigate the effect of R0 on the quality of 
γ̂G and ϕ̂F, we simulated scenarios with different values of 

R0 = γ ϕc/α,

γ = p2gγgg + 2pg (1− pg )γgG + (1− pg )
2γGG ,

ϕ = p2f ϕff + 2pf (1− pf )ϕfF + (1− pf )
2ϕFF .

Table 1  Simulated scenarios

For all scenarios, γg = ϕf = 1 and pg = pf = 0.5

Parameters Scenario 1 Scenario 2 Scenario 3

Contact rate, c 1.5 0.75–7.5 1.5

Recovery rate α 0.5 0.5 0.5

γG 0.6 0.6 0.97, 0.6 and 0.37

ϕF 0.6 0.6 0.3, 0.6 and 0.9

Relatedness r 0–1 0–1 0–1

R0 1.2 0.6–6.1 1.2
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R0. We varied the contact rate c, so that R0 for a popula-
tion consisting of groups with unrelated individuals var-
ied from 0.6 (for which no major outbreaks can occur) to 
6.1 (for which major outbreaks can occur; Table  1, sce-
nario 2).

Third, to investigate the impact of the size of effects of 
the genes for susceptibility and infectivity on the quality 
of γ̂G and ϕ̂F, we simulated scenarios with different effect 
sizes for a constant value of R0 =  1.2. We simulated all 
combinations of low, moderate and high values for γG 
and ϕF (Table 1, scenario 3).

Furthermore, in all of the above-mentioned scenarios, 
relatedness between group mates was varied between 
0 and 1 to investigate the effect of population structure 
with respect to relatedness on the quality of γ̂G and ϕ̂F. 
Relatedness was assumed to be the same at both loci (see 
[5] for details). We used R software to fit the model with a 
glm function and a binomial distribution.

Results
All estimates presented in this section are averages from 
2000 replicates, except for Fig. 1 which shows the results 
of all replicates. The black straight line in all figures repre-
sents the true difference between γg and γG and between 
ϕf  and ϕF, and the bars indicate the standard deviation of 
these estimates among replicates.

In the basic scenario, in which groups were created 
randomly with respect to relatedness, r =  0, we found 

that the susceptibility effect was slightly underestimated 
(1− γ̂G in Fig. 2) but the infectivity effect was consider-
ably overestimated (1− ϕ̂F in Fig.  2). When the degree 
of relatedness among group mates increased, the bias of 
both estimates decreased, however, the effect of related-
ness was more pronounced for infectivity (Fig.  2). The 
error in ϕ̂F, that is caused by the geometric mean approx-
imation was quantified and found to be small (Table  3, 
“Appendix”). Moreover, the standard deviation of the 
estimated susceptibility effect increased only slightly, 
whereas the standard deviation of the estimated infectiv-
ity effect increased considerably as the degree of related-
ness increased.

A scatter plot for (1− γ̂G) and (1− ϕ̂F ) of the 2000 rep-
licates for the basic scenario where r = 0 shows that the 
estimated differences are uniformly distributed over their 
range without any pattern (Fig.  1). This plot also shows 
that (1− ϕ̂F ) is more often underestimated than overes-
timated, which agrees with the underestimation in Fig. 2 
for r = 0.

In the second set of scenarios, where R0 was varied 
from 0.6 to 6.1, susceptibility and infectivity effects were 
also underestimated. Bias in γ̂G and ϕ̂F was smallest for 
values of R0 that ranged approximately from 1.8 to 3.1. 
Higher values of R0 increased bias in γ̂G but had little 
effect on bias in ϕ̂F when group mates were unrelated 
(Fig. 3, panel a). Bias in ϕ̂F and γ̂G decreased with increas-
ing relatedness among group mates, except for ϕ̂F at high 

Fig. 1  Scatter plots for (1− γ̂G) and infectivity (1− ϕ̂F ). For the scenario where relatedness between group mates r = 0 and R0 = 1.2
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values of R0 (Fig. 3, panels b–d). In contrast to the result 
for the unrelated groups, bias in ϕ̂F was larger at high val-
ues of R0 when related groups were used (Fig. 3, panel a 
vs. b–d). For fully-related groups, i.e. r = 1, estimates for 
ϕ̂F and γ̂G and their standard deviation were nearly iden-
tical (Fig. 3, panel d). For this scenario, the error in ϕ̂F as 
a result of the geometric mean approximation was also 
quantified and only a small error was found (“Appendix”, 
Table 4).

For all values of R0, standard deviations of estimates 
were greater for infectivity effect than for susceptibility 
effect, except for r = 1 for which they were nearly identi-
cal. Standard deviations decreased considerably as relat-
edness among group mates increased, particularly for 
infectivity effect. For both susceptibility and infectivity 
effects, standard deviations were smaller for values of R0 
for which the bias in γ̂G and ϕ̂F was smallest, i.e. when R0 
ranged approximately from 1.8 to 3.1.

In the third set of scenarios, different sizes of the 
effects of γG and ϕF were simulated. For both estimates, 
the relative bias did not change regardless of the size of 
the effect considered (Figs. 4, 5). In these scenarios also, 
both susceptibility and infectivity effects were underes-
timated regardless of the size of the effects considered, 
except when there was a large difference in infectivity 
effect and r = 1, there was a small overestimation (1− ϕ̂F 
in Fig. 5). Moreover, smaller relative standard deviations 
were found for both susceptibility and infectivity effects 

when effect sizes were larger, which indicates that the 
effects are better estimated when they are larger. For this 
scenario, the error in ϕ̂F as a result of the geometric mean 
approximation was also quantified and only a small error 
was found (Table 5, “Appendix”).

Discussion
In this work, a generalized linear model with a comple-
mentary log–log link function was developed to estimate 
the relative effects of genes on individual susceptibility 
and infectivity. The model was developed from an equa-
tion that describes the probability of an individual to 
become infected as a function of its own susceptibility 
genotype and of the infectivity genotypes of its infected 
group mates. This GLM was developed following Velthuis 
et  al. [9] who developed a GLM for binary data on a 
transmission trial to estimate the effect of susceptibility 
and infectivity of hosts on the transmission rate param-
eter β. A simulation study was performed to investigate 
the quality of the GLM. From the statistical analysis of 
the simulated data, we obtained fairly precise estimates, 
except for some scenarios for which estimates were more 
biased, particularly for infectivity. The best estimates 
were found for schemes with intermediate R0 and related 
group members. For all the scenarios investigated, the 
sizes of the effects at both loci were underestimated.

The main objective of this study was to develop a meth-
odology to estimate gene effects and also to investigate 

Fig. 2  Difference between γg and γ̂G and between ϕf  and ϕ̂F. For the scenario with different values of relatedness r between group mates, and 
γg = ϕf = 1
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its quality in terms of bias and precision of the estimates. 
To test the methodology without introducing additional 
assumptions that may contribute to estimation error, we 

assumed additive allele effects on the log-scale for both 
susceptibility and infectivity. Thus, allelic effects were 
simulated multiplicatively on the original scale. This was 

Fig. 3  Difference between γg and γ̂G, and between ϕf  and ϕ̂F. For the scenario with different values of R0 and degrees of relatedness r between 
group mates. (γg = ϕf = 1)

Fig. 4  Difference between γg and γ̂G. For the scenario with different values of the (true) difference between γg and γG, and for different values of 
relatedness r between group mates, and R0 = 1.2. (γg = ϕf = 1)
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done for two reasons. First, we wanted to formulate the 
model in terms of allele counts within individuals, rather 
than in terms of individual genotypes. In other words, we 
did not intend to estimate dominance effects. Whether 
allele effects are more likely to be additive on the log-
scale than on the original scale is unknown at present. 
Second, since the objective of this study was to inves-
tigate the quality of the model rather than the assump-
tions on the genetic architecture, the data were simulated 
under a model that agreed with the assumptions of the 
statistical model.

Bias and standard deviation of the estimates were 
smallest for R0 that ranged approximately from 1.8 to 3.1. 
The basic reproduction ratio R0 is an important factor 
that affects the size of an epidemic in a population, i.e. 
the fraction of individuals that are found to be infected 
by the end of an epidemic. When R0 is greater than 1 
but near 1 in a group, there will be virtually no individ-
uals infected and thus, there is hardly any variation in 
disease status, which results in inaccurate estimates of 
gene effects. Conversely, when R0 is much greater than 
1, nearly all individuals will be infected, which again 
results in very little variation in disease status. (Table  2 
indicates the fraction of infected individual for different 
values of R0 and relatedness among group mates). Thus, 
the relationship between R0 and the fraction of individu-
als infected affects the estimation of the effect on suscep-
tibility and infectivity, since data on the final size of an 

epidemic were used for our estimation. This mechanism 
may explain why the estimated effect on susceptibility is 
best for intermediate R0. The effect of infectivity is more 
difficult to estimate and the bias is larger.

For each scenario, more relatedness between individu-
als resulted in better estimates for both traits. This is 
because more relatedness creates more variation between 
groups, which results in groups with below or above aver-
age susceptibility and/or infectivity. This occurs because 
an individual with a lower susceptibility will also have 
related group mates with below average susceptibility, 

Fig. 5  Difference between ϕf  and ϕ̂F. For the scenario with different values of the (true) difference between ϕf  and ϕF, and for different values of 
relatedness r between group mates and R0 = 1.2. (γg = ϕf = 1)

Table 2  Fraction of  individuals infected at  the end of  the 
epidemic

r = 0 r = 0.25 r = 0.5625 r = 1

R0 = 0.6 0.02 0.03 0.03 0.04

R0 = 1.2 0.10 0.12 0.14 0.16

R0 = 1.8 0.30 0.30 0.30 0.30

R0 = 2.5 0.46 0.45 0.44 0.43

R0 = 3.1 0.58 0.57 0.55 0.53

R0 = 3.7 0.66 0.65 0.63 0.61

R0 = 4.3 0.71 0.70 0.69 0.67

R0 = 4.9 0.75 0.75 0.73 0.71

R0 = 5.5 0.79 0.78 0.77 0.75

R0 = 6.1 0.81 0.80 0.80 0.78
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and vice versa. The same applies for infectivity. However, 
since we assumed absence of linkage disequilibrium (LD) 
between the susceptibility and infectivity loci, groups 
with below average susceptibility will not always have 
below average infectivity as well. Thus, only those groups 
with above average susceptibility and above average 
infectivity will have epidemics with a greater final size, 
i.e. the fraction of individuals that gets infected by the 
end of the epidemic, while those with below average sus-
ceptibility and infectivity will have a lower final size. This 
variation improved estimates of the effects of susceptibil-
ity and infectivity.

We have made a number of assumptions in build-
ing our methodology. In the derivation of Eq.  (5), we 
assumed that all individuals that escaped the infection 
had been exposed to all infected individuals. Of course, 
this assumption is true for the simulations done here. 
To what extent, this will be true for real data remains to 
be seen. It seems reasonable to assume that individuals 
in relatively small and well-defined groups get mixed up 
over space and time as is often the case in animal hus-
bandry: for example, in fattening pigs with group sizes 
of 10  to  30 individuals. The assumption is less reason-
able for groups with a spatial structure, for example in tie 
stalls or when epidemics occur within barns subdivided 
into multiple groups. In such cases, data should be col-
lected separately for different groups. We also assumed 
that epidemics could be completely recorded, so that 
the final disease status of all individuals is known, and 
all individuals that have escaped the infection have been 
exposed to all infected individuals. However, for reasons 
of, e.g., animal welfare and productivity, interventions are 
often carried out to limit the size of an epidemic. Hence, 
individuals may not have had the full potential to express 
their susceptibility and infectivity. For incomplete epi-
demics, the probability that an individual becomes 
infected follows from Eq. (5) when only the infected indi-
viduals to which the focal individual has been exposed 
are considered (see also [11]). Thus, extension to incom-
pletely observed epidemics is straightforward (see also 
application in [_ENREF_189] and subsequent papers cit-
ing [9]).

Bias and precision of estimates may be improved when 
data are recorded within shorter time intervals. This may 
be particularly helpful for cases with high R0. In such 
cases, each interval forms an incompletely observed 
epidemic, which can be analysed with the same GLM 
statistical approach [9]. When data are collected in suf-
ficiently short time intervals, only a fraction of individu-
als will become infected in a single interval, even when R0 
is high. This will contribute to accuracy of the estimates. 
Moreover, collecting data in short time intervals also pro-
vide information on the order of infections, i.e., which 

animal has infected which animal. This will increase the 
accuracy of estimated gene effects, particularly for infec-
tivity [17]. Thus, using data from short time intervals can 
be complementary to using groups composed of related 
individuals and data from multiple epidemics. The deri-
vation and resulting model for such cases is very similar 
to the one presented here, since the probability that an 
individual escapes infection follows from the zero-term 
of the Poisson distribution (see also [9, 11]). The key step 
is to identify the infectious individuals to which the focal 
individual has been exposed in a time period.

Lipschutz-Powell et  al. [11] showed that, when there 
is genetic variation in susceptibility only, a complemen-
tary log–log link function can be used to link an equation 
that describes the probability of an individual to become 
infected to a linear model that includes the individual’s 
genotype for susceptibility. They also suggested that, 
when there is genetic variation in infectivity, a Taylor-
series expansion of the model term for infectivity can 
be used to further linearize the model in infectivity. In 
our study, we obtained a linear model for infectivity by 
approximating the arithmetic mean by a geometric mean. 
We quantified the error due to this approximation and 
found only negligible errors in the estimates (“Appen-
dix”). Thus, this approximation can be ruled out as the 
cause of the observed bias. This suggests that, for cases 
for which there is variation in infectivity, the geometric 
mean approximation is suitable to obtain a linear com-
bination of the parameters of interest. A full investiga-
tion of the causes of the bias is beyond the scope of this 
study. However, the fact that a population of finite size, 
i.e., 100 individuals in each group, was used to estimate 
gene effects can be one of the reasons for the observed 
underestimation.

Anche et  al. [5] defined breeding value and herit-
able variation in R0. They showed that an individual’s 
breeding value for R0 is a function of the population’s 
average susceptibility and infectivity, of the gene fre-
quencies within the individual and of average effects 
of the alleles at both loci (Equation  7c in [5]). How-
ever, Anche et  al. [5] assumed that effects of alleles 
at both loci were additive, whereas here we assumed 
that effects are multiplicative (so that they are addi-
tive on the log scale). Multiplicative effects introduce 
dominance. Hence, before applying the expressions 
for breeding value and heritable variation of [5] to esti-
mates obtained from the methods proposed here, they 
need to be translated into average effects of alleles [15]. 
Using the common notation for the one-locus model 
[15], the additive effect is half the difference in genotypic 
value between both homogyzotes, aγ = (γ 2

g − γ 2
G)/2 

and aφ = (φ2
f − φ2

F )/2, the dominance deviation is the 
difference between the heterozygote and the average 
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of both homozygotes, dγ = γgγG − (γ 2
g + γ 2

G)/2 and 
dϕ = ϕf ϕF − (ϕ2

f + ϕ2
F )/2, and the average effects 

of alleles are given by αγ = aγ + (pG − pg )dγ and 
αϕ = aϕ + (pF − pf )dϕ, where p denotes allele frequency 
[15]. Hence, in Eqs.  7 and 11 of [5], γg − γG should be 
replaced by αγ, and ϕf − ϕF should be replaced by αϕ . 
For example, for γg = 1 and γG = 0.6, genotypic values 
are γgg = 1, γgG = 0.6 and γGG = 0.36, the additive effect 
is aγ = (1− 0.36)/2 = 0.32, the dominance deviation is 
dγ = 0.6− (1+ 0.36)/2 = −0.08, and the average effect 
is αγ = 0.32− 0.08 (pG − pg ).

In this study, we assumed a model with two bi-allelic 
loci, i.e. one locus that affects individual susceptibility 
and one locus that affects individual infectivity. Fur-
thermore, we assumed that which locus affects infec-
tivity and which locus affects susceptibility, are known. 
This may be the case with candidate gene approaches 
which include only the genes for which the function is 
related to the trait of interest. The effect of the putative 
causative gene is then examined by association study. In 
such studies, the GLM developed here can be applied 
to estimate and confirm the effect of the candidate gene 
on the trait of interest. However, applying a candidate 
gene approach is limited because it relies on knowing 
the functional relation between the genes and the trait 
of interest. The recent advances in molecular genomics 
allow us to genotype individuals for thousands of SNPs, 
and to perform GWAS in which all SNPs are examined 
for their association with the trait of interest. The GLM 
developed here can also be used in GWAS that aim at 
identifying genes associated with susceptibility and/or 
infectivity. In such studies, it is not known whether a 
SNP affects infectivity and/or susceptibility. Hence, this 
has to be inferred from the significance of the estimated 
effects. To avoid the need to test all combinations of 
two SNPs, one could first screen SNPs for susceptibility 
effects, and then fit only the significant loci for suscep-
tibility effects, together with all other loci for infectivity 
effects. Moreover, when modified so that gene effects 
are estimated as random effects, our model can proba-
bly be used for polygenic traits, for example in genomic 
prediction, for which effects of all genes are estimated 
simultaneously and the interest lies in predicting the 
breeding value of entire genotypes [18].

Conclusions
We have developed a generalized linear model to estimate 
the relative effects of genes on individual susceptibility 
and infectivity. This model may be used in genome-wide 
association studies that aim at identifying genes that are 
involved in the prevalence of infectious diseases.
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Appendix
Geometric mean versus arithmetic mean in the estimation 
of gene effects on infectivity
In this Appendix, we address one issue regarding the 
quality of the two estimators, which we use to recover 
the genetic parameters. In general, one would like to 
have estimators that give consistent estimates of the 
parameters. This implies that both the variance and the 
bias of the estimators for a sufficiently large dataset (size 
n) can be brought arbitrarily close to zero. Expressed in 
formulas for the relative infectivity and the relative sus-
ceptibility, which are the two parameters that we want to 
estimate, these requirements look like this:

In addition, one would like to know how fast the esti-
mators approach these limits. That analysis is presented 
in the main text and is done by comparing simulations 
to the true values. There is, however, an issue with the 
asymptotic unbiasedness of the effect on infectivity (the 
first equation): the estimator for the effect of the rela-
tive infectivity is not unbiased, but instead we will show 
below that:

lim
n→∞

(̂
ϕF

ϕf

)
−

(
ϕF

ϕf

)
= 0,

lim
n→∞

(̂
γG

γg

)
−

(
γG

γg

)
= 0,

lim
n→∞

var

(̂
ϕF

ϕf

)
= 0,

lim
n→∞

var

(̂
γG

γg

)
= 0.
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and we will derive the expression for the function m(.) 
and will show that it is close to 1 and always smaller or 
equal to 1. Note that m(.) = 1 means no bias and m(.) < 1 
means underestimation of the effect.

As explained in the main text, the transmission rate 
parameter (β) is the product of the contact rate (c), sus-
ceptibility (γ) and infectivity (ϕ). Applying the comple-
mentary log–log link function results in Log(β) being 
in the expression for the expected value of the depend-
ent variable. Thus, to see whether a linear relation is 
obtained between the explanatory variables to explain 
the expected value of the dependent variable, we can 
write that:

The heterogeneity in Log(γ) is straightforwardly incor-
porated in the model since each recipient counted in the 
dependent variable is only one type of susceptible indi-
vidual. Thus, take γg = 1 and the other type has γG, then:

where IndexG is equal to 1 if the recipient is G and 0 
when the recipient is of type g, with additional modifica-
tion for the three genotypes as explained in the main text. 
Thus, the estimated parameter is asymptotically unbiased 
using the GLM method.

For heterogeneity in ϕ, it is not straightforward because 
we are dealing with the arithmetic mean (ϕAM) across all 
types of infectious individuals in the populations as was 
derived in the main text. Let us again look at the case 
with only two types of infectious individuals:

where pF is the explanatory variable (pf = 1− pF ).

In order to obtain linearity in the explanatory variable 
for infectivity, ϕAM is replaced by geometric mean ϕGM 
with ϕGM =

∏n
j=1 ϕ

pj
j . The equation with two types of 

infectious individuals becomes:

This is a linear equation in pF, the explanatory variable, 
because pf = 1− pF.

Now, we calculate the systematic error (bias) made by 
the approximation of the arithmetic mean (ϕAM ) by a 
geometric mean (ϕGM)). For a bi-allelic genetic model, 
where there are two alleles, i.e. ϕF and ϕf , with a fre-
quency pF and (1− pF ), respectively, the Log(ϕAM) 
expression for the two alleles can be written as:

lim
n→∞

̂
Log

(
ϕF
ϕf

)

Log
(
ϕF
ϕf

) = m

(
ϕF

ϕf

)
,

Log(β) = Log(c)+ Log(γ )+ Log(ϕ).

Log(β) = Log(c)+ IndexGLog(γG)+ Log(ϕ),

Log(β) = Log(c)+ IndexGLog(γG)+ Log(ϕFpF + ϕf pf ),

Log(β) = Log(c)+ IndexGLog(γG)+ pFLog(ϕF )+ pf Log(ϕf ).

Thus, the effect of ϕF compared to ϕf  is measured by 
the coefficient of pF, i.e., the slope of the linear expres-
sion within the logarithm, but this is not a linear model. 
Note that if the number of data points (n) becomes larger 
and larger, the expected (average) observed values, i.e. 
the number of cases (y) among the number of susceptible 
(S), will after applying the cloglog link function become 
arbitrary close to the expression A1, or:

To obtain a linear model, we take the Log(ϕGM) expres-
sion for the two alleles which can be written as:

Now the effect of the allele ϕF compared to ϕf  is meas-
ured by the ratio of the two values instead of the differ-
ence as in expression A1. This ratio can thus be calculated 
as the antilog of the regression coefficient of pF which is 
the explanatory variable. In other words, from the GLM 
in Eq. (8) in this paper, the estimated Log of the ratio of 
ϕF over ϕf  is obtained from the regression coefficient c2.

Now the next issue that we address in this Appendix 
is to fit a linear equation for the Log(ϕ) as a function of 
allele frequency (pF ) which is:

If, in fact, the transmission depended on the ϕGM rather 
than on ϕAM, we would have:

However, since the data come from a process where the 
observed ϕ is in fact the ϕAM, the resulting linear rela-
tionship will not (necessarily) have A = log

(
ϕF
ϕf

)
.

As we are interested in the allele effects, we need to 
estimate the slope of the line, i.e. the regression coeffi-
cient (A) of pF, and compare it to log

(
ϕF
ϕf

)
. To determine 

A, we need to find the best fitting linear relationship for 
Log(ϕLIN ) from Log(ϕAM) data (Fig. 6). This was done and 
we showed that this estimated A is very close to Log

(
ϕF
ϕf

)
 , 

Log(ϕAM) = Log(pFϕF + (1− pF )ϕf ),

(A1)Log(ϕAM) = Log((ϕF − ϕf )pF + ϕf ).

lim
n→∞

cloglog
(
E
y

S

)
= C0 + Log((ϕF − ϕf )pF + ϕf ).

Log(ϕGM) = Log(ϕ
pF
F ϕ

1−pF
f ),

Log(ϕGM) = pFLog(ϕF )+ (1− pF )Log(ϕf ),

(A2)Log(ϕGM) = pFLog

(
ϕF

ϕf

)
+ Log(ϕf ).

(A3)log(ϕLIN ) = A · pF + B.

A = log

(
ϕF

ϕf

)
and B = log(ϕf ).



Page 13 of 15Anche et al. Genet Sel Evol  (2015) 47:85 

and we were able give an explicit expression for the bias 
with respect to this true value.

Derivation of the expression for fitted line 
through Log(ϕAM)
The following shows how the A and B for the linear model 
in Eq. (A3) can be obtained when this linear model is fitted 
to data generated by the non-linear relation between the 
explanatory variable (pF) and the observed effect Log(ϕAM).  
For each value of pF, we observe a corresponding value for 
Log(ϕAM), which gives a nonlinear relationship [Eq. (A1); 
Fig. 6]. Thus, in order to obtain a linear relationship between 
the parameter of interest (pF ) and the dependent variable, 
we fit a line through this nonlinear relationship from which 
we estimate the effect (in this case, the Log of the effect of 
ϕF compared to ϕf  ). To fit a line through the true relation-
ship Log(ϕAM), we sample random values for pF from a uni-
form distribution from 0 to 1 and calculate corresponding 
values of Log(ϕAM) from Eq. (A1). If we draw a least squares 
regression line through the random numbers drawn from 
these [pF, Log(ϕAM)] pairs, the line passes through the aver-
age values sampled: pF and Log(ϕAM).

This allows us to find B, since we know that pF = 1/2, 
and Log(ϕAM) is:

Hence, since Log(ϕAM) = A · pF + B, and pF = 1/2,
B = Log(ϕAM)− 1

2A, and thus

Now we have an equation with only one unknown (A) 
and the solution for A, denoted Amin, can be found by 
taking the least squares optimization. This means that we 
can find the minimum solution for the squared difference 
between the Log(ϕAM) and Log(ϕLIN ) derived above.

This integral was evaluated with symbolic computer alge-
bra using Mathematica. This is a straightforward evalu-
ation but, at first, the expressions appear to be very big. 
Thus, we undertook some simplifications to find the A 
for which the minimum of the expression is attained. As 

Log(ϕAM) =

1∫

0

log
[
(ϕF − ϕf )pF + ϕf

]
dpF ,

Log(ϕAM) =
(ϕf − ϕF )+ ϕF log ϕF − ϕf log ϕf

ϕF − ϕf
.

Log(ϕLIN ) = A · pF + Log(ϕAM)−
1

2
· A.

Amin = MINA

1∫

0

(
A · pF + log(ϕAM)−

1

2
· A

−Log((ϕF − ϕf )pF + ϕf )

)2

dpF .

the part between brackets is a linear expression in A, the 
result of the above equation is a quadratic equation in A, 
and thus can be written as:

The equation between brackets is for an upward open 
parabola (if K2 > 0) and the minimum of this parabola is 
attained for:
Amin =

−K1
2K2

, where (when ϕF �= ϕf ):

And

thus

Then, both the numerator and denominator of the 
above equation were divided by ϕ2

f  and this resulted in:

Thus, Amin is a function of ϕF
ϕf

 only. Note the similarity 
with Eq. (A2) where A = log

(
ϕF
ϕf

)
. It should be noted 

that the Amin is the estimate (C2) that will be obtained 
asymptotically (i.e. when n  →  ∞) from the GLM in 
Eq.  (8). Thus, we investigated the relation of this esti-
mated value to the true expected value Log

[
ϕF
ϕf

]
, to quan-

tify the bias due to our approach.
Let us assume that ϕF

ϕf
= x, thus the above equation can 

be simplified as:

Still, Amin �= log
(
ϕF
ϕf

)
�= log(x), hence there is a 

non-zero bias. However, we can now define m(x) by 
Amin = m(x) · log(x). The value of m quantifies the 
amount of relative bias that is obtained as a result of the 
geometric approximation; a value m = 1 indicates a zero 
bias. Thus:

MINA(K2A
2 + K1A+ K0).

K1 =
−6ϕF

(
ϕF − ϕf

)
− 6

(
ϕF − ϕf

)
ϕf + 12ϕFϕf Log(

ϕF
ϕf
)

12(ϕF − ϕf )
2

=
−ϕ2

F + ϕ2
f + 2ϕFϕf Log

(
ϕF
ϕf

)

2
(
ϕF − ϕf

)2

K2 =
ϕf (ϕf − ϕF )+ ϕF (ϕF − ϕf )

12(ϕf − ϕF )2
=

1

12
,

Amin =
3ϕ2

F − 3ϕ2
f − 6ϕFϕf Log

[
ϕF
ϕf

]

(ϕf − ϕF )2
.

Amin =
3
(
ϕF
ϕf

)2
− 3− 6

(
ϕF
ϕf

)
Log

[
ϕF
ϕf

]

(1−
(
ϕF
ϕf

)
)2

.

Amin =
3(x2 − 1− 2xLog(x))

(1− x)2
.

(A4)m(x) =
Amin

Log(x)
=

3(x2 − 1− 2xLog(x))

(x − 1)2Log(x)
.
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Equation (A4) quantifies the amount of bias, the magni-
tude of which is numerically investigated below. How-
ever, first it is necessary to check Eq. (A4) using some 
relationships that are known to hold for the underlying 
problem, for example:
m(x) = m

(
1
x

)
, since it should not matter which allele is 

coded F or f.
limx→1m(x) = 1, since the arithmetic and geometric 

mean are identical when ϕF = ϕf .
limx→0m(x) = 0, and limx→∞m(x) = 0, since we 

always underestimate the effect because 0 ≤ m(x) ≤ 1 and 
thus it seems that m(x) will have to approach zero when 
the real effect becomes infinitely large (i.e., either x = 0 or 
x → ∞). As a result, we will estimate a finite value for the 
effect even when the effect is infinite and, thus, we make 
an infinitely large error, i.e. m(x) = 0. All conditions hold 
as it can be checked using Eq. (A4).

Going back to our paper, we now look at Eq. (8), which 
is,

where c2, is the regression coefficient that we estimate. In 
other words, when applying the geometric mean approxi-
mation, we assume Est(log(x)) = ĉ2, whereas in fact, 
Log(x) = ĉ2

m(x), when we correct for the geometric mean 
approximation.

Since we assumed that ϕf = 1, then 
Log(x) = Log

(
ϕF
ϕf

)
= Log(ϕF ). Thus:

where

The result from Eq. (A6) quantifies the amount of error 
that was obtained as a result of the geometric approxi-
mation. An m(ϕF ) = 1 indicates no error, an m(ϕF ) < 1 
indicates underestimation, while an m(ϕF ) > 1 indi-
cates overestimation of ϕF. As 0  < m(ϕF )  <  1, the esti-
mated value is always too small. Hence, the geometric 
mean approximation is conservative. Furthermore, 
m(ϕF ) = m

(
1
ϕ F

)
 for all ϕF and m(1) = 1, the further ϕF 

is away from 1 (the larger effect), the higher the error. 
Roughly speaking for values of ϕF between 0.333 and 3, 
the error is smaller than 5 %; i.e., 0.95 < m < 1.

Now that we have quantified the amount of bias [Eqs. 
(A5) and (A6)], we can obtain the correct value. Note that 
in Eq. (A5), the (true) value of ϕF appears on both sides 
of the equation. Thus, we need an iterative procedure to 
obtain the real value. First, ϕ̂F is calculated by taking the 

cloglogE

[
yi

ni

]
= c0 + c1indexG,i + c2NumF + log

(
I

N

)
,

(A5)Log(ϕF ) =
ĉ2

m(ϕF )
,

(A6)m(ϕF ) =
3((ϕF )

2 − 1− 2(ϕF )Log[ϕF ])

((ϕF )− 1)2Log[ϕF ]
.

exponential of c2 from the GLM analysis. Then, the error 
m(ϕ̂F ) [Eq. (A6)] followed by the new value for in log(ϕF ) 
in Eq. (A5) are estimated. ϕ̂F is then again calculated by 
taking the exponential of log(ϕF ). This iteration process 
is then allowed to continue until there is no change in ϕ̂F.

In the tables below, the biases obtained as a result of 
the geometric mean approximation are presented for 
the different scenarios investigated in the main text. 
This bias is calculated as the difference between ϕ̂F that 
is obtained after accounting for the error as a result of 
geometric mean approximation and ϕ̂F that is obtained 
when the error is not accounted for. Note that there is 
additional bias with respect to the true value which is 
of course known from the simulations. This bias is also 
small but larger than asymptotically expected from the 
GM approximation.

See Tables 3, 4, 5 and Fig. 6.

Table 3  Biases in estimated ϕF  for scenario 1

r = 0 r = 0.25 r = 0.5625 r = 1

0.000674 0.002126 0.002569 0.002698

Table 4  Biases in estimated ϕF  for scenario 2

r = 0 r = 0.25 r = 0.5625 r = 1

R0 = 0.6 0.000452 0.001309 0.002122 0.002706

R0 = 1.2 0.000674 0.002126 0.002569 0.002698

R0 = 1.8 0.001889 0.002498 0.002612 0.002671

R0 = 2.5 0.002774 0.002467 0.002531 0.002565

R0 = 3.1 0.003111 0.002364 0.002364 0.002492

R0 = 3.7 0.003425 0.002181 0.002201 0.002375

R0 = 4.3 0.003891 0.002032 0.002062 0.002223

R0 = 4.9 0.004184 0.001891 0.001866 0.00208

R0 = 5.5 0.004707 0.001798 0.001705 0.001903

R0 = 6.1 0.005194 0.00167 0.001572 0.001743

Table 5  Biases in estimated ϕF  for scenario 3

r = 0 r = 0.25 r = 0.5625 r = 1

Small  
difference

8.60436E−05 9.26451E−05 7.50199E−05 5.75224E−05

Moderate  
difference

0.000674 0.002126 0.002569 0.002698

Large  
difference

0.002963 0.013645 0.017404 0.018417



Page 15 of 15Anche et al. Genet Sel Evol  (2015) 47:85 

Received: 17 December 2014   Accepted: 16 October 2015

References
	1.	 Bishop S, de Jong M, Gray D. Opportunities for incorporating genetic 

elements into the management of farm animal diseases: policy issues. 
Commission on Genetic Resources for Food and Agriculture. Rome: FAO. 
2002; p. 36.

	2.	 Axford RFE, Bishop SC, Nicholas FW, Owen JB. Breeding for disease resist-
ance in farm animals. 2nd ed. Wallingford: CABI Publishing; 2000.

	3.	 Bermingham ML, Bishop SC, Woolliams JA, Pong-Wong R, Allen AR, 
McBride SH, et al. Genome-wide association study identifies novel 
loci associated with resistance to bovine tuberculosis. Heredity. 
2014;112:543–51.

	4.	 Kirkpatrick BW, Shi X, Shook GE, Collins MT. Whole-genome association 
analysis of susceptibility to paratuberculosis in Holstein cattle. Anim 
Genet. 2011;42:149–60.

	5.	 Anche M, de Jong M, Bijma P. On the definition and utilization of 
heritable variation among hosts in reproduction ratio R0 for infectious 
diseases. Heredity. 2014;113:364–74.

	6.	 Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading 
and the effect of individual variation on disease emergence. Nature. 
2005;438:355–9.

	7.	 Lipschutz-Powell D, Woolliams JA, Bijma P, Doeschl-Wilson AB. Indirect 
genetic effects and the spread of infectious disease: are we capturing 
the full heritable variation underlying disease prevalence? PLoS One. 
2012;7:e39551.

	8.	 Diekmann O, Heesterbeek JA, Metz JA. On the definition and the compu-
tation of the basic reproduction ratio R0 in models for infectious diseases 
in heterogeneous populations. J Math Biol. 1990;28:365–82.

	9.	 Velthuis A, De Jong M, Kamp E, Stockhofe N, Verheijden J. Design and 
analysis of an Actinobacillus pleuropneumoniae transmission experiment. 
Prev Vet Med. 2003;60:53–68.

	10.	 Lipschutz-Powell D, Woolliams JA, Doeschl-Wilson AB. A unifying theory 
for genetic epidemiological analysis of binary disease data. Genet Sel 
Evol. 2014;46:15.

	11.	 Kermark WO, McKendrick AG. A contribution to the mathematical theory 
of epidemics. Proc R Soc A. 1927;115:700–21.

	12.	 Anderson RM, May RM, Anderson B. Infectious diseases of humans: 
dynamics and control. New York: Oxford University Press Inc.; 1992.

	13.	 Andreasen V. The final size of an epidemic and its relation to the basic 
reproduction number. Bull Math Biol. 2011;73:2305–21.

	14.	 McCullagh P, Nelder JA. Generalized linear models. 2nd ed. London: 
Chapman and Hall; 1989.

	15.	 Falconer D, Mackay TC. Introduction to quantitative genetics. 4th ed. 
Harlow: Pearson Education Limited; 1996.

	16.	 Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J 
Phys Chem. 1977;81:2340–61.

	17.	 Pooley CM, Bishop SC, Marion G. Estimation of single locus effects on sus-
ceptibility, infectivity and recovery rates in an epidemic using temporal 
data. In: Proceedings of the 10th world congress of genetics applied to 
livestock production: 17–22 August 2014; Vancouver. 2014. https://asas.
org/docs/default-source/wcgalp-proceedings-oral/221_paper_9069_
manuscript_1681_0b.pdf?sfvrsn=2.

	18.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Fig. 6  Arithmetic mean (AM), geometric mean (GM) and linear approximation of best fitted line. Each line is a function of allele frequency, pF , with 
input values for ϕf  and ϕF  being 1 and 0.6, respectively
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