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based on random and selected reference sets 
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Abstract 

Background:  The objectives of this study were to investigate the accuracy of genotype imputation from low (12k) 
to medium (50k Illumina-Ovine) SNP (single nucleotide polymorphism) densities in purebred and crossbred Merino 
sheep based on a random or selected reference set and to evaluate the impact of using imputed genotypes on accu-
racy of genomic prediction.

Methods:  Imputation validation sets were composed of random purebred or crossbred Merinos, while imputation 
reference sets were of variable sizes and included random purebred or crossbred Merinos or a group of animals that 
were selected based on high genetic relatedness to animals in the validation set. The Beagle software program was 
used for imputation and accuracy of imputation was assessed based on the Pearson correlation coefficient between 
observed and imputed genotypes. Genomic evaluation was performed based on genomic best linear unbiased 
prediction and its accuracy was evaluated as the Pearson correlation coefficient between genomic estimated breed-
ing values using either observed (12k/50k) or imputed genotypes with varying levels of imputation accuracy and 
accurate estimated breeding values based on progeny-tests.

Results:  Imputation accuracy increased as the size of the reference set increased. However, accuracy was higher for 
purebred Merinos that were imputed from other purebred Merinos (on average 0.90 to 0.95 based on 1000 to 3000 
animals) than from crossbred Merinos (0.78 to 0.87 based on 1000 to 3000 animals) or from non-Merino purebreds (on 
average 0.50). The imputation accuracy for crossbred Merinos based on 1000 to 3000 other crossbred Merino ranged 
from 0.86 to 0.88. Considerably higher imputation accuracy was observed when a selected reference set with a high 
genetic relationship to target animals was used vs. a random reference set of the same size (0.96 vs. 0.88, respectively). 
Accuracy of genomic prediction based on 50k genotypes imputed with high accuracy (0.88 to 0.99) decreased only 
slightly (0.0 to 0.67 % across traits) compared to using observed 50k genotypes. Accuracy of genomic prediction based 
on observed 12k genotypes was higher than accuracy based on lowly accurate (0.62 to 0.86) imputed 50k genotypes.

© 2015 Moghaddar et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic evaluation refers to prediction of breeding val-
ues of selection candidates based on single nucleotide 
polymorphism (SNP) genotypes that are in linkage dis-
equilibrium (LD) with quantitative trait loci (QTL) and 

a prediction equation obtained from a group of animals 
with both phenotypes and genotypes, which is known as 
the reference population [1]. The reliability of genomic 
estimated breeding values (GEBV) depends on several 
factors, such as the size and structure of the reference 
population and density of genome-wide marker geno-
types [2–4]. Denser marker sets are more likely to pro-
vide sufficient LD between QTL and SNPs, which can 
lead to a higher predictive ability and higher accuracy of 
GEBV [2, 5].
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The cost of genotyping increases as more markers are 
included in the genotyping arrays and this could be a 
major restriction for large-scale application of genomic 
evaluation. Instead, low-density SNP arrays are more 
affordable and can be used directly for genomic evalu-
ation in industry. However, genomic prediction based 
on low-density SNPs could be more trait-/breed-specific 
[6] or result in low accuracy of genomic evaluations. 
A number of studies have compared the effect of SNP 
density on genomic prediction, mainly from low- to 
medium-density, based on simulation or real data analy-
ses and have shown a considerable improvement in pre-
diction accuracy by increasing the density of SNP arrays, 
e.g., [6–10].

Another strategy to achieve higher genomic predic-
tion accuracy from low-density SNP sets is to genotype 
industry animals with a low-density SNP array and 
then to infer the un-typed SNP genotypes to a denser 
marker array based on a reference set via genotype 
imputation [11, 12]. Genotype imputation refers to sta-
tistical inference of un-typed marker genotypes in a set 
of low-density genotyped animals (imputation test set) 
based on a group of animals that are genotyped with 
higher density marker arrays (imputation reference set) 
[13].

In the Australian sheep industry, GEBV are available 
via routine genetic evaluations [14]. Moreover, a low-
density ovine SNP chip (12k Illumina-Ovine) has been 
designed for low-cost genotyping of selection candi-
dates to be used in ram breeding flocks. The low-den-
sity SNP genotypes can be imputed to 50k SNP density 
based on available genotypes from a large multi-breed 
resource flock [15, 16]. This flock consists of purebred 
Merinos and a large number of crossbred animals, 
mostly rams from maternal and terminal breeds crossed 
to Merino ewes. The questions are what imputation 
accuracies can be achieved when imputing 12 to 50k 
genotype data and how does that accuracy depend on 
the size and composition of the reference population. 
Such information is essential in order to devise the best 
imputation strategy. Furthermore, the impact of using 
imputed genotypes on accuracy of genomic evaluations 
needs to be studied.

The objectives of this study were: (1) to investigate the 
accuracy of genotype imputation from an evenly spaced 
low- (Illumina-Ovine 12k) to medium-density (Illumina-
Ovine 50k) SNP array in purebred and crossbred Merino 
sheep populations based on a random or selected impu-
tation reference set and (2) to compare the accuracy of 
GEBV based on imputed 50k genotypes that are associ-
ated with variable imputation accuracies to that of GEBV 
that are predicted based on observed 50  and 12k SNP 
genotypes.

Methods
Resource flock
Imputation test sets and reference sets were subsets of 
genotype data selected from a large multi-breed sheep 
resource flock. The resource flock consisted of pure-
bred and crossbred Merino sheep and was designed as 
the reference population for genomic prediction stud-
ies in Australian sheep breeds. It comprised 22,004 ani-
mals genotyped with a 50k SNP density (Illumina-Ovine 
50k) and phenotyped for several production traits. The 
resource flock originated from about 500 sires, such that 
the animals used in this study belonged to a large num-
ber of half-sib families. More information about the 
resource flock is in Van der Werf et  al. [15] and White 
et al. [17]. The 50k Ovine SNP chip (Illumina Inc., SanD-
iego, CA, USA) provided 48,599 SNPs for animals in 
the resource flock after editing the data via genotype 
quality control. Individual SNP genotype records were 
removed if the call rate was less than 90 %, the GC (Gen-
Cal) score was less than 0.6, the SNP heterozygosity was 
more than 3 standard deviations away from the mean, 
the SNP minor allele frequency was less than 0.01, the 
SNP was located on chromosome X or Y, and if SNP 
genotypes deviated greatly from Hardy–Weinberg equi-
librium (P < 1 × 10−15). The entire genotype record was 
also removed if the correlation with genotypes of another 
sample was more than 0.98. Following quality control, 
the sporadic missing genotypes in all resource data (up to 
10 %) were imputed using Beagle software v3.2 [18]. The 
12k SNP array provided 12,468 SNPs, which was reduced 
to 11,377 SNPs after removing un-mapped SNPs and per-
forming quality control as described above. The final 12k 
SNP panel was used to extract 12k genotypes for animals 
in the test set by masking the remaining SNP genotypes 
of the 50k SNP array.

Imputation test sets and reference sets
Imputation test sets (target animals) consisted of 1000 
purebred Merinos, 1000 mixed crossbred Merinos, or 
500 crossbred Merinos (BLxM or PDxM or WSxM). Ran-
dom reference sets consisted of 1000, 2000 or 3000 pure-
bred Merinos; 1000 crossbred Merinos; 1000, 2000 and 
3000 mixed crossbred Merinos (combination of BLxM, 
PDxM and WSxM) or 367 available non-Merino pure-
breds (purebred BL, PD and WS) extracted from the large 
multi-breed sheep resource flock. Figure 1 is an overview 
of the imputation scenarios from the random reference 
sets.

In addition to imputing from a random reference set, we 
also tried to impute from a reference set that was chosen 
to be informative for all animals in the imputation test set. 
This selected reference set had the same size as the random 
reference set (2000 animals) and was based on calculating 
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first the genomic relationship between animals in the test 
set and all reference animals (i.e. the multi-breed resource 
flock) based on common 12k genotypes and VanRaden’s 
algorithm [19]. In the next step, for each animal in the test 
set, the 20 most related animals were selected from the ref-
erence set. The final selected reference set included all 20 
animals selected for each animal in the test set after remov-
ing duplicate animals. If the resulting set included less than 
2000 animals, we increased the number of selected animals 
per animal in the test set from 20 to 21 or more if required. 
If the algorithm led to more than 2000 animals, animals 
that had the lowest average relationship to all test set ani-
mals were deleted from the final reference set.

Imputation program software and imputation accuracy
The Beagle software program v3.2 [18] was used to 
impute un-typed genotypes in the test set. Imputation 
was performed separately for each chromosome and 
was based on 10 iterations. The accuracy of imputation 
was calculated for each individual in the test set as the 
Pearson correlation coefficient between observed and 
imputed 50k genotypes, after discarding the 12k observed 
genotypes. If imputation was based on a selected refer-
ence set, imputation accuracies were also based on the 
Pearson correlation coefficient of each imputed SNP 
across test individuals, as well as on the Pearson corre-
lation coefficient between imputed and observed geno-
types for each test individual.

Genomic prediction
The effect of using imputed genotypes on accuracy of 
genomic prediction was assessed in purebred Meri-
nos. For this, genomic best linear unbiased prediction 
(GBLUP) was performed based on 1000 purebred Merino 
as the genomic prediction reference population (which 
was also used as imputation test set (see Fig.  1)). The 
genomic relationship matrix (G) was calculated based on 
VanRaden’s algorithm [19] using 50 or 12k observed gen-
otypes or 50k imputed genotypes associated with high or 
low imputation accuracies. ASReml program software 
[20] was used to obtain GEBV based on the following lin-
ear mixed model:

In this model, y is a vector of phenotypes, b is a 
vector of fixed effects, g is a vector of random addi-
tive genetic effects, w is a vector of random maternal 
effects, q is a vector of breed effects, and X, Z, W and 
Z1 are incidence matrices relating the former effects 
to phenotypes. Q is a matrix with breed proportions 
(including Merino strains) for each animal and e is a 
vector of random residuals. Vectors g, e, w and q were 
assumed normally distributed as: g ∼ N

(

0,Gδ2g

)

,  

e ∼ N
(

0, Iδ2e
)

,w ∼ N
(

0, Iδ2w
)

 and q ∼ N
(

0, Iδ2q

)

. The 

fixed effects included in the model were birth type, 
rearing type, gender, age at measurement, weight at 

y = Xb+ Zg +Ww + Z1Qq + e.

Purebred Merinos 
(1000,2000 or 3000)

Test Set Test Set

Reference Set

Crossbreds (BLxM or
PDxM or WSxM (1000)

Mixed Crossbred 
(1000, 2000 or 3000)

Non-Merino Purebreds 
(367)

Purebred 
Merinos (1000)

Mixed Crossbred 
Merino (1000)

Fig. 1  Overview of imputation test sets (validation animals) and random reference sets. Numbers in parenthesis are the size of each population. 
BL Border Leicester, M Merino, PD Poll Dorset, WS White Suffolk
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measurement and contemporary group, which was a 
combination of flock, birth year and management group 
effects. Accuracy of GEBV was assessed on a group 
of validation sires based on the Pearson correlation 
between GEBV and accurate breeding value calculated 
based on pedigree and phenotypes known as Austral-
ian sheep breeding values (ASBV). ASBV resulted from 
the national genetic evaluation system by excluding any 
data from the genomic prediction reference population. 
The validation population consisted of 175 older Merino 
sires that each had a substantial number of progeny 
recorded, with an ASBV accuracy that ranged from 0.70 
to 0.99 (on average 0.88).

Results
Imputation accuracy in purebred Merinos
Imputation accuracy in purebred Merinos based on other 
purebred Merinos
The distribution of imputation accuracy of 1000 pure-
bred Merinos based on a random set of 1000, 2000 or 
3000 other purebred Merinos in the reference set is in 
Fig. 2a–c. A relatively high average imputation accuracy 
was observed with a wide range of values. A significant 
improvement in accuracy was observed by increasing the 
size of the reference set. The average imputation accu-
racy based on 1000 purebred Merino was equal to 0.91 
and increased from 0.93 and 0.96 based on 2000 and 
3000 purebred Merinos, respectively. The results also 
show that a larger reference set leads to a smaller range of 
imputation accuracies. The relatively wide range of impu-
tation accuracies, in particular when based on the smaller 
reference sets, is due to the genetic variability of the ani-
mals in the test set and to the random reference set not 
expected to be informative for imputation across all test 

set animals. The average, standard deviation and range of 
genomic relatedness between animals of a random pure-
bred reference set and animals of a purebred Merino test 
set were 0.00, 0.02 and −0.07 to 0.37, respectively, across 
the three purebred reference sets.

Imputation accuracy in purebred Merinos based on crossbred 
Merinos
Imputation accuracies of 1000 purebred Merinos based 
on 1000 crossbred Merinos (BLxM, PDxM or WSxM) 
are in Fig. 2d–f. As expected, imputation accuracy based 
on crossbreds was lower than imputation based on pure-
bred Merinos. The average imputation accuracy was 
equal to 0.82 and imputation accuracies ranged from 
0.70 to 0.92. The results showed almost no difference 
in imputation accuracy of purebred Merinos across the 
three Merino crossbred reference sets (Fig.  2d–f). Both 
the lower accuracy and the lack of notable difference 
in imputation accuracies between different crossbred 
Merino reference sets (BLxM, PDxM or WSxM) suggest 
that the non-Merino breed haplotypes (BL, PD or WS) 
were not informative for the imputation of Merino breed 
haplotypes.

Imputation accuracy in purebred Merinos based on mixed 
crossbred Merinos
Figure  3a–c show the distribution of imputation accu-
racies of purebred Merinos based on mixed crossbred 
Merinos (BLxM, PDxM and WSxM equally represented). 
The average accuracy was equal to 0.76, 0.84 and 0.88 
based on 1000, 2000 and 3000 mixed crossbred Merinos, 
respectively, which was considerably lower than impu-
tation from purebred Merinos. The range of imputation 
accuracies based on crossbreds was also much larger 

Fig. 2  Distribution of imputation accuracies for 1000 purebred Merinos based on 1000 (a), 2000 (b) and 3000 (c) purebred Merinos or based on 
1000 BLxM (d), 1000 PDxM (e) and 1000 WSxM crossbred Merino (f). BL Border Leicester, M Merino, PD Poll Dorset, WS White Suffolk
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compared to imputation based on purebred Merinos. 
Moreover, the comparison of Fig. 3a with Fig. 2d, e or f 
shows no considerable difference in imputation accuracy 
for purebred Merinos based on 1000 crossbred Merino or 
using 1000 mixed crossbred Merinos. Note that in these 
four cases, the crossbred reference populations provided 
a similar number of informative Merino haplotypes.

Imputation accuracy of purebred Merinos based 
on non‑Merino purebred animals
Figure  3d shows the distribution of imputation accura-
cies of purebred Merinos from the 367 available animals 
of the non-Merino purebred reference set (mixture of 
purebreds BL, PD and WS). The results indicated very 
low imputation accuracy from across-breed genotypes. 
The average imputation accuracy was equal to 0.50 and 
values ranged from 0.46 to 0.60.

Imputation accuracy in mixed crossbred Merinos
Imputation accuracy in mixed crossbred Merinos based 
on other mixed crossbred Merinos
Figure  4a–c show the distribution of imputation accura-
cies in mixed crossbred Merinos (mixed BLxM, PDxM 
and WSxM) based on 1000, 2000 and 3000 random mixed 
crossbred Merinos. Average imputation accuracies were 
equal to 0.86, 0.88 and 0.90 based on 1000, 2000 and 3000 
mixed crossbred, respectively, and the overall range of the 
accuracies was 0.68 to 0.98. Similar to imputation in pure-
bred Merinos, imputation accuracy increased when using a 
larger reference set. Comparison of Fig. 4a–c with Fig. 2d–f 
showed that imputation accuracy of crossbred Merinos 
from other crossbred Merinos was higher than that of 
purebred Merinos from a crossbred Merinos reference 
set. This could be explained by the fact that the crossbred 

Merino reference set provided haplotypes that were com-
mon to both parental breeds of the crossbred test set.

Imputation accuracy of mixed crossbred Merinos 
from crossbred Merinos
The distribution of imputation accuracies of 1000 mixed 
crossbred Merinos based on 1000 random BLxM or 
PDxM or WSxM crossbred reference sets are in Fig. 4d–
f. Compared to imputation from mixed crossbreds sets of 
the same size (Fig. 4a), the average imputation accuracy 
was lower and the range of accuracies was also consid-
erably larger. This is because a mixed crossbred Merino 
test set has fewer haplotypes in common with a cross-
bred Merino reference set (BLxM or PDxM or WSxM) 
than with a mixed crossbred Merino reference set. The 
mixed crossbred Merino reference set has haplotypes 
from Merino, BL, PD and WS breeds, while each cross-
bred Merino reference set covers only haplotypes from 
either Merino and BL (Fig. 4d), Merino and PD (Fig. 4e), 
or Merino and WS breeds (Fig. 4f ). Note that the distri-
bution of imputation accuracies was wider and tended 
towards a bimodal distribution (Fig. 4d–f).

Imputation accuracy of mixed crossbred Merinos 
from purebred Merinos or from non‑Merino purebreds
The distribution of imputation accuracies of crossbred 
Merinos using a reference set of 1000, 2000 and 3000 
purebred Merinos are in Fig. 4g–i, respectively. Imputa-
tion accuracy was low and ranged from 0.43 to 0.72. A 
larger purebred Merino reference set (2000 or 3000) pro-
vided higher average imputation accuracy but the range 
of accuracies was still very large (0.48 to 0.80).

Imputation accuracy of mixed crossbred Merinos 
based on a reference set of non-Merino purebred animals 

Fig. 3  Distribution of imputation accuracies for 1000 purebred Merinos based on 1000 (a), 2000 (b), 3000 (c) mixed crossbred Merinos and based 
on 367 non-Merino purebreds (d)
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was also low and on average equal to 0.76 (Fig. 4j). Note 
that imputation accuracy in this case was higher than 
that of purebred Merinos from non-Merino purebreds 
(Fig.  3d). This is because breed haplotypes in the non-
Merino purebred reference set, which are in common 
with the first-cross Merino test sets (BL, PD and WS hap-
lotypes) are of paternal origin and, therefore are likely to 
be more similar than the shared Merino haplotypes that 
are of maternal origin.

Imputation accuracy based on a selected reference set
Figure 5 compares the distribution of imputation accura-
cies for test sets of 500 BLxM, 500 PDxM or 500 WSxM 
crossbred Merinos based on a reference set of 2000 ran-
dom crossbreds with the accuracy estimated from the 
2000 selected reference set in which all animals had high 
genetic relatedness to all the animals in the test set. For 
all three test sets, results showed a significant increase in 
average imputation accuracy when a selected reference 

set was used and also a significant decrease in the range 
of accuracies. The average imputation accuracy for cross-
bred Merinos based on a random reference set of 2000 
crossbreds was equal to 0.88. This increased from 0.96 
to 0.97 when using the 2000 selected reference set. The 
range of imputation accuracies based on a selected ref-
erence set was also smaller (0.88  to  1.00) compared to 
the random crossbred reference set (0.76 to 0.95). These 
results show that the size of the reference set is more 
important when genomic relationships between imputa-
tion test set and reference set animals are lower.

Figure  6 shows the imputation accuracy of individual 
SNPs based on a selected vs. random reference set. Impu-
tation accuracy of individual SNP genotypes was signifi-
cantly higher when it was based on the selected than on 
the random reference set. The average imputation accu-
racy of individual SNPs increased from 0.77 based on a 
random reference set to 0.87 based on the selected refer-
ence set.

Fig. 4  Distribution of imputation accuracies for 1000 mixed crossbred Merinos based on 1000 (a), 2000 (b), 3000 (c) mixed crossbred Merinos, 
based on 1000 different single crossbred Merinos [BLxM (d), PDxM (e) and WSxM (f)], based on 1000 (g), 2000 (h) and 3000 (i) purebred Merino or 
based on 367 non-Merino purebreds (j). L Border Leicester, M Merino, PD Poll Dorset, WS White Suffolk
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Genomic prediction based on imputed genotypes
Table  1 shows the accuracy of genomic prediction for 
three different Merino sheep production traits (post-
weaning weight (PWWT), scanned eye muscle depth 
(EMD) and yearling greasy fleece weight (YGFW)) using 
observed 50 or 12k genotypes vs. using imputed 50k gen-
otypes with variable imputation accuracies (from 0.55 
to 0.60 and from 0.88 to 0.99). The high or low imputa-
tion accuracy was related to imputation of 1000 purebred 
Merinos (used here as the genomic prediction reference 
population) based on the purebred Merinos, crossbred 
Merinos or non-Merinos purebred imputation reference 
sets that were described in the above section on imputa-
tion accuracies of purebred Merinos.

The accuracy of genomic prediction based on highly 
accurate imputed genotypes (ranging from 0.88 to 0.99) 
was the same or slightly lower than the accuracy from 
observed 50k genotypes. Accuracy of genomic prediction 

based on imputed 50k genotypes but with relatively mod-
erate to high accuracies (ranging from 0.73 to 0.96, with 
an average of 0.885), was up to 4.0 % less than that using 
observed 50k genotypes, but it was still higher than the 
accuracy based on observed 12k genotypes. Removing 
SNPs with low (<0.70) individual imputation accuracies 
did not increase the genomic prediction accuracy.

The accuracy of genomic prediction decreased by 
15.9  to 21.9 % across the three traits when it was based 
on imputed genotypes with very low accuracy (on aver-
age equal to 0.68 and 0.57, respectively). The GEBV accu-
racy based on 12k genotypes was higher than that based 
on imputed 50k genotypes with low accuracy.

Table  2 shows the correlation between GEBV based 
on observed or imputed genotypes, using PWWT as an 
example. The correlation was high between observed 
50k and imputed 50k genotypes with high accuracies but 
was lower between observed 50k genotypes and imputed 

Fig. 5  Distribution of imputation accuracies of 1000 BLxM crossbreds based on 2000 random crossbreds (a) or 2000 selected reference set (b), 
for 1000 PDxM crossbreds based on 2000 random crossbreds (c) or 2000 selected reference set (d) and for 1000 WSxM crossbreds based on 2000 
random crossbreds (e) or 2000 selected reference set (f). L Border Leicester, M Merino, PD Poll Dorset, WS White Suffolk
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genotypes with lower accuracies. The changes in correla-
tion coefficient between GEBV that were estimated based 
on observed vs. imputed genotypes were similar to the 
trends observed for the accuracy of GEBV. This correla-
tion pattern between GEBV for PWWT was very similar 
for the two other traits. Table 3 presents the correlations 
between the genomic relationship matrices (GRM) based 
on observed vs. imputed genotypes for animals in the 
reference population. Correlations between the different 
GRM followed the same pattern as correlations between 
GEBV and were higher when the 50k genotypes were 
imputed more accurately. 

Discussion
This study investigated the accuracy of genotype impu-
tation from a commercially available low- (12k) to a 
medium- (50k) density SNP panel in purebred and 
crossbred Merino sheep with different strategies for 
selecting the reference set. Then, accuracies of genomic 

prediction based on imputed 50k genotypes that had 
different accuracies, were compared with those based 
on observed 50 and 12k genotypes. The study was moti-
vated by the need to implement imputation from low-
density marker panels into routine genomic evaluation 
of Australian sheep, which comprises multiple breeds 
and crossbreds. The results showed higher imputation 
accuracy for larger reference sets, but a large improve-
ment in accuracy was observed when animals in the ref-
erence set were selected to be genetically more related 
to the target animals. This leads to the general observa-
tion that imputation accuracy is driven by the number 
of relevant haplotypes in the reference population, and 
for more accurate imputation of crossbred animals, the 
imputation reference set should have a sufficient num-
ber of haplotypes for all the breeds involved in crossbred 
animals. In fact, these rules are equally relevant when 
constructing a reference set for genomic prediction, for 
which accuracy is also related to the number of relevant 

Fig. 6  SNP imputation accuracies for 500 BLxM crossbreds from 2000 selected (a) vs. 2000 random crossbred reference set (b). L Border Leicester, 
M Merino
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haplotypes used and their relatedness with the predicted 
individual.

Imputation
Larger and more related reference sets provide a greater 
chance of finding more informative haplotypes for infer-
ring un-typed genotypes of animals in the test set. The 
additional accuracy that was obtained from larger ran-
dom reference sets was greater when imputing cross-
bred animals because crossbreds are genetically more 
heterogeneous. Increases in imputation accuracy from 
larger reference sets have been reported for simulation or 
real data analyses, e.g., [12, 21, 22, 23, 24, 25] but none 
of these studies explicitly compared imputation of pure-
breds vs. crossbreds or investigated the effect of selecting 
the best reference population.

The results showed higher imputation accuracy for 
purebred Merinos when based on a purebred refer-
ence set compared to a reference set based on crossbred 
Merinos or other breeds. While both purebreds and 
crossbreds can provide informative breed haplotypes 

Table 1  Accuracy of  genomic prediction based on 
observed genotypes (50 or 12k) and  imputed 50k geno-
types with  different accuracies for  post-weaning weight 
(PWW), post-weaning eye muscle depth (PW_EMD) 
and yearling greasy fleece weight (YGFW) in Merino sheep

a  Not applicable
b  Imputed from 3000 purebred Merino
c  Imputed from 3000 crossbred Merino
d  Imputed from 1000 crossbred Merino and edited for individual SNPs with low 
imputation accuracy (r < 0.7)
e  Imputed from 1000 mixed crossbred Merino
f  Imputed from 367 non-Merino purebreds

Genotypes Imputation 
accuracy

PWW PW_EMD YGFW

Observed 50k NAa 0.446 0.219 0.585

Imputed 50k − 1b 0.88–0.99 0.443 0.219 0.584

Imputed 50k − 2(1)c 0.73–0.96 0.428 0.217 0.583

Imputed 50k − 2(2)d 0.73–0.96 0.430 0.215 0.582

Imputed 50k − 3e 0.62–0.86 0.394 0.184 0.572

Imputed 50k − 4f 0.48–0.60 0.381 0.171 0.534

Observed 12k NA 0.412 0.205 0.552

Table 2  Correlations between genomic estimated breeding values based on observed and imputed genotypes with dif-
ferent accuracies for post weaning weight

50k − 1: imputation accuracy between 0.88 and 0.99

50k − 2: imputation accuracy between 0.73 and 0.96

50k − 3: imputation accuracy between 0.62 and 0.86

50k − 4: imputation accuracy between 0.55 and 0.60

Genotypes Observed 50k Imputed 50k − 1 Imputed 50k − 2 Imputed 50k − 3 Imputed 50k − 4 Observed 12k

Observed 50k 1.000

Imputed 50k − 1 0.991 1.000

Imputed 50k − 2 0.970 0.968 1.000

Imputed 50k − 3 0.957 0.953 0.957 1.000

Imputed 50k − 4 0.814 0.812 0.821 0.819 1.000

Observed 12k 0.915 0.911 0.926 0.916 0.869 1.000

Table 3  Correlations between genomic relationships based on observed and imputed genotypes with different accura-
cies

50k − 1: imputation accuracy between 0.88 and 0.99

50k − 2: imputation accuracy between 0.73 and 0.96

50k − 3: imputation accuracy between 0.62 and 0.86

50k − 4: imputation accuracy between 0.55 and 0.60

Genotypes Observed 50k Imputed 50k − 1 Imputed 50k − 2 Imputed 50k – 3 Imputed 50k − 4 Observed 12k

Observed 5k 1.000

Imputed 50k − 1 0.999 1.000

Imputed 50k − 2 0.997 0.996 1.000

Imputed 50k − 3 0.994 0.992 0.995 1.000

Imputed 50k − 4 0.828 0.825 0.830 0.850 1.000

Observed 12k 0.992 0.990 0.989 0.987 0.829 1.000
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for imputation of a purebred target animal, the higher 
accuracy that was obtained based on purebreds can be 
explained by the larger number of informative haplo-
types. A reference set of 1000 purebred Merinos provides 
a larger number of (up to 2000) informative Merino breed 
haplotypes, while a 1000 first-cross Merino reference set 
provides only up to 1000 informative Merino breed hap-
lotypes. In our study, we observed similar imputation 
accuracies when using 1000 purebred Merinos or 3000 
crossbred Merinos (Fig.  7). The theoretical expectation 
would be that 2000 random crossbred Merinos provide 
similar imputation accuracies as a 1000 purebred Merino 
reference set. However, in our study the value of pater-
nal haplotypes was generally higher than that of maternal 
haplotypes because the paternal haplotypes were more 
similar to haplotypes in the test set population. The rea-
son is that the research sheep flocks were genetically con-
nected to each other through the use of common sires via 
artificial insemination for almost 50 % of the males in the 
mating program. Maternal haplotypes originated from 
founding ewes in the research flocks and were geneti-
cally more distant from the industry sires that were used 
across all flocks. Therefore, imputation accuracy not only 
depends on the number of breed-relevant haplotypes 
used, but also on the genetic distance between the haplo-
types in the reference set and the test set.

We also found that imputation of mixed crossbred 
Merinos from other mixed crossbred Merinos provided 
higher accuracies than imputation from crossbreds or 

from purebred Merinos. The reason is again that the 
mixed crossbred Merinos set includes more haplotypes 
relevant to the mixed crossbred reference set; the mixed 
crossbred reference set contained haplotypes from all 
four breeds (Merino, BL, PD and WS) that are relevant to 
the target test set, while crossbred Merinos contain only 
haplotypes from two breeds.

Smaller or less related reference sets showed a wider 
range of imputation accuracies, which is in line with pre-
viously reported results [12]. This shows that more indi-
viduals are poorly imputed based on such reference sets, 
likely because their haplotypes are not represented in the 
reference population.

The relevance of a genetically-related reference set to 
the animals in the test set was clearly shown when we 
selected animals for a reference set based on their high 
genomic relatedness to the animals in the test set, which 
resulted in a very significant improvement in imputation 
accuracy compared to using a random reference set of 
the same size. The impact of genetic relatedness between 
the reference and test animals (such as having direct rela-
tives with the target animals in the reference population) 
on the accuracy of genotype imputation was previously 
reported, e.g. [21–23]; however, our results show that 
selection of the imputation reference set based on rela-
tionship is a more general and efficient way to achieve 
high imputation accuracy. Investigation of the breed com-
ponent structure of the selected reference sets compared 
to the random reference sets showed that the proportion 

Fig. 7  Imputation accuracies of purebred Merinos from 1000 random purebred Merinos (dark blue) vs. a 1000 crossbred Merinos (green), b 2000 
crossbred Merinos (red) and c 3000 crossbred Merinos (light blue)
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of haplotypes of the target breed was considerably larger 
in the selected reference set than in the random reference 
set. For instance, the proportion of BL haplotypes in a 
reference set selected for imputation of crossbred BLxM 
animals increased from 9.7 to 41.8 % or the proportion of 
PD haplotypes in a selected reference set for imputation 
of crossbred PDxM increased from 12.2 to 51.1 %. When 
selecting a reference set, we also attempted to maintain a 
high level of diversity among the selected animals by min-
imizing relationships among them. However, it turned out 
that this selection criterion had little effect on the animals 
that were selected because of the relatively strong half-sib 
family structure of the data.

Imputation processing time increases exponentially 
with the size of the reference set [18] and this could make 
the imputation computationally prohibitive. However, 
our results show that imputation based on a selected ref-
erence set can be performed efficiently with high accu-
racy if sufficient data is available, which should be useful 
for routine practical genomic evaluations.

We applied a population-based imputation method. 
Imputation accuracy can potentially be increased by 
combining population- and family-based imputation. 
However, the additional accuracy obtained by adding 
family information is expected to be small, particularly 
if the reference set is large, because a population-based 
imputation indirectly exploits family information [18]. 
Larmer et al. [26] found very little increase in imputation 
accuracy by combining population- and family-based-
imputation vs. population-based imputation for three 
dairy cattle breeds.

Genomic prediction
The second aim of this study was to investigate the accu-
racy of genomic prediction based on genotypes that are 
imputed with different accuracies. The results revealed a 
small decrease in accuracy of genomic prediction based 
on GBLUP when the imputation accuracy was high (on 
average 0.95), while genomic prediction accuracy based 
on lowly accurate imputed 50k genotypes was lower than 
that based on observed 12k genotypes. This is because 
the correlation between genomic relationships among 
animals based on observed 50k genotypes and accu-
rate imputed genotypes (Table  3) is high (0.99). Results 
reported for other animal species showed a similar slight 
decrease in genomic prediction accuracy based on accu-
rately imputed genotypes, e.g. [10, 25, 27, 28]. Segelke 
et al. [27] reported a correlation of 0.98 between GEBV 
from observed 50k genotypes and 50k genotypes imputed 
from 6k/7k genotypes. The change in GEBV accuracy 
might not be the same when genomic prediction is based 
on other approaches such as Bayesian methods that rely 

more on the effect of individual marker alleles that are in 
LD with a specific QTL.

Conclusions
We observed that imputation accuracy for purebred 
and crossbred animals increased as more breed-relevant 
haplotypes are available for the reference population. 
Crossbred animals required larger imputation refer-
ence sets that included genotypes for all relevant breeds. 
Imputation accuracy was higher when genomic related-
ness between the test and reference sets increased and, 
depending on the availability of data, efficient imputation 
(faster and more accurate) is possible by selecting more 
informative animals for the test set. Accuracy of genomic 
prediction based on GBLUP did not significantly 
decrease compared to using actual genotypes when using 
accurate (>0.95) imputed genotypes, while genomic pre-
diction based on 12k observed genotypes was more accu-
rate than genomic prediction based on 50k genotypes 
that were imputed with low accuracy.
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