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Abstract 

Background:  In crossbreeding schemes, within-line selection of purebreds is performed mainly to improve the per‑
formance of crossbred descendants under field conditions. The genetic correlation between purebred and crossbred 
performance is an important parameter to be assessed because purebred performance can be a poor predictor of 
the performance of crossbred offspring. With the availability of high-density markers, the feasibility of using crossbred 
information to evaluate purebred candidates can be reassessed. This study implements and applies a single-step 
terminal-cross model (GEN) to real data to estimate the genetic parameters of several production and quality traits in 
pigs.

Methods:  Piétrain sires were mated with Piétrain and Large White dams to produce purebred and crossbred male 
half-sib piglets; growth rate, feed conversion ratio, lean meat, pH of longissimus dorsi muscle, drip loss and intramus‑
cular fat content were recorded on all half-sibs. Animals were genotyped using the Illumina Porcine SNP60 BeadChip. 
The genetic correlation between purebred and crossbred performance was estimated separately for each trait. Pure‑
bred animals were evaluated using an animal model, whereas the additive genetic effect of a crossbred individual was 
decomposed into the additive effects of the sire and dam and a Mendelian sampling effect that was confounded with 
the residual effect. Genotypes of the Piétrain animals were integrated in the genetic evaluation by using a single-step 
procedure. As benchmarks, we used a model that was identical to GEN but only accounted for pedigree information 
(PED) and also two univariate single-step models (GEN_UNI) that took either purebred or crossbred performance into 
account.

Results:  Genetic correlations between purebred and crossbred performance were high and positive for all traits 
(>0.69). Accuracies of estimated breeding values of genotyped sires and purebred offspring that were obtained with 
the GEN model outperformed both those obtained with the PED and the GEN_UNI models. The use of genomic 
information increased the predictive ability of the GEN model, but it did not substantially outperform the GEN_UNI 
models.

Conclusions:  We present a single-step terminal-cross model that integrates genomic information of purebred and 
crossbred performance by using available software. It improves the theoretical accuracy of genetic evaluations in 
breeding programs that are based on crossbreeding.

© 2016 Tusell et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The use of crossbreeding in breeding schemes reduces 
within-line inbreeding, and the resulting heterosis and 
breed complementarity have favorable effects on traits 
of commercial interest in crossbred (CB) animals. In 

crossbreeding schemes, individuals from the purebred 
(PB) parental lines are commonly selected in highly-
sanitized environments in order to improve the perfor-
mance of their CB descendants under field conditions, 
as a correlated response. In some cases, due to genetic 
and environmental differences between nucleus and field 
conditions, the performance of nucleus PB animals can 
be a poor predictor of the field performance of their CB 
descendants, which reduces the efficiency of the breeding 
program in terms of genetic progress at the commercial 
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level [1]. Thus, it is important to determine the nature of 
the genetic correlation between PB and CB performance 
and their corresponding heritabilities to assess the inter-
est of using CB information to evaluate PB animals for 
CB performance [2].

The theory on which selection for CB performance is 
based was largely developed and discussed many years 
ago [3], but until now, the use of CB information to evalu-
ate the PB parental lines has not resulted in a clear advan-
tage for within-line PB selection and has not been widely 
implemented in practice. This is primarily due to practi-
cal difficulties in tracing CB pedigrees and performances 
back to their PB parents. However, with the availability 
of high-density single nucleotide polymorphism (SNP) 
genotype data, this scenario now needs to be reevaluated. 
The use of genomic information can improve response 
to selection by increasing the accuracy of genetic evalu-
ations, increasing the number of candidates for selection, 
performing genetic evaluations at an earlier age than with 
traditional approaches, lowering the rate of inbreeding, 
avoiding the need for pedigree information to connect 
PB and CB individuals (depending on the method used), 
and accommodating non-additive genetic effects that can 
impact CB performance (i.e. dominance and heterosis) 
[4, 5].

In this study, we developed and tested on a real pig 
dataset a single-step terminal-cross model to estimate 
the genetic parameters of several production and qual-
ity traits. This model is based on the model of Wei and 
van der Werf [6], with an extension to include PB gen-
otypes. The theoretical accuracies of the estimated 
breeding values from the mixed model equations, a 
pedigree-based terminal cross model, and two univariate 
single-step models for PB and CB performances are pro-
vided. Predictive ability of the models is also evaluated in 
cross-validation.

Methods
Animals and data
The experiment was conducted according to the French 
guidelines for animal care and use (http://ethique.ipbs.fr/
sdv/charteexpeanimale.pdf ).

Animals were produced by the four French breeding 
companies of the Bioporc group (ADN, Choice Genetics 
France, Gène+, Nucléus) involved in the UtOpIGe pro-
ject ANR-10-GENOM_BTV-015, which aims at investi-
gating the feasibility of implementing genomic selection 
in pyramidal breeding schemes. A large number of traits 
that are difficult to measure under field conditions were 
recorded in several PB and CB populations that were 
raised in the same environment. In a first step, PB Pié-
train and CB Piétrain × Large White animals were pro-
duced on selection and multiplication farms and tested 

at a single test station. In a second step, PB Piétrain sires 
were mated with sows of various CB and PB populations 
in order to test pigs that represent usual commercial pro-
duction crosses at the same test station and to validate 
the results obtained from the first step.

The present analyses involved only animals generated 
in the first step of the project, including 90 Piétrain boars 
(the offspring of 69 sires) and their descendants: 654 PB 
Piétrain and 716 CB Piétrain × Large White entire male 
piglets. Piétrain pigs are renowned for their very high 
yield of lean meat, whereas Large White pigs are reputed 
for their excellent maternal instinct, large litter size and 
high milk production. The PB and the CB descendants 
entered the test station facilities of Le Rheu (France) at 
approximately 5 weeks of age and were slaughtered at a 
fixed weight of 110 kg (at 5–6 months of age).

The following traits were recorded: average daily gain 
from the beginning (35 kg) to the end (110 kg) of the test 
period (ADG), feed conversion ratio (FCR), % lean meat 
(LM), pH of the longissimus dorsi muscle (pH), drip loss 
(DL), and intramuscular fat (IMF). Data were obtained in 
accordance with the national regulations on the welfare 
of animals used in research.

At the slaughterhouse, carcasses were chilled in a cool-
ing room at 4  °C for 24  h and right half-carcasses were 
cut [7]. LM was estimated from a linear combination of 
the weights of cuts that were expressed as a percentage 
of the cold half-carcass weight for ham, loin and back-
fat [8]. Ultimate pH of the longissimus dorsi muscle was 
measured using a Xerolyt electrode (Mettler-Toledo, 
Australia) and a Sydel pH meter (Sydel, France). DL was 
measured on a sample of loin of about 130 g (at the 13th 
lumbar vertebra). After weighing the samples, they were 
placed directly in a polystyrene tray, covered with poly-
ethylene film and stored at 4 °C for 48 h, such that each 
slice formed a 40-degree angle with the horizontal plane. 
Then, the samples were wiped gently and weighed again. 
The DL was quantified as the difference between the two 
weights, expressed as a percentage of the initial weight. 
After DL measurement, the samples were frozen until 
IMF was measured by magnetic resonance imaging [9].

A separate pedigree file was constructed for each 
PB line. Piétrain and Large White pedigrees were con-
structed up to five generations back from the Piétrain 
boars for which data were available as PB or sires of CB 
offspring and from the Large White sows for which data 
were available as dams of CB offspring, respectively.

The 90 Pietrain boars and their PB descendants were 
genotyped using the Illumina Porcine SNP60 BeadChip 
(Illumina, Inc., San Diego). SNPs with a call rate lower 
than 0.90 and a minor allele frequency lower than 0.05 
were removed. For the remaining SNPs, the very few 
missing genotypes were imputed using a naïve method 
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that sampled the genotypes with probability weights 
based on allele frequencies at each locus. Animals with 
a call rate lower than 0.90 and progeny that displayed 
Mendelian inconsistencies with their parents were dis-
carded. Summary statistics of the phenotypes, pedigrees 
and genotypes are in Tables 1 and 2. Given that the num-
ber of animals with records differed for each trait, data 
were edited separately for each trait. Thus, the number of 
SNPs retained for the analyses differed slightly between 
traits.

Statistical analyses
PB and CB phenotypes for a trait were considered as 
two different traits. They were analyzed jointly by adapt-
ing the terminal-cross model proposed by Wei and van 
der Werf (see Appendix 2 in [6]) by either using pedi-
gree information only or by combining pedigree and 
genomic information in a single-step procedure [10–12]. 
The model used here is a simplification of the model of 
Christensen et  al. [13], who considered the inclusion of 
CB genotypes.

Pedigree‑based terminal‑cross model
In matrix notation, the PB and CB records of a given trait 
in a pedigree-based terminal-cross model (PED) can be 
represented as follows:

where yk is a vector of phenotypes for the PB Piétrain (for 
k = A,) and CB Piétrain × Large White individuals (for 
k = C), bk is a vector of systematic effects, pk is a vector 
of the random pen effects (nested within batch), and ek is 
a vector of residual effects. Xk, Wk and ZA, ZAC and ZBC 
are incidence matrices that assign systematic, pen and 
additive genetic effects, respectively, to the phenotypes. 
A brief description of the effects included in the model 
for each trait analyzed is in Table 3. Vector uAA is the vec-
tor of additive genetic effects for the PB pigs. The additive 
genetic effect for the CB individuals (uCC) is decomposed 
into the additive gametic effects for CB performance 
of their corresponding Piétrain sires and Large White 
dams (uAC and uBC, respectively) and the correspond-
ing sire and dam Mendelian sampling effects (φA and φB , 
respectively):

The Mendelian sampling effects cannot be estimated 
and are, therefore, included in the residual effect of the 
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uCC = ZACuAC + ZBCuBC + φA + φB.

Table 1  Summary statistics of the purebred/crossbred phenotype data

Growth rate Feed conversion  
ratio

Lean meat pH  
longissimus dorsi

Drip loss Intramuscular 
fat

Units g/day kg/kg % pH units % %

Minimum 511.1/592.6 1.83/1.67 54.8/57.7 5.29/.27 1.35/0.74 0.45/0.23

Mean 938.5/1038.0 2.29/2.25 64.05/62.48 5.58/5.62 7.26/4.87 1.14/1.21

Maximum 1214.9/1291.0 3.20/2.7 67.80/67.6 6.42/6.51 16.54/15.50 2.15/2.26

Coefficient of variation 0.11/0.09 0.07/0.07 0.02/0.03 0.03/0.03 0.38/0.40 0.21/0.21

Number of records 654/716 631/709 638/13 640/714 614/689 538/650

Table 2  Summary statistics of the purebred/crossbred pedigree and genotype data

SNP single-nucleotide polymorphism, PB purebred, CB crossbred

Growth rate Feed  
conversion ratio

Lean meat pH  
longissimus dorsi

Drip loss Intramuscular 
fat

Number purebred offspring 654 631 638 640 614 538

Number crossbred sires/dams 90/306 90/306 90/306 90/306 90/304 89/302

Number animals in the Piétrain pedigree 3084 3036 3052 3057 3007 2/900

Number animals in the Large White pedigree 2686 2686 2686 2686 2676 2/677

Number SNPs, after editing 39,672 39,673 39,673 39,681 39,650 39,643

Number genotyped PB offspring individuals/ 
sires, after editing

635/89 616/89 626/89 628/89 603/89 530/88
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CB part of the model (Eq.  1). Note that uAA and uAC 
have the same dimension and that two genetic effects are 
assigned to each PB Piétrain animal.

The variance–covariance structure of additive genetic 
effects was assumed to follow:

where AA and AB are the relationship matrices for the 
Piétrain and the Large White individuals, respectively, 
computed based on their corresponding pedigrees. σ 2

A is 
the additive genetic variance of the Piétrain line for PB 
performance, σ 2

AC and σ 2
BC are the additive genetic vari-

ances of the additive genetic contributions of Piétrain 
and Large White breeds, respectively, to CB perfor-
mance, which are equal to one quarter of the genetic var-
iance in a traditional sense (see below). Finally, σA(AC) is 
the additive genetic covariance between PB and CB per-
formance of the Piétrain animals. For the maternal line, 
only the additive genetic variance for CB performance 
was estimated. There were no correlations between pen 
effects, P = diag( σ 2

pA σ 2
pC ) and between residual effects, 

R = diag( σ 2
eA σ 2

eC ), or between these effects and other 
random effects.

Single‑step terminal‑cross model
The form of the single-step terminal-cross model (GEN) 
is the same as that of Eq.  (1). In the GEN model, the 
inverse of the numerator relationship matrix of the Pié-
train line (A−1

A ) that was used in the mixed model equa-
tions to estimate the breeding values [14] is replaced by 
the inverse of the H matrix (H−1) that combines both the 
genomic (G) and the pedigree-based relationship matri-
ces allowing the joint genetic evaluation of genotyped 
and non-genotyped animals [12, 15]:

var
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,

where G−1 is the inverse of the genomic relationship 
matrix and A−1

(A)22
 is the inverse of the pedigree-based 

relationship matrix of the genotyped animals.
For PB Piétrain individuals (i.e. PB descendants and 

their sires), G was calculated following the default single-
step procedure as programmed in blupf90 (http://nce.
ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all1.
pdf ). First, Van Raden’s equation [16] was used:

where SNP genotypes were coded as 0, 1, and 2 for 
animals that were homozygous for the minor allele, 
heterozygous, and homozygous for the other allele, 
respectively. This leads to X =

{

xij
}

, a matrix of dimen-
sion n × p (i = 1, …, n and j = 1, …, p, with n being the 
number of genotyped individuals and p the number 
of SNPs), qj is the frequency of the minor allele of the 
jth SNP. Each column of matrix E contains twice the 
expected genotype frequencies at each locus. Given that 
the allele frequencies from the base population under 
Hardy–Weinberg equilibrium were not available, the 
allele frequencies among the genotyped animals were 
used to calculate the expected genotype frequencies.

Then, G∗ was adjusted to match the average level of 
inbreeding and coancestries of A(A)22, as described by 
Christensen et al. [17]. Finally, G = 0.95 G∗

+ 0.05 A(A)22 
to make G invertible. Similar to the PED model, the GEN 
model used only pedigree information (AB) to estimate 
σ
2
BC.

Single‑step univariate models
Single-step univariate models (GEN_UNI) were also run 
separately for PB and CB phenotypes by including the 
same effects as for the GEN model:

G∗
=

(X − E)(X − E)
′

2
∑p

j=1 qj
(

1− qj
) ,

yA = XAbA +WApA + ZAuAA + eA,

Table 3  Systematic and permanent environmental random effects included in the models of analysis for each trait

Effect Trait

Growth rate Feed conversion ratio Lean meat pH longissimus dorsi Drip loss Intramuscular fat

Weight at the beginning  
of the control period

Covariate Covariate – – – –

Hot carcass weight – – Covariate – – –

Weight at slaughter – – – Covariate Covariate Covariate

Date of slaughter – – – 52 levels 50 levels 49 levels

Batch 11 levels 11 levels 11 levels 11 levels 11 levels 11 levels

Pen effect nested within batch 132 levels 132 levels 132 levels – – –

http://nce.ads.uga.edu/wiki/lib/exe/fetch.php%3fmedia%3dblupf90_all1.pdf
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php%3fmedia%3dblupf90_all1.pdf
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php%3fmedia%3dblupf90_all1.pdf
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Parameter inference
A Bayesian framework was adopted for inference to 
express uncertainty about the unknowns through the 
use of probability density functions. Flat prior distribu-
tions were assumed for the parameters of the systematic 
effects and the (co)variance components. The Gibbs sam-
pler algorithm was used to estimate the marginal posterior 
distributions of the systematic effects and the (co)variance 
components using the GIBBS1f90 software developed by 
Misztal et  al. [18]. Single chains of 250,000, 500,000 and 
250,000 iterations were run by discarding the first 25,000, 
50,000 and 25,000 iterations of each chain for the PED, 
GEN and GEN_UNI models, respectively, for each ana-
lyzed trait. Longer chains were run for the GEN models 
due to the less sparse structure of the single-step equa-
tions, which may preclude good mixing of the chains. The 
number of discarded samples was, in all cases, larger than 
the required burn-in that was determined by visual inspec-
tion and by the procedures of Raftery and Lewis [19] and 
Geweke [20]. Samples of the parameters of interest were 
saved every ten rounds and used to compute summary sta-
tistics for the marginal posterior distributions.

Rescaling additive genetic contributions of sires  
and dams to the crossbred trait
Because CB offspring performance includes only half 
of the breeding values for CB performance of their PB 
parents, Wei and van der Werf [6] assigned 0.5 instead 
of 1 to the non-zero elements of the design matrices ZAC 
and ZBC in Eq.  (1). In our case, we assigned ones to the 
non-zero elements of the incidence matrices for practi-
cal implementation purposes. Thus, posterior rescaling 
of the genetic variances was required to obtain proper 
(co)variance estimates. For example on the paternal 
side, uAC is equal to half the additive genetic effect of 
the sire for CB performance. To recover the corre-
sponding paternal breeding value, each gametic con-
tribution was multiplied by 2, i.e. u∗AC = 2uAC. This, in 
turn, leads to rescaling the parental genetic variance as 
var(u∗AC) = 4 var(uAC) = 4σ 2

AC and the additive genetic 
covariance as σA(AC)

*    =  2σA(AC). The same rescaling also 
applies for the genetic variance on the maternal side.

Theoretical accuracies of estimated breeding values
The posterior mean (co)variance components obtained 
with the Gibbs sampler for the GEN model were used as 
the true values to obtain best linear unbiased prediction 
(BLUP) estimates for the breeding values in the different 
models using the BLUPf90 software [18]. The theoretical 
accuracy of the estimated breeding value for the ith indi-
vidual for the kth (k = A, AC) performance with the mth 

yC = XCbC +WCpC + ZACuAC + ZBCuBC + eC .
model (m = GEN ,PED,GEN_UNI) (EBVi,k,m) was calcu-
lated as [13]:

where PEVi,k,m is the prediction error variance of its 
EBVi,k,m, Fi is the inbreeding coefficient of individual 
i, which was computed from the pedigree using the 
INBUPGf90 software [21], and σk

2 is the additive genetic 
variance of PB or CB performance. Theoretical accura-
cies of EBV were obtained for all sires and PB offspring 
and also for some PB descendants that were considered 
to be candidates for selection (one descendant if the sire 
had less than four male offspring and two otherwise). 
Theoretical accuracies of EBV for these candidates were 
obtained using BLUP by either masking or including their 
own phenotype, in order to reproduce a situation under 
commercial conditions where some traits are measured 
on candidates and other traits are measured on relatives 
that are housed in test stations.

Assessment of predictive ability
The ability of the models to predict yet-to-be observed 
phenotypes was compared using sixfold cross-valida-
tion. First, BLUP solution estimates for the systematic 
effects obtained with the GEN model were used to obtain 
adjusted phenotype records, separately for each trait. 
Second, sires were randomly split into six approximately 
equal subsets. All records of the offspring of a sire were 
assigned to its respective subset. BLUP parameters were 
estimated based on five of the six data subsets, referred to 
as the training set, and the predictive ability was assessed 
in the remaining dataset, which was used as the testing 
set and considered as the yet-to-be observed phenotypes 
of the candidate sires. The training–testing cycle was 
repeated six times by rotating the six subsets used for 
training and testing, with each subset used only once for 
testing and five times for training. The predictive ability 
of each model was evaluated using the average Pearson’s 
correlation between observed and predicted phenotypes 
of the testing sets.

In addition, the EBV of sires for PB performance esti-
mated with the GEN_UNI model were used to predict 
CB performance under the GEN_UNI CB model. This 
predictive ability was also assessed with the sixfold cross-
validation mentioned above.

Results and discussion
Genetic parameters
Genetic parameter estimates, ratios of variance compo-
nents, and ratios of phenotypic variances obtained with 
the GEN model are in Table  4. Most of the estimated 

Ri,k ,m =

√

1−
PEVi,k ,m

(1+ Fi)σ
2
k

,
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heritabilities for traits related to PB performance were 
within the range of those obtained in previous studies 
on pigs [22–25], although an unusually high value was 
found for drip loss, i.e. 0.57 compared to published val-
ues, which range from 0.10 to 0.30 [26].

Estimated genetic correlations between PB Piétrain 
and CB performance of Piétrain sires were all positive 
and high and none of the highest 95  % posterior den-
sity intervals (HPD95 %) of the estimates included values 
below 0.30. This indicates that most of the genetic vari-
ance observed for those traits is due to additive genes 
with no relevant dominance gene action and, possibly, no 
differences in gene frequency between the two lines, i.e. 
there is no strong genetic interaction between the Pié-
train and Large White breeds. The magnitude and sign 
of the estimated genetic correlation between PB and CB 
performance are keys to decide the best strategy to evalu-
ate PB animals for CB performance [2]. Hence, based on 
our results and the conditions under which this study 
was performed, selecting to improve traits within the 
paternal PB line, without accounting for CB informa-
tion, would lead to an improvement in the CB popula-
tion as a correlated response [27]. Whether the degree 
of this improvement would overcome the gain of incor-
porating CB performance needs to be further addressed. 
Various ranges of genetic correlation estimates between 
PB and CB performances have been reported in the lit-
erature using different pedigree-based approaches. Apart 
from a few exceptions, they range from moderate to high 
values for production traits such as lifetime daily gain, 

feed conversion ratio, back fat thickness, and weight 
(see reviews in [1, 28, 29]. For genetic correlations that 
differ from 1, other selection strategies might be more 
appropriate to improve genetic response in CB descend-
ants, for example: (1) evaluating the PB lines based on 
CB information only (recurrent selection and recipro-
cal recurrent selection [3]), (2) combining both PB and 
CB information into a weighted selection index [30, 31], 
(3) using a terminal-cross model [6, 13], or (4) using a 
multiple-trait approach with one additive effect [32], 
although the latter can lead to biased estimates of PB CB 
covariance [33]. Genetic correlations between PB and CB 
performances can differ from 1 if non-additive genetic 
effects, such as dominance are present and allele frequen-
cies differ between the parental lines [34]. Genetic effects 
can also vary with the environment in which PB and 
CB individuals are raised, which can also contribute to 
genetic correlations differing from 1. Such situations are 
common in pig breeding, with PB lines reared and evalu-
ated on nucleus farms that are defined by a high health 
status environment and CB pigs raised on commercial 
farms under field conditions. In the current study, all ani-
mals were raised at the same time and in the same test 
station facility and differed only in the genetic origin of 
the dams. Thus, the environment was simply defined by 
the breeding type [35].

The ratios of genetic variance for CB performance for 
the sire and dam lines were of similar magnitude across 
the traits, although they tended to be slightly higher for 
the sire line for FCR, pH and IMF (Table 4). Heritabilities 

Table 4  Mean (highest posterior density interval at 95 %) of the marginal posterior distribution of genetic parameters 
estimated with the single-step model

hA
2 = purebred heritability

tiC
2 = ratio of variance of the parental allelic contribution in the crossbreds (i = A, B for Piétrain and Large White line, respectively) computed as 2σiC

2/σC
2 where σiC

2 is the 
additive genetic variance of the corresponding parental alleles in the crossbreds

rgA, AC = genetic correlation between purebred individual and sire line contribution in the crossbreds

pj
2 = ratio of variance of common pen effect

σj
2 = phenotypic variances (j = A, C for purebred Piétrain and crossbred, respectively)

Trait Parameter

hA
2 tAC

2 tBC
2 rgA, AC pA

2 pC
2 σA

2 σC
2

Growth rate 0.22
[0.05, 0.37]

0.25
[0.03, 0.45]

0.28
[0.12, 0.44]

0.84
[0.45, 1.00]

0.14
[0.06, 0.23]

0.09
[0.02, 0.16]

9151
[7954, 10,418]

8028
[6813, 9324]

Feed conversion ratio 0.32
[0.20, 0.46]

0.29
[0.13, 0.46]

0.18
[0.05, 0.32]

0.91
[0.72, 1.00]

0.10
[0.03, 0.18]

0.09
[0.03, 0.16]

0.02
[0.02, 0.03]

0.02
[0.02, 0.02]

Lean meat 0.41
[0.25, 0.57]

0.30
[0.14, 0.46]

0.28
[0.12, 0.45]

0.69
[0.30, 1.00]

0.04
[0.0001, 0.08]

0.06
[0.01, 0.12]

2.50
[2.19, 2.82]

3.15
[2.75, 3.59]

pH longissimus dorsi 0.30
[0.17, 0.36]

0.26
[0.16, 0.40]

0.11
[0.02, 0.22]

0.97
[0.83, 1.00]

– – 0.02
[0.02, 0.02]

0.02
[0.02, 0.03]

Drip loss 0.57
[0.44, 0.69]

0.21
[0.08, 0.35]

0.15
[0.03, 0.30]

0.89
[0.62, 1.00]

– – 6.21
[5.41, 7.04]

3.38
[2.96, 3.81]

Intramuscular fat 0.31
[0.16, 0.48]

0.34
[0.16, 0.54]

0.25
[0.08, 0.43]

0.82
[0.46, 1.00]

– – 0.05
[0.05, 0.06]

0.07
[0.06, 0.08]
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for CB performance are the sum of the ratios of pater-
nal and maternal line genetic contributions (Table  4, 
t2
AC

+ t2BC) and were approximately of the same magni-
tude as heritabilities for PB performance for FCR and pH, 
but were higher for ADG, LM and IMF, and lower for DL. 
Some studies have reported lower heritabilities for CB 
than for PB performance, which is mainly due to a less 
controlled environment for the CB field data compared 
with the PB station data [36] but this does not apply to 
our study.

The additive genetic variances (hA
2σA

2 and tAC
2 σC

2 + tBC
2 σC

2 
for PB and CB performance, respectively; Table 4) were 
slightly higher for crossbred than for PB performance for 
most of the analyzed traits, which could indicate sub-
tle differences in gene combinations affecting the traits 
in the two populations, and a slightly stronger influ-
ence of non-additive genetic effects, such as dominance, 
in CB than in PB individuals. Under dominance action, 
the additive genetic variance of CB individuals cannot 
be predicted by calculating the average of the additive 
genetic variances of the parental lines for purebred per-
formance and it can be larger than either of the paren-
tal genetic variances [2]. In another study that applied 
several genome-enabled prediction models, Tusell et  al. 
[37] found that the estimated additive genetic variance 
and heritability for litter size were higher in a CB popula-
tion of commercial pigs than in either of the PB paren-
tal lines, and suggested that it could be due to a lower 
level of heterozygosity of PB sows compared to CB sows. 
In contrast, Lutaaya et  al. [29] reported a smaller addi-
tive genetic variance for backfat in a CB pig line than in 
the PB parental lines. They attributed this result to dif-
ferences in management practices, reduced genetic vari-
ation due to the fact that the selection index previously 
used for CB parents included gain and carcass traits, and 
to differences in sex ratios between the PB and CB popu-
lations, since most of the CB individuals were females.

Given the magnitude of the estimates of heritabilities 
and genetic correlations between PB and CB perfor-
mances, the allelic frequencies between the two breeds 
seem to be similar and the analyzed traits do not appear 
to be affected by non-additive genetic effects. Regardless, 
the model presented here is somehow able to capture 
the general level of heterosis of each line into the general 
mean effect of each trait [13]. It would be of interest to 
extend this single-step terminal cross model to account 
for dominance effects for the analysis of traits that are 
more affected by non-additive genetic effects.

GEN versus PED model
The posterior mean estimates of heritability for PB per-
formance obtained with the PED model for the different 
traits (Table 5) were slightly higher than those obtained 

with the GEN model (Table  4). This is due to the non-
normal posterior distribution of this parameter estimate 
with the PED model, which was more right-skewed 
than for the GEN model, and the lower precision that 
was obtained, which resulted in higher posterior mean 
estimates than the GEN model; frequency histograms 
showed that the posterior modes of this parameter were 
very similar between the two models. The GEN model 
provided more precise estimates, possibly due to the 
greater amount of information used, i.e. it combined 
genome-based relationships together with pedigree-
based relationships.

Table  6 shows the mean accuracies of EBV obtained 
with the GEN model for PB and CB performance of the 
genotyped animals, i.e. the PB offspring and their sires, 
and the mean difference of these accuracies from the 
PED model. For all traits, EBV accuracies were higher 
for the GEN model than for the PED model because, to 
estimate EBV, the GEN model uses more information 
than the PED model, as explained above. Several stud-
ies have found accuracies for the EBV of genotyped ani-
mals to be higher when genomic information is included 
in the models compared to using pedigree data only [38, 
39]. In contrast, the mean difference in accuracies of 
EBV between GEN and PED models for animals in the 
pedigree without own records and genotypes was almost 
equal to 0 and ranged from 0.002 to 0.008 for both PB 
and CB performance. The same results were observed for 
the dams of the CB offspring because no extra informa-
tion was used to estimate the EBV of these animals in the 
GEN model.

Theoretical accuracies of EBV from the GEN model
Scatterplots of the theoretical accuracies of EBV for PB 
performance versus those for CB performance of sires 
and PB offspring obtained with the GEN model for the 
different traits are in Fig.  1. Accuracies were higher for 
the sires than for the PB offspring for both PB and CB 
performance. This may be due to the fact that among all 
evaluated individuals, the sires have the largest amount 
of information available for both traits because they are 
sires of both PB and CB offspring. As expected, the accu-
racies of EBV were higher when the animals had records 
for either PB or CB performance. For the sires, this was 
because their EBV for CB performance in a terminal-
cross model is estimated directly through the sire genetic 
effect, whereas the EBV of the same sire evaluated for 
PB performance is estimated through the animal genetic 
effect of their PB offspring. For the PB offspring, accura-
cies of their EBV were much higher when evaluated for 
PB than for CB performance. This is because the EBV for 
CB performance of the PB offspring was estimated based 
only on records on their sires and half-sibs. This increase 
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was more pronounced for traits such as ADG and IMF 
and less for pH.

Accuracies of EBV from the GEN_UNI model
The mean theoretical accuracies of the EBV of sires and 
candidates to selection (i.e. one or two PB offspring per 
sire with and without own phenotype) obtained with 
the single-step terminal-cross model and the mean dif-
ferences of these accuracies from those obtained with 
the two univariate single-step models (one for CB 
and the other for PB performance) across traits are in 
Table  7. Figure  2 shows scatterplots of the EBV accura-
cies obtained with the GEN model versus those obtained 
with the GEN_UNI models for sires and candidates to 

selection for PB and CB performance for ADG; the other 
traits followed a very similar pattern (not shown). Accu-
racies of the EBV for sires were higher when obtained 
with the single-step terminal-cross model than with the 
univariate single-step models for both PB and CB perfor-
mance. Hence, accounting for PB and CB information in 
a two-trait model enhances the theoretical accuracy of 
EBV of sires for PB and CB performances. This is possibly 
due to the more precise variance component estimates, 
i.e. narrower HPD95  %, obtained with the GEN model 
compared to the GEN_UNI models (not shown). Lutaaya 
et al. [40] reported a higher reliability of crossbred EBV of 
purebred animals when a terminal-cross model was used 
compared to a within-line model due to smaller standard 

Table 5  Mean (highest posterior density interval at 95 %) of the marginal distribution of genetic parameter estimated 
with the pedigree-based model

hA
2 = purebred heritability

tiC
2 = ratio of variance of the parental allelic contribution in the crossbreds (i = A, B for Piétrain and Large White line, respectively) computed as 2σiC

2/σC
2 where σiC

2 is the 
additive genetic variance of the corresponding parental alleles in the crossbreds

rgA, AC = genetic correlation between purebred individual and sire line contribution in the crossbreds

pj
2 = ratio of variance of common pen effect

σj
2 = phenotypic variances (j = A, C for purebred Piétrain and crossbred, respectively)

Trait Parameter

hA
2 tAC

2 tBC
2 rgA, AC pA

2 pC
2 σA

2 σC
2

Growth rate 0.33
[0.08, 0.57]

0.24
[0.11, 0.40]

0.29
[0.12, 0.44]

0.79
[0.37, 1.00]

0.13
[0.04, 0.22]

0.09
[0.03, 0.15]

9239
[7968.70, 1, 0550.00]

8032
[7001.20, 9153.20]

Feed conversion ratio 0.37
[0.21, 0.56]

0.29
[0.14, 0.45]

0.18
[0.06, 0.32]

0.89
[0.66, 1.00]

0.10
[0.03, 0.18]

0.09
[0.03, 0.16]

0.02
[0.02, 0.03]

0.02
[0.02, 0.02]

Lean meat 0.46
[0.24, 0.67]

0.28
[0.13, 0.45]

0.29
[0.13, 0.46]

0.74
[0.34, 1.00]

0.04
[0.001, 0.09]

0.06
[0.01, 0.12]

2.51
[2.20, 2.82]

3.13
[2.75, 3.56]

pH longissimus dorsi 0.46
[0.22, 0.76]

0.27
[0.13, 0.39]

0.11
[0.02, 0.22]

0.91
[0.57, 1.00]

– – 0.02
[0.01, 0.02]

0.02
[0.02, 0.03]

Drip loss 0.70
[0.52, 0.89]

0.22
[0.09, 0.38]

0.15
[0.03, 0.28]

0.87
[0.58, 1.00]

– – 6.30
[5.52, 7.20]

3.39
[2.98, 3.85]

Intramuscular fat 0.40
[0.18, 0.62]

0.34
[0.17, 0.52]

0.25
[0.09, 0.40]

0.86
[0.56, 1.00]

– – 0.05
[0.05, 0.06]

0.07
[0.06, 0.08]

Table 6  Mean (SD) accuracy of EBV for purebred and crossbred performance obtained using single-step terminal-cross 
models and its difference (SD) from the mean accuracy obtained using pedigree-based terminal-cross models

PB purebred, CB crossbred, ADG growth rate between end and beginning of the control period, FCR Feed conversion ratio, LM % of lean meat, pH pH longissimus dorsi, 
DL drip loss, IMF intramuscular fat

Trait PB performance CB performance

PB offspring Sires PB offspring Sires

Mean Mean difference Mean Mean difference Mean Mean difference Mean Mean difference

ADG 0.577 (0.026) 0.050 (0.021) 0.660 (0.040) 0.039 (0.016) 0.514 (0.033) 0.042 (0.027) 0.697 (0.047) 0.022 (0.012)

FCR 0.660 (0.020) 0.044 (0.015) 0.732 (0.036) 0.034 (0.012) 0.615 (0.023) 0.041 (0.018) 0.745 (0.040) 0.024 (0.010)

LM 0.699 (0.016) 0.039 (0.013) 0.716 (0.040) 0.047 (0.016) 0.540 (0.030) 0.032 (0.024) 0.724 (0.044) 0.019 (0.010)

pH 0.639 (0.024) 0.046 (0.018) 0.745 (0.039) 0.027 (0.011) 0.624 (0.025) 0.045 (0.018) 0.750 (0.040) 0.025 (0.011)

DL 0.768 (0.020) 0.030 (0.012) 0.768 (0.040) 0.044 (0.015) 0.680 (0.020) 0.026 (0.015) 0.741 (0.039) 0.030 (0.012)

IMF 0.626 (0.029) 0.042 (0.018) 0.688 (0.047) 0.034 (0.015) 0.548 (0.031) 0.038 (0.023) 0.730 (0.052) 0.018 (0.010)
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errors of the variance component estimates. They stated 
that the terminal-cross model was more reliable because 
it uses all the information that is available on the prog-
eny. Lutaaya et al. [40] highlighted the advantage of using 

a terminal-cross model under two scenarios: first, when 
EBV for both PB and CB evaluation performances are of 
interest and a sufficient number of CB records is avail-
able, and second when some traits are recorded on PB 

Fig. 1  Scatterplots of the accuracies of estimated breeding values for purebred versus crossbred performance obtained with single-step terminal-
cross models. EBV estimated breeding value, PB purebred, CB crossbred
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animals whereas others are recorded only on CB ani-
mals. When PB candidates are evaluated for PB perfor-
mance, the use of a terminal-cross or a univariate model 
does not substantially change the accuracy of their EBV. 
However, if the aim is to evaluate the PB candidates for 
CB performance, accounting for both PB and CB infor-
mation greatly contributes to improving the theoretical 
accuracy of the EBV, especially if the selection candidates 
have their own phenotypes (Table  7). The latter would 
be advantageous for traits that are routinely evaluated in 
the nucleus of selection. Nonetheless, if the candidate is 
not phenotyped, the accuracy of the EBV obtained with 
the GEN model was still slightly higher than with the 
univariate model (Table 7). This could be of interest for 
genetic evaluation of traits that are not directly recorded 
on candidates but only on a few relatives in test stations, 
e.g. meat quality and carcass traits.

Predictive ability
Table  8 shows the average correlation between the pre-
dicted and yet-to-be observed PB and CB adjusted pheno-
types obtained with sixfold cross-validation for all models 
and traits. Accounting for genomic information increased 
the predictive ability compared to using only pedigree-
based relationships for all traits (predictive correlations 
for PB and CB performances were respectively 0.02–0.11 
and 0.03–0.05 higher with the GEN model than with the 
PED model), except for ADG, for which no increase in 
predictive ability was observed. Nevertheless, the joint 
analysis of PB and CB performance in a single-step termi-
nal-cross model did not substantially increase the predic-
tive ability compared to single–step univariate analyses. 
The predictive ability of sire EBV estimated with the uni-
variate single-step model for PB performance to predict 
CB performance was equal to 0.17, 0.18, 0.20, 0.08, 0.12 

Table 7  Mean accuracy of EBV for purebred and crossbred performance obtained using single-step terminal-cross mod-
els and its difference from the mean accuracy (in parentheses) obtained using pedigree-based terminal-cross models (in 
parentheses)

PB purebred, CB crossbred, ADG growth rate between end and beginning of the control period, FCR feed conversion ratio, LM % of lean meat, pH pH longissimus dorsi, 
DL drip loss, IMF intramuscular fat

Trait PB performance CB performance

Sires Phenotyped  
candidates

Unphenotyped  
candidates

Sires Phenotyped  
candidates

Unphenotyped 
candidates

ADG 0.660 (0.110) 0.574 (0.026) 0.420 (0.059) 0.697 (0.046) 0.509 (0.181) 0.413 (0.084)

FCR 0.732 (0.113) 0.659 (0.020) 0.489 (0.054) 0.745 (0.065) 0.614 (0.259) 0.477 (0.121)

LM 0.716 (0.046) 0.696 (0.007) 0.490 (0.023) 0.724 (0.041) 0.535 (0.185) 0.434 (0.084)

pH 0.745 (0.133) 0.638 (0.026) 0.484 (0.068) 0.750 (0.080) 0.624 (0.273) 0.4807 (0.130)

DL 0.768 (0.046) 0.768 (0.005) 0.535 (0.024) 0.741 (0.119) 0.678 (0.371) 0.493 (0.185)

IMF 0.688 (0.105) 0.625 (0.019) 0.450 (0.053) 0.730 (0.040) 0.547 (0.184) 0.442 (0.078)

Fig. 2  Scatterplots of estimated breeding values obtained from a single-step terminal-cross model versus those from a univariate single-step mod‑
els for growth rate. EBV estimated breeding value, CB crossbred, PB purebred, GEN single-step terminal-cross model, GEN_UNI univariate single-step 
models for purebred or crossbred performance
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and 0.12 for ADG, FCR, LM, pH, DL and IMF, respec-
tively. These results indicate that EBV estimated with 
the GEN_UNI model for PB performance predicted CB 
performance with the same accuracy as the models that 
accounted for CB performance (i.e. GEN and GEN_UNIC 
CB models). This could be due to the high estimated 
genetic correlations between PB and CB performance 
for the analyzed traits. It would be interesting in a future 
study to test the predictive ability of the GEN model when 
PB and CB performance are less genetically correlated 
(e.g. when purebreds are raised in selection nucleus and 
crossbreds under field conditions, or for traits that are 
strongly influenced by non-additive genetic effects).

Practical implications
Routine genetic evaluations in Piétrain pigs (as well as 
in other PB pig sire lines) are usually performed with 
pedigree-based BLUP using phenotypes of selection can-
didates and, for some traits, using phenotypes recorded 
on relatives obtained from test stations. Although selec-
tion is implemented within PB lines, the ultimate aim is 
to improve CB performance under field conditions. If the 
genetic correlations between PB and CB performance 
differ from 1, incorporating CB and genomic information 
into the genetic evaluation of the PB lines can contribute 
to increase genetic gains.

To the best of our knowledge, this is the first imple-
mentation of a single-step terminal-cross model using 
PB sire genotypes to model CB performance and its 
application to real data for a wide range of traits. Chris-
tensen et al. [13] developed a more complex single-step 
method for the genomic evaluation of PB and CB perfor-
mance. Their model makes full use of genotypes on CB 
individuals and therefore accounts for the exact contri-
bution of alleles of the sire and the dam to a given CB 
performance. Further research should compare their 
model with the GEN model with respect to their ability 
to predict new data, i.e. candidates to selection without 
phenotypic records. It is also necessary to determine 
whether the extra genetic progress achieved with our 
model overcomes the additional expenses of its imple-
mentation under commercial conditions, which would 
require substantial organizational changes in the breed-
ing scheme, such as collecting phenotypes on the CB 
offspring, i.e. piglet production records collected from 
multiple commercial farms, genotyping selection can-
didates and tracing the pedigree to connect crossbreds 
with purebreds. Availability of the PB phenotype would 
be advantageous. Nonetheless, the main advantage 
of the GEN model is that CB genotypes would not be 
needed, which would limit extra expenses, and the dam 
contribution could be accounted for in the model as a 
permanent environmental effect.

Conclusions
We proposed and applied on real data a single-step 
terminal-cross model that accounts for genomic infor-
mation on PB individuals and uses CB performance to 
estimate genetic parameters of several production and 
quality traits in pigs. Accounting for PB and CB infor-
mation, along with genomic information, improves the 
theoretical accuracy of genetic evaluations in breed-
ing programs that are based on crossbreeding. Includ-
ing genomic information increased predictive abilities 
compared to using pedigree information only, but the 
single-step terminal-cross model did not outperform the 
predictive performance of univariate single-step models 
for PB and CB performance. The implementation of the 
proposed single-step terminal-cross model is straight-
forward with available software but its use under field 
conditions needs to be further addressed in terms of pre-
dictive ability, genetic progress achieved, and costs.
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types obtained with a sixfold cross-validation

PB purebred, CB crossbred, ADG growth rate between end and beginning of the 
control period, FCR feed conversion ratio, LM % of lean meat, pH pH longissimus 
dorsi, DL drip loss, IMF intramuscular fat

Model Trait PB phenotype CB phenotype

PED ADG 0.208 0.159

FCR 0.139 0.166

LM 0.122 0.148

Ph 0.051 0.035

DL 0.260 0.128

IMF 0.178 0.086

GEN ADG 0.204 0.191

FCR 0.180 0.201

LM 0.245 0.175

pH 0.075 0.087

DL 0.374 0.134

IMF 0.225 0.072

GEN_UNI ADG 0.195 0.191

FCR 0.179 0.210

LM 0.244 0.144

pH 0.150 0.051

DL 0.368 0.057

IMF 0.236 0.051
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