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Abstract 

Background:  Parent-of-origin effects are due to differential contributions of paternal and maternal lineages to 
offspring phenotypes. Such effects include, for example, maternal effects in several species. However, epigeneti-
cally induced parent-of-origin effects have recently attracted attention due to their potential impact on variation 
of complex traits. Given that prediction of genetic merit or phenotypic performance is of interest in the study of 
complex traits, it is relevant to consider parent-of-origin effects in such predictions. We built a whole-genome pre-
diction model that incorporates parent-of-origin effects by considering parental allele substitution effects of single 
nucleotide polymorphisms and gametic relationships derived from a pedigree (the POE model). We used this model 
to predict body mass index in a mouse population, a trait that is presumably affected by parent-of-origin effects, and 
also compared the prediction performance to that of a standard additive model that ignores parent-of-origin effects 
(the ADD model). We also used simulated data to assess the predictive performance of the POE model under various 
circumstances, in which parent-of-origin effects were generated by mimicking an imprinting mechanism.

Results:  The POE model did not predict better than the ADD model in the real data analysis, probably due to overfit-
ting, since the POE model had far more parameters than the ADD model. However, when applied to simulated data, 
the POE model outperformed the ADD model when the contribution of parent-of-origin effects to phenotypic varia-
tion increased. The superiority of the POE model over the ADD model was up to 8 % on predictive correlation and 5 % 
on predictive mean squared error.

Conclusions:  The simulation and the negative result obtained in the real data analysis indicated that, in order to 
gain benefit from the POE model in terms of prediction, a sizable contribution of parent-of-origin effects to variation 
is needed and such variation must be captured by the genetic markers fitted. Recent studies, however, suggest that 
most parent-of-origin effects stem from epigenetic regulation but not from a change in DNA sequence. Therefore, 
integrating epigenetic information with genetic markers may help to account for parent-of-origin effects in whole-
genome prediction.

© 2016 Hu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Parent-of-origin effects are asymmetric influences that 
act on phenotype of offspring, depending on the sex of 
the parent. Genomic imprinting, manifested as differ-
ential and/or preferential gene expression that is usu-
ally caused by differential DNA methylation [1, 2] or 
histone modification [3] on different parental alleles, is 
one of the most studied epigenetic mechanisms and an 

important source of parent-of-origin effects. Imprinting 
has an impact on several human diseases [4–8] such as 
the Prader–Willi (PWS) and Angelman (AS) syndromes 
[9, 10], as well as on complex traits in livestock [11–13]. 
For example, mapping studies have detected presumably 
imprinted quantitative trait loci (QTL) that affect eco-
nomically important traits in swine [14–21], beef cattle 
[22–24], sheep [25], mice [26, 27], and dogs [28]. In addi-
tion, genome-wide scan studies with dense single nucleo-
tide polymorphism (SNP) chips have also suggested that 
imprinted loci are associated with complex traits in vari-
ous mammalian species (e.g., [29–34]).
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QTL mapping studies can identify genomic regions 
that contribute to traits of interest and to marker assisted 
selection (MAS, [35, 36]). However, use of QTL map-
ping for breeding purposes has failed to yield clear 
dividends (e.g., [37, 38]). A possible explanation is that 
QTL mapping studies require, e.g., carefully designed 
crossbreeding experiments and these are seldom avail-
able in livestock. Thus, artificial selection using predicted 
genetic merit of selection candidates is still mainly used 
in animal improvement programs. Breeding values have 
been predicted based on resemblances between relatives 
using pedigree information (e.g., [39, 40]). In the genom-
ics era, however, the availability of high-throughput 
genotyping techniques makes it possible to interrogate 
genotypes of hundreds of thousands or even millions 
of SNPs simultaneously, resulting in what is known as 
“genomic selection” or “whole-genome prediction” [41–
43]. With continuously decreasing genotyping costs, 
genomic selection has become affordable for commercial 
settings in some species [44], and QTL mapping is less 
used in animal breeding, unless the objective is to find a 
major gene. Even in crops, genomic selection is gradu-
ally replacing QTL-MAS. Although some debate per-
sists [45], genomic selection will probably be the main 
approach used in the foreseeable future [46].

Genomic selection (GS) and whole-genome predic-
tion (WGP) exploit associations between phenotypes 
and an enormous number of SNPs under certain statis-
tical assumptions regarding the underlying trait archi-
tecture. Often, the association between phenotype and 
SNPs is explored by using the SNPs as covariates in a 
linear regression model. Since the number of covariates 
(p) is usually much larger than the number of observa-
tions (n), different techniques have been used to circum-
vent the “curse of dimensionality” in GS/WGP studies. 
Commonly used methods include Bayesian regression 
(e.g., [41, 43, 47, 48]), G-BLUP (e.g., [49, 50]), semi-para-
metric methods (e.g., [51–54]) and neural networks (e.g., 
[55–57]), among others. All these models assume that the 
inheritance of the complex trait is Mendelian, i.e., pater-
nally- and maternally-inherited alleles are functionally 
equivalent. Under this assumption, no phenotypic dif-
ference between genotypes A1A2 and A2A1 is expected. 
SNPs are assigned codes such as 0, 1 or 2 according to 
genotype at the locus, and the average substitution effects 
of all markers in the model are estimated simultaneously. 
Prediction is then performed by combining the esti-
mates of these SNP effects with a genotype matrix in an 
independent set of individuals. However, recent studies 
suggest that some traits are not strictly Mendelian. For 
example, Mott et al. [58] found that 91 out of 97 murine 
traits were subject to parent-of-origin effects. In a review, 
Lawson et  al.  [13] also suggested that parent-of-origin 

effects may be more prevalent than previously thought. 
Perhaps parent-of-origin effects may enhance WGP 
models, if considered appropriately.

Currently used GS models may not be suitable for par-
ent-of-origin-effects-affected traits, for which inheritance 
of one allele from the father may have a different effect 
on the phenotype than when the same allele is inherited 
from the mother. This suggests that two distinct substitu-
tion effects associated with the two parental origins of an 
allele are needed. A one-locus quantitative genetic model 
that takes imprinting into account has been proposed [17, 
59, 60], where genotypes A2A2, A1A2, A2A1 and A1A1 are 
assumed to have genotypic values −a, d − i, d + i and a, 
respectively, and paternal and maternal allele substitu-
tion effects are defined as α♂ = a+ d(q − p)+ i and 
α♀ = a+ d(q − p)− i. In a previous study, a genome-
wide association study (GWAS)-like scan conducted with 
this model indicated that ignoring imprinting may under-
estimate additive genetic variation [61], which suggested 
that prediction accuracy may be higher when imprinting 
is considered in WGP. In a recent simulation study, Nishio 
and Satoh [62] suggested that the unbiasedness of variance 
component estimation may be enhanced when imprinting 
is integrated under a genomic best linear unbiased predic-
tion (G-BLUP) framework. Here, we build a  prediction 
model that incorporates parent-of-origin effects paramet-
rically and assess whether or not this model improves pre-
diction of phenotypes over the additive model currently 
employed in WGP using real data. In addition, we evaluate 
the advantages and limitations of the full model using sim-
ulated data and give a detailed discussion on its application 
under various conditions. Our study complements that of 
[62] and provides insights into prediction with parent-of-
origin effects from a Bayesian perspective.

Before proceeding, some clarification is necessary. In 
much of the epigenetic literature, the terms “imprinting 
effects” and “parent-of-origin effects” have been used 
interchangeably. In “iQTL mapping” studies, for exam-
ple, the detected QTL are putatively imprinted. However, 
the statistical model used in iQTL mapping does not 
guarantee that the detected parent-of-origin effects are 
necessarily due to imprinting. A counter-example was 
presented by Hager et  al.  [63], where maternal effects 
can mimic imprinting effects in statistical analysis. Fur-
thermore, parent-of-origin effects were detected in birds 
[64, 65], although no strong evidence of imprinting in 
birds is available [66–68]. Thus, results obtained from 
the model described herein and its variants should be 
interpreted as parent-of-origin effects but not beyond 
[61]. In this study, we build WGP models to incorporate 
parent-of-origin effects, aiming at obtaining a higher pre-
dictive accuracy when a complex trait is subject to par-
ent-of-origin effects. We use the term “parent-of-origin 
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effects” throughout, but in the simulations we mimicked 
imprinting mechanisms to simplify the source of parent-
of-origin effects. The simulated data was used for model 
evaluation under various conditions.

This paper is organized as follows. First, a previously 
proposed mixed effect model that incorporates parent-
of-origin effects at the lineage level is introduced. Then, 
a brief introduction of a one-locus quantitative genetic 
model that takes genomic imprinting into account is pro-
vided. We extend this model to incorporate all available 
SNPs simultaneously to include parent-of-origin effects 
at the DNA (SNP) level, and our prediction model is 
constructed using both pedigree and DNA information. 
This model is applied to real (mouse) and simulated data 
and its predictive performance is compared to that of an 
additive model. Following a section that discusses advan-
tages and drawbacks of this model, a discussion on the 
possibilities and challenges of conducting whole-genome 
prediction models that use epigenetic information to 
incorporate parent-of-origin effects is provided.

Prediction model incorporating parent‑of‑origin 
effects
Consider the pedigree-based additive effects model (e.g., 
[39, 40]):

where the n× 1 vector y contains phenotypic records; 
µ is an effect common to all individuals; b is a vector of 
fixed effects with associated incidence matrix X; u is the 
n× 1 vector of normally distributed infinitesimal addi-
tive effects with zero mean vector and variance–covari-
ance matrix Aσ 2

A, where A is the n× n pedigree-based 
numerator relationship matrix and σ 2

A is the additive 
genetic variance; and e is the residual vector whose ele-
ments are assumed to be independent and identically 
distributed as normal with zero mean and variance σ 2

e . A 
commonly used technique for making predictions of yet-
to-be-observed data is best linear unbiased prediction 
(BLUP) [39], where estimation of b and prediction of u 
are performed simultaneously. Variance components can 
be estimated, for example, by restricted maximum likeli-
hood (REML).

If dense markers (e.g., SNPs) are available, the following 
model can be used for genome-enabled prediction (e.g., 
[41]):

Here, p is the (possibly large) number of SNPs and the 
assumption is that the QTL that contribute to the phe-
notype y are in linkage disequlibrium (LD) with at least 

(1)y = 1µ+ Xb+ Zu + e,

(2)y = 1µ+ Xb+

p∑

j=1

wjαj + e.

one SNP. In this model, αj is the substitution effect of the 
jth SNP; wj is an n× 1 vector, whose elements Wij are 
the genotype code (Wij = 0, 1 or 2 for genotypes A2A2, 
A1A2/A2A1 or A1A1) of SNP j for the ith individual. One 
can also write 

{∑p
j=1 wjαj

}
 as Wα, where W is n× p,  

whose jth column is wj, and α is p× 1, whose jth ele-
ment is αj. SNP effects can be learned in a Bayesian pro-
cess (e.g., [41, 47]) by drawing samples from posterior 
distributions using Markov chain Monte Carlo (MCMC) 
techniques. Predictive performance using Model 2 is often 
better than for Model 1, and several studies have suggested 
that including both pedigree and marker information can 
achieve an even higher prediction accuracy [69, 70].

Models described above assume that QTL and SNPs 
are inherited in a Mendelian manner. However, in the 
presence of imprinting, or more generally, parent-of-
origin effects, receiving one allele from the mother might 
have a different effect on y than receiving the same allele 
from the father [59, 60, 71]. Before the genomic era, the 
following mixed model using pedigree information was 
proposed to account for parent-of-origin effects [72, 73]:

where y, µ, b, u and e are as in Model 1; g is a 2n× 1 vec-
tor of additional genetic effects expressed only when 
inherited from a maternal or paternal gamete, assuming 
that g ∼ N (0,Lσ 2

g ) with L being a 2n× 2n gametic rela-
tionship matrix calculated from a known pedigree.

When considering SNPs, Shete and Amos  [60] pro-
posed the following one-locus model that regresses phe-
notype on the number of alleles received from a specific 
parent to account for parent-of-origin effects:

where α♀ and α♂ are the average effects of receiving one 
A1 allele from the female and male parents (maternal and 
paternal allele substitution effects), respectively, and I♀ and 
I♂ are vectors of associated indicator variables. Both Ii♀ 
and Ii♂ (the ith element of vectors I♀ and I♂, respectively) 
take values 0 or 1 so the combination of these two indica-
tors gives the genotype codes of four genotypes. For exam-
ple, Ii♀ = Ii♂ = 1 indicates an A1A1 genotype and Ii♀ = 1,  
Ii♂ = 0 indicates an A2A1 genotype (maternally inher-
ited allele is written first). This model can be extended 
to include all available SNPs simultaneously as in whole-
genome prediction studies. Thus, we combined Models 3 
and 4, which contain both pedigree and marker informa-
tion, into a WGP model (called POE model hereafter) that 
is suitable for traits affected by parent-or-origin effects:

(3)y = 1µ+ Xb+ Zu +Mg + e,

(4)y = 1µ+ Xb+ I♀α♀ + I♂α♂ + e,

(5)

y = 1µ+ Xb+ Zu +Mg +

p∑

j=1

Ij♀αj♀ +

p∑

j=1

Ij♂αj♂ + e.
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To evaluate the performance of the POE model, it was 
compared with the additive model (referred to as ADD 
model hereafter) without parent-of-origin effects at 
either the pedigree or SNP levels. Model ADD is then:

Data and model evaluation
Mouse data
Some studies have suggested that obesity-related traits 
might be affected by imprinting in both humans [74] 
and mice [75]. An indicator of obesity, body mass index 
(BMI), was shown to be affected by parent-of-origin 
effects as well [76]. Hence, we chose BMI as the response 
variable in this study.

The data set used here is publicly available at http://
mus.well.ox.ac.uk/mouse/HS/ and has been used in 
other studies (e.g., [69, 77]). It includes 1940 individuals 
that were obtained by crossing eight inbred strains, fol-
lowed by 50 generations of approximately random mat-
ing. BMI measurements pre-corrected for body weight, 
season, month and day, and more than 12,000 genotyped 
SNPs located on 19 autosomes were collected. Additional 
description of this data set can be found from the data 
website and from [78]. In order to incorporate POE into 
the analysis, the two reciprocal heterozygotes A1A2 and 
A2A1 need to be distinguished from each other such that 
each allele of a SNP has a known parental origin. To do 
this, haplotype inference was performed using BEAGLE 
3.3.2 [79, 80]. After this step, all SNPs with a minor allele 
frequency (MAF) less than 0.05 were removed, resulting 
in 10,021 SNPs for subsequent analyses.

Models POE and ADD (as in Eqs.  5 and  6 above, 
respectively) were used to perform whole-genome pre-
dictions of BMI. In this data, b included sex, litter size and 
cage density. Regarding the polygenic effect u, Legarra 
et al. [77] and de los Campos et al. [69] conducted whole-
genome prediction studies using the same mouse data 
and both suggested that including pedigree information 
in this data set provided no benefit in terms of predic-
tive ability because the relationships among the full-sib 
families were relatively weak. Therefore, we dropped the 
polygenic term in the mouse data analysis. For the same 
reason, the term g was also dropped. Furthermore, a vec-
tor of random cage effects c with incidence matrix C was 
included in both models. c was assumed to be normally 
distributed with zero mean and variance–covariance 
matrix Iσ 2

c .

Simulated data
We used simulated data to evaluate the performance 
of the POE and of the ADD models under different 

(6)y = 1µ+ Xb+ Zu +

p∑

j=1

wjαj + e.

situations. Parent-of-origin effects were simulated using 
the following two-step procedure. First, we used QMSim 
[81] to simulate a genome of 10 pairs of chromosomes 
each 1 Morgan long. Each chromosome had 1000 ran-
domly located bi-allelic SNPs, so there were 10,000 SNPs 
in total, as in the mouse data. Approximately 150 simu-
lated QTL were randomly located in the genome and 
these were not chosen from the simulated SNPs. QTL 
effects were randomly drawn from a normal distribution 
with zero mean and variance set to the software default 
value. The population started from 100 males and 100 
females with 1000 generations of random mating to cre-
ate LD between QTL and between SNPs and QTL; muta-
tion rates were uQTL = 10−4 per QTL and uSNP = 10−2 
per SNP, respectively. All QTL and SNP genotypes were 
fixed in generation 1. In the three most recent genera-
tions, without mutation, the population was expanded to 
2000 individuals per generation with a 1:1 sex ratio.

In step 2, parent-of-origin effects were introduced by 
mimicking imprinting. For a long time, imprinting has 
been viewed as a “full-null” phenomenon, where the 
silencing of the imprinted allele is complete while the 
expression of the allele inherited from the other parent 
is intact; this is usually considered as the canonical defi-
nition of imprinting [71]. However, genomic imprinting 
can potentially operate at any level of gene regulation 
(e.g., at promoters, enhancers, splicing junctions, or poly-
adenylation sites, etc.) to present a more complex pattern 
of parent-specific differential expression [82]. For exam-
ple, recent studies have provided evidence that, for some 
imprinted loci, both alleles are differentially expressed 
in a parent-of-origin-preferential or parent-of-origin-
dependent manner [83], indicating that the silencing 
is incomplete [84, 85]. Such deviation from  the canoni-
cal imprinting, defined as partial imprinting [30, 86], 
has been incorporated in the aforementioned one-locus 
imprinting model [17, 59, 60], and was also considered in 
our simulation. Let θij1 and θij2 (given by QMSim output) 
be the two allele effects of QTL j in individual i obtained 
from a certain QMSim run. Because QMSim records the 
parental origin of these two alleles, θij1 and θij2 can be 
represented by, say, θij♀ and θij♂, respectively. If this QTL 
is maternally imprinted, the genotypic value at this QTL 
for individual i can be written as:

where ρ is a parameter that controls the level of imprint-
ing. Five different values were assigned to ρ: 0, 0.25, 0.5, 
0.75, and 1, where ρ = 1 corresponds to no imprinting, 
ρ = 0 to complete imprinting, and ρ = 0.25, 0.5, 0.75 
define different levels of partial imprinting. We further 
assumed that a proportion s = {0.15, 0.3, 0.45, 0.6} of 
nQTL QTL were either paternally or maternally imprinted 

(7)ρ · θij♀ + θij♂,

http://mus.well.ox.ac.uk/mouse/HS/
http://mus.well.ox.ac.uk/mouse/HS/
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with equal frequency (a validation on the choice of these 
values is given in Discussion). Hence, the phenotypic 
value of individual i is:

where NI, MI and PI are sets of (1− s) · nQTL non-
imprinted, randomly selected 1

2
s · nQTL maternally 

imprinted and 1
2
s · nQTL paternally imprinted QTL, 

respectively, and εi is the environmental effect on indi-
vidual i given by QMSim. Note that the environmen-
tal effect εi was not changed and that a common ρ was 
shared by all imprinted QTL in a particular scenario for 
simplification.

Equation 8 was applied to the three recent generations 
(1001, 1002, and 1003) in all 20 combinations of ρ and s. 
In subsequent analyses, generation 1002 was the training 
set and generation 1003 was the testing set. This whole 
procedure was replicated 5 times and the average pre-
dictive performance of all replicates was used for model 
evaluation.

Model training and phenotype prediction
The additive relationship matrix A and the gametic rela-
tionship matrix L were calculated from the pedigree 
using the R package synbreed [87]. Both the ADD and 
POE models were trained with an implementation of 
MCMC using the R package BGLR [88, 89]. Each chain 
was run for 60,000 iterations, with the first 10,000 itera-
tions discarded as burn-in and the rest were thinned by a 
factor of 10.

For the ADD model, the conditional prior distribution 
of the substitution effect of marker j was a normal distri-
bution with zero mean and variance τ 2j σ

2
e , where σ 2

e  came 
from a scaled inverted χ2 distribution with scale Se and 
degrees of freedom dfe set to default values in package 
BGLR [89]; τ 2j  was drawn from an exponential distribu-
tion with parameter �2/2. Hyperparameter �2 was drawn 
from a Gamma distribution with shape s and rate r set 
to default values. This prior creates a double-exponen-
tial posterior density for marker effects, given �, and is 
referred to as Bayesian Lasso [69, 90]. The infinitesimal 
additive effects u had a conditional multivariate nor-
mal prior N (0,Aσ 2

u ), where σ 2
u was drawn from a scaled 

inverted χ2 distribution with scale Su and degrees of free-
dom dfu set to default values. Similarly, for cage effects, 
c|σ 2

c ∼ N (0, Iσ 2
c ) and again, the scale Sc and degrees of 

freedom dfc for the prior of σ 2
c  were set to default values.

For the POE model, prior distributions were simi-
lar to those described above, except that two marker 

(8)

yi =
∑

j∈NI

(
θij♀ + θij♂

)
+

∑

j∈MI

(
ρ · θij♀ + θij♂

)

+
∑

j∈PI

(
θij♀ + ρ · θij♂

)
+ εi,

effects, the paternal and maternal allelic substitution 
effects, were included for each marker. The extra vector 
of gametic effects was assumed to have the distribution 
g|σ 2

g ,L, Sg , dfg ∝ N (g|σ 2
g ,L) · χ

−2(σ 2
g |Sg , dfg ). Again, all 

hyperparameters for the scaled inverted χ2 distributions 
were set to package default values.

After model training, predictions were made on the 
testing set. Predictive correlation and predictive mean 
squared error (MSE) were the two metrics used for 
model evaluation.

Results
Mouse data analysis
The data set was randomly partitioned into training and 
testing sets according to the within-families approach 
of [77]. The cross-validation was repeated five times for 
stability assessment. Table  1 gives average results over 
the five replications. The ADD model performed slightly 
better than the POE model when evaluated by different 
metrics, but the difference was minimal. Our results with 
the ADD model were in agreement with those of [77] 
and [69], including the estimated variance components 
(Table 2).

Analysis of simulated data
In the simulation, five replicates were run, with each 
replicate resulting from an independent run of QMSim 
simulation. Each of the five realizations had training and 
testing sample sizes of 2000 individuals each; the number 
of SNPs was equal to 10,000 and the number of QTL in 
each replicate was equal to 142, 167, 158, 141 and 149, 
respectively.
As described in “Simulated data” section, each replicate 
had 20 scenarios, each corresponding to a combination of 
ρ (imprinting level) and s (proportion of imprinted QTL). 
When ρ = 1, however, three scenarios were redundant 
because in this case, all QTL were unimprinted such that 
different values of s made no difference (Eq. 8). Figure 1 
displays the average prediction accuracy measured by 
Pearson’s correlation between observed and predicted 
phenotypes in different simulation scenarios, and Fig.  2 
shows the MSE performance of the two models. Under 

Table 1  Average of testing set results of five cross valida‑
tion replicates in the mouse data ( SE = standard error)

ADD additive model, POE parent-of-origin effects model
a Corr(P)

y,ŷ
: Pearson’s correlation between observed and predicted value

b Corr(S)
y,ŷ

: Spearman’s correlation between observed and predicted value
c MSE: Mean squared error

Model Corr
(P)

y,ŷ
(SE)a Corr

(S)

y,ŷ
(SE)b MSE (SE)c

ADD 0.321 (±0.067) 0.327 (±0.071) 0.00347 (±1.49×10
−4)

POE 0.309 (±0.059) 0.318 (±0.076) 0.00371 (±1.53×10
−4)
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both evaluation metrics, the ADD model performed 
better than the POE model when no imprinting was 
simulated (ρ = 1). When there were no parent-of-origin 
effects, the p extra parameters in the POE model led to 
overfitting of the training data, thus sacrificing predictive 
ability of future data. With parent-of-origin effects, the 
POE model outperformed the ADD model but in a man-
ner that depended on the s and ρ settings. Typically, the 
POE model was better than the ADD model when ρ was 
small and s was large. 

Discussion
Our results indicate that the POE model was not superior 
to the ADD model in terms of prediction when applied 
to the real mouse data. When using simulated data, 
however, our results showed that the POE model out-
performed the ADD model under some circumstances, 
depending mainly on the choice of s and ρ. This result 
was consistent with a recent simulation study that incor-
porated imprinting effects in WGP [62]. Their prediction 
model was adapted from the one-locus imprinting model 
of [17, 59, 60]. However, instead of applying Bayesian 
regression directly by extending the one-locus imprinting 
model to include all available SNPs, the authors adopted 
a G-BLUP framework where genetic relationship matri-
ces were generated for the additive, dominance, and 
imprinting effects. In their simulation, two parameters 
affected the performance of a prediction model with 
imprinting, namely the degree of imprinting and the 
number of imprinted QTL, which had the same role as ρ 
and s in our simulation, and produced similar results as 
those obtained in our study. A discussion on our simula-
tion results and related topics is provided in the following 
sections.

Predictive performance of the ADD and POE models
Case 1: complete imprinting (ρ = 0)
When imprinting was complete (ρ = 0), it was not sur-
prising that the POE model performed better than the 
additive ADD model. The superiority of the POE model 
over the ADD model depended  on s, i.e., the larger the 
proportion of imprinted genes, the bigger the difference 
on predictive correlation and MSE between the two mod-
els. As s increased, a larger fraction of genetic variation 

was attributed to parent-of-origin effects, which cannot 
be captured by the ADD model. An interesting observa-
tion from Figs. 1 and 2 is that, for a given model, the pre-
dictive correlation and MSE decreased with an increase 
of s (Fig.  3). Recall that the data was simulated such 
that the allele effect was multiplied by ρ (less imprint-
ing as ρ → 1), and fraction s of all QTL were assumed 
to be imprinted (Eq.  8). Suppose a QTL is maternally 
imprinted (the allele inherited from the mother written 
first), and that the values of the four genotypes (expressed 
as deviations from the population mean) are:

Let p and q be the frequencies of the A1 and A2 alleles. 
The genetic variance at this locus can be calculated as:

where Pij is the genotype frequency of AiAj assuming 
Hardy-Weinberg equilibrium. Note that θ1 − θ2 is α, the 
allele substitution effect defined by a standard additive 
genetic model. From Eq. 10, when ρ = 1 (no imprinting), 
the expression yields 2pqα2, the additive variance of a 
standard genetic model (e.g., [91, 92]). When ρ < 1, how-
ever, this variance (“signal”) decreases as ρ approaches 0 
(i.e., increased imprinting level). Hence, for a given value 
of ρ that is smaller than 1 (0 in this case), the total vari-
ance of all QTL becomes smaller as s increases. Since the 
environmental distribution was the same in all settings, 
heritability decreased as s increased, producing a lower 
predictive ability.

Case 2: no imprinting (ρ = 1)
As stated above, when ρ = 1, the value of s does not 
affect the simulated data. In this simpler case, the ADD 
model outperformed the POE model in terms of pre-
dictive correlation and MSE, since the extra parameters 
in the POE model captured noise only. This is because, 
if, instead of capturing signal in the data, the better fit 
is due to higher model complexity, a penalty would be 
given to such a model during the testing process [93]. In 
our Bayesian implementation, genome-wide incorpora-
tion of parent-of-origin effects approximately doubled 
the number of parameters relative to the ADD model. 
This higher complexity provided a better fit to the data, 
as shown in Fig.  4: the training correlation of the POE 
model was always higher than that of the ADD model by 
about 4 %. However, a lower predictive correlation of the 

(9)

G11 = ρ · θ1 + θ1,

G21 = ρ · θ2 + θ1,

G12 = ρ · θ1 + θ2,

G22 = ρ · θ2 + θ2.

(10)

σ 2 = P11 · G
2
11 + P21 · G

2
21 + P12 · G

2
12 + P22 · G

2
22

= (1+ ρ2)pq(θ1 − θ2)
2,

Table 2  Estimated variance components (×10
−4) in  the 

two models with all individuals included

ADD additive model, POE parent-of-origin effects model

Model σ̂
2
c σ̂

2
e

ADD 3.37 17.89

POE 3.39 17.74



Page 7 of 15Hu et al. Genet Sel Evol  (2016) 48:34 

POE model (ρ = 1, Fig. 1) indicated that the extra param-
eters in the POE model were not capturing model signal, 
at least when ρ = 1. For the same reason, the POE model 
was expected to have a higher prediction error than the 
ADD model when no parent-of-origin effects affected the 
trait (Fig. 2).

Overfitting might be a reason why the ADD model 
was better as observed in the mouse data analysis and 
here in simulation when ρ = 1. Technically, a more com-
plex model would enhance prediction if true underly-
ing signals are captured by the extra parameters, so that 
overfitting is not an issue. However, if the true signal is 
not strong enough or training sample size is not large 
enough, overfitting would degrade prediction perfor-
mance in the testing step. Although some parent-of-ori-
gin effects seem to exist in the mouse data, as indicated 
by the previous study using the same data [61], these are 

not strong enough to overwhelm overfitting, resulting in 
a lower predictive performance when the POE model was 
used.

Case 3: partial imprinting
As imprinting changed from the highest (ρ = 0, com-
plete imprinting) to the lowest level (ρ = 1, no imprint-
ing), the predictive correlation of both models increased 
gradually for any value of s, since total additive variance 
(signal) increased during this course (Eq.  10; left panel 
of Fig. 5), so the predictive ability increased accordingly. 
Also, because the ADD model was better at ρ = 1 but the 
POE model was better at ρ = 0, curves representing the 
two models crossed at some point, and it was interest-
ing to note that the value of ρ associated with the cross 
point increased (representing a lower level of imprinting) 
as s went up (Fig.  1). Intuitively, the POE model would 

Fig. 1  Average predictive correlation of two models measured by Pearson’s correlation 
(
Corr

(P)

ŷ,y

)
 between observed and predicted phenotype 

under different simulation settings. ADD additive model, POE parent-of-origin effects model. s = proportion of imprinted QTL; ρ = 0 and ρ = 1 
denote complete imprinting and no imprinting, respectively
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outperform the ADD model when the proportion of sig-
nal due to parent-of-origin effects reaches some thresh-
old. Here, the variance accounted for by parent-of-origin 
effects is expressed as:

according to the four genotypic values in Eq.  9 and the 
one-locus imprinting model of [59, 60], and [17]; the ratio 
between Eqs. 11 and 10 gives the proportion of additive 
variance accounted for by parent-of-origin effect at that 
locus. For a larger s, this threshold is reached much faster 
than at a smaller s as ρ → 0 (Fig. 5, right panel), indicat-
ing that when fewer QTL are imprinted, a higher level of 
imprinting is needed for the POE model to gain advan-
tage, as expected.

(11)σ 2
o =

1

2
pq(θ1 − θ2)

2(1− ρ)2

Overfitting and combining the ADD and POE models
Modeling all SNPs with two substitution effects each (i.e., 
α♀ and α♂) could be problematic since not all SNPs are 
subject to parent-of-origin effects and this could be the 
cause of overfitting, as observed previously. In order to 
circumvent the potential overfitting problem in modeling 
the parent-of-origin effects, it may be worth to detect 
SNPs that are strongly associated with parent-of-origin 
effects a priori and model two substitution effects for 
those SNPs only. Furthermore, as an extension of [72], we 
assumed that parental contributions from the paternal 
and maternal sides are independent with equal variance 
at the pedigree level. However, when there are no parent-
of-origin effects, these two effects are likely to be corre-
lated [94]; in this case the overparameterization at the 
pedigree level may reduce the predictive ability as well 

Fig. 2  Averaged mean squared error (MSE) of two models between observed and predicted phenotype under different simulation settings. ADD 
additive model, POE parent-of-origin effects model. s = proportion of imprinted QTL; ρ = 0 and ρ = 1 denote complete imprinting and no imprint-
ing, respectively
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[62], and it may be worth to drop the gametic relation-
ship term from the model. To implement this analysis, 
we first detected such parent-of-origin-effect-associated 
SNPs by using the method suggested in our previous 
study [61]. The following model (ADD-POE model) was 

then evaluated in the same cross-validation approach to 
assess if it improved the overfitting problem:

where � represents a set of markers with significant par-
ent-of-origin effects at a 0.05 significance level after con-
trolling for multiple testings using the Šidák’s correction.

Contrary to our expectation, Model  12 did not com-
promise prediction accuracy. Instead, the predictive per-
formance of this model was only mildly better than the 
ADD model but much worse than the POE model in a 
simulation case where s is large and ρ is small (Table 3). 
One possible reason for this result could be that although 

(12)

y = 1µ+ Xb+ Zu +
∑

j /∈�

wjαj

+
∑

j∈�

Ij♀αj♀ +
∑

j∈�

Ij♂αj♂ + e,

Table 3  Comparison of  predictive correlations (Pearson’s) 
among ADD, POE, and ADD-POE models

ADD additive model, POE parent-of-origin model, ADD-POE parent-of-origin 
model where two substitution effects are modeled only to markers with 
significant signals on parent-of-origin effects
a Takes s = 0.6, ρ = 0 as a benchmarking scenario

Data Corr
(ADD- POE)

y,ŷ
− Corr

(ADD)

y,ŷ
Corr

(ADD- POE)

y,ŷ
− Corr

(POE)

y,ŷ

Mouse 0.000 0.005

Simulated
a 0.001 −0.080

Fig. 3  Trend of averaged predictive correlation and MSE with change of s (proportion of imprinted QTL) under ρ = 0 (complete imprinting). Predic-
tive correlation and MSE decrease as s goes up for both models. ADD additive model, POE parent-of-origin effects model
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our simulation configured a relatively strong parent-of-
origin case, the single-marker regression approach may 
still not be able to detect a large number of markers 
that are strongly associated with a true imprinted QTL 
(no replicates identified more than 50 significant SNPs), 
similar to all conventional GWAS studies. Therefore, the 
vast majority (i.e., >99.5%) of all available SNPs will be 
modeled as additive instead of “imprinted”, and hence 
the improvement of the ADD-POE model over the ADD 
model was very limited.

The ADD-POE model attempted to find a possi-
ble source of overfitting and tried to handle it at both 
the pedigree and the SNP levels. Since these two fac-
tors could be confounded, we added the term Mg back 
to Model  12 and evaluated how the predictive abil-
ity changed. As a result, this model’s performance was 

almost identical to that of the ADD-POE model when 
using the simulated data, which indicated that when 
dense SNPs are used for prediction, modeling a relatively 
“rare” effect (here the parent-of-origin effects) across all 
SNPs may lead the model to suffer from severe overfit-
ting, and overfitting due to this reason at the SNP level 
could be much larger than that due to an overparameteri-
zation at the pedigree level. Furthermore, our simulation 
chose QTL randomly and assigned a smaller “absolute” 
effect with a proportion parameter ρ to reflect a non-
equivalent contribution from the paternal and maternal 
genomes. Although this approach was able to introduce 
parent-of-origin effects, it may break some connection 
between the pedigree and the QTL that was established 
in the original QMSim simulation as well. This nearly 
identical predictive ability with or without the gametic 

Fig. 4  Training accuracy of two models measured by Pearson’s correlation 
(
Corr

(P)

ŷ,y

)
 between observed and fitted phenotype under different 

simulation settings. ADD additive model, POE parent-of-origin effects model. s = proportion of imprinted QTL; ρ = 0 and ρ = 1 denote complete 
imprinting and no imprinting, respectively
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relationship term as observed here could be the result 
of this disconnection. In order to better understand the 
behavior of gametic relationships, a more specific simu-
lation approach that considers other mechanisms than 
imprinting would be helpful.

Proportion of imprinted QTL
In our simulation, values of 0.15, 0.3, 0.45 and 0.6 were 
assigned to s (proportion of imprinted QTL) in different 
scenarios. These values were chosen arbitrarily and are 
much larger than the proportion of imprinted genes with 
available evidence since, among the approximately 25,000 
human or murine genes, only about 200 have been identi-
fied as imprinted (http://igc.otago.ac.nz/home.html), i.e., 
1 % of the total number of genes. Even the smallest value 
of s chosen (0.15) is too large compared to this small frac-
tion observed to date.

However, this (i.e., about 200) is the number of experi-
mentally identified imprinted genes, approximately. This 
means that the function, expression profile and regulating 
mechanisms of such genes were assessed in well-designed 
experiments, with verified imprinting status. It is possible 
that there are more imprinted genes in the mammalian 
genomes that have not been discovered so far. For exam-
ple, Luedi et al. [95] and Brideau et al. [96] predicted that 
there might be hundreds of imprinted genes in the murine 
genome, although no consensus estimate on the number 
of imprinted genes in the mammalian genome is available 
[97]. Furthermore, imprinting might be more prevalent 

than previously assumed, as argued in several review 
studies (e.g., [13, 98]). Specifically, among 127 detected 
metabolic-related QTL, about 60  % had imprinting 
effects. In an earlier study, 54 % of 602 genes expressed in 
human kidney or liver tissues were shown to have strong 
parent-of-origin effects caused by preferential expres-
sion, with some of them not located in known imprinted 
genomic regions [99]. Therefore, based on these studies, 
we decided to increase the proportion of imprinted QTL 
in our simulation over the 1 % mentioned earlier.

Moreover, for the approximately 200 identified 
imprinted genes, a vast majority are growth- and/
or development-related. This was shown when the 
famous “parent-offspring conflict hypothesis” was pro-
posed [100–102] to explain the evolution of imprinting. 
Although Lush often stated the view that all complex 
traits are possibly affected by all genes at various degrees 
[103, 104], it is unlikely that all tens of thousands of genes 
in the mammalian genome affect a trait jointly [105]. 
Since there is no consensus on how many genes affect 
specific complex traits, tens to several hundreds might be 
a reasonable guess. Hence, within the hundreds of genes 
that control a single trait, say, fetal growth, it is possible 
that a considerable proportion is subject to imprinting. 
In addition, imprinting is a major cause of parent-of-ori-
gin effects, but not the only one [106]. Therefore, when 
imprinting was considered as the only cause to simplify 
the source of parent-of-origin effects in the simulation, 
we set the proportion of imprinted QTL up to 60 %.

Fig. 5  Stylized representation of the change of total additive variance across all 150 simulated QTL loci (Va, left panel) and proportion of 
total additive variance due to parent-of-origin effects (Vo/Va, right panel) at different values of ρ (imprinting level, changes from 0 to 1) and s 
(= {0.15, 0.3, 0.45, 0.6}, proportion of imprinted QTL)

http://igc.otago.ac.nz/home.html


Page 12 of 15Hu et al. Genet Sel Evol  (2016) 48:34 

Other sources of information than DNA polymorphisms
Incorporating parent-of-origin effects into a prediction 
model may be helpful if it accounts for a considerable 
proportion of the total variance. In practice, additive var-
iance is the major contributor to phenotypic variability 
for most complex traits [107]. Along with the overfitting 
problems associated with the POE model, the preceding 
implies that the POE model may bring only a minimal 
advantage in most cases. Therefore, it might be helpful to 
consider other sources of information in whole genome 
prediction to incorporate parent-of-origin effects. Since 
epigenetics, a main cause of parent-of-origin effects, 
is the study of heritable variation that does not involve 
a change of DNA sequence [108–110], our prediction 
model may fail under many situations because only varia-
tion at the DNA level (e.g., SNPs) is used as input. Hence, 
incorporating epigenetic information in addition to SNPs 
might be useful [111], as it has already been successfully 
used to identify disease-related genomic regions through 
epigenome-wide association studies (EWAS) [112–114].

Including epigenetic information in whole-genome 
prediction has been previously investigated and seems 
promising (e.g., [115, 116]). However, it can also be chal-
lenging. One aspect is the amount of information one 
needs to deal with. Consider DNA methylation as an 
example: it is the addition of a methyl group to either 
the 5-position carbon atom of the cytosine pyrimidine 
ring, or to the 6-position nitrogen atom of the adenine 
purine ring, with the latter observed mainly in mito-
chondrial DNA of flowering plants [117]. Two impor-
tant features of DNA methylation are: (1) it is tissue and 
developmental-stage specific; (2) it is reversible, since the 
added methyl group can be removed from the methyl-
ated DNA. Due to this second feature, methylation sta-
tus is unstable compared to DNA polymorphisms and, 
for a certain cytosine locus, it may shift between meth-
ylated and unmethylated states. Thus, although modern 
technologies are able to convert the unstable methylation 
information into stable sequence information via bisulfite 
treatment (e.g., [118, 119]), the methylation profile is 
for a specific time in a specific sample of cells. The term 
“methylome” is thus abused: in many studies, it actually 
refers to a “snap shot” of the entire methylome at a cer-
tain time point from a certain tissue given the first fea-
ture of DNA methylation. Compared to DNA sequence 
information which is size-invariant (unless a somatic 
mutation occurs) throughout an individual’s life time, 
the size of the methylome is highly variable and can be 
extremely large. Along with other epigenetic mechanisms 
such as histone modification, the size of the human epig-
enome is potentially enormous. For example, the diploid 
human epigenome contains more than 108 cytosines (of 
which >107 are found in CpG dinucleotides, the major 

target of mammalian DNA methylation) and more than 
108 histone tails (the target of histone modification) that 
can all potentially vary [112]. It has been estimated that 
the human epigenome could be thousands of times larger 
than the genome [120]! Given this magnitude, choosing 
appropriate epigenetic information from a suitable tis-
sue is crucial, and powerful and reliable analytical tools 
must be developed to ensure an appropriate use of the 
information.

Apart from the size of the epigenome, epigenetic 
mechanisms are affected by environmental effects. For 
instance, the methyl group added to a DNA molecule 
must come from a methyl group donor. One major 
source is the diet [121], so different diets can result in dif-
ferent methylation profiles that lead to different pheno-
types. Several cases demonstrate the impact of nutrition 
on epigenetics. In mice, the coat color of genetically iden-
tical individuals showed variation when their mothers 
were fed with different diets during pregnancy [122, 123]. 
In honey bees, almost all female individuals in a colony 
are (almost, if not exactly) genetically identical. How-
ever, the royalactin found in the royal jelly turns one (and 
only one) individual into a queen and the others remain 
as workers [124]. In livestock, maternal diet during preg-
nancy can alter the DNA methylation of the fetus and, 
hence, result in changes in gene expression [125]. This 
evidence indicates that environmental variation brings 
extra difficulties to the already complicated epigenetic 
analysis.

Furthermore, epigenome profiling is very expensive. 
In the case of methylation, due to the massive number 
of CpG sites within the mammalian genome, high-res-
olution methylation profiles are very costly. Although 
reduced representation bisulfite sequencing (RRBS, 
[126]) can reduce the profiling costs by selecting a small 
proportion of representative CpG sites from certain 
regions (e.g., gene promoter regions) of the genome, 
methylation profiling of a large cohort (e.g., thousands of 
individuals in a WGP study) is still expensive, especially 
when multiple “snapshots” of the methylome need to be 
considered.

In short, epigenetic polymorphisms could contribute to 
genetic studies and open a door to a better understand-
ing of biological systems. However, many challenges need 
to be resolved before this information can be efficiently 
used to advantage.

Conclusions
We propose a model that is capable of incorporating par-
ent-of-origin effects into whole-genome prediction using 
pedigree and DNA information. Our study on real and 
simulated data suggested that the POE model could be 
useful when parent-of-origin effects contributed a large 
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proportion to the genetic variation, which was in agree-
ment with a recent study that incorporated parent-of-ori-
gin effects in whole-genome prediction under a GBLUP 
framework [62]. In addition, our results draw attention to 
a possible overfitting problem when considering parent-
of-origin effects in WGP with a Bayesian implementa-
tion, and indicate that one should be careful when using a 
POE model for prediction if the true signal attributed to 
parent-of-origin effects is weak in practice.

Owing to the discovery of more imprinted genes and 
of parent-of-origin-effects-affected complex traits, 
obtaining predictions that take parent-of-origin effects 
into account seems attractive. However, our simula-
tion indicated that it did not always work well unless 
parent-of-origin effects contributed to the complex trait 
substantially. Hence, assessing the contribution of par-
ent-of-origin effects to the total genetic variance (e.g., 
[127]) prior to model training might be helpful, as well 
as considering other sources of information than that 
from DNA polymorphisms (e.g., epigenetic variation) in 
evaluating parent-of-origin effects. Because many tech-
nical challenges need to be faced at the current stage of 
knowledge, future studies need to explore more effective 
prediction machines for parent-of-origin-effects-affected 
complex traits in animals, plants, and humans.
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