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Efficient genomic prediction based 
on whole‑genome sequence data using 
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Mario P. L. Calus1*  , Aniek C. Bouwman1, Chris Schrooten2 and Roel F. Veerkamp1

Abstract 

Background:  Use of whole-genome sequence data is expected to increase persistency of genomic prediction across 
generations and breeds but affects model performance and requires increased computing time. In this study, we 
investigated whether the split-and-merge Bayesian stochastic search variable selection (BSSVS) model could over-
come these issues. BSSVS is performed first on subsets of sequence-based variants and then on a merged dataset 
containing variants selected in the first step.

Results:  We used a dataset that included 4,154,064 variants after editing and de-regressed proofs for 3415 refer-
ence and 2138 validation bulls for somatic cell score, protein yield and interval first to last insemination. In the first 
step, BSSVS was performed on 106 subsets each containing ~39,189 variants. In the second step, 1060 up to 472,492 
variants, selected from the first step, were included to estimate the accuracy of genomic prediction. Accuracies were 
at best equal to those achieved with the commonly used Bovine 50k-SNP chip, although the number of variants 
within a few well-known quantitative trait loci regions was considerably enriched. When variant selection and the final 
genomic prediction were performed on the same data, predictions were biased. Predictions computed as the average 
of the predictions computed for each subset achieved the highest accuracies, i.e. 0.5 to 1.1 % higher than the accura-
cies obtained with the 50k-SNP chip, and yielded the least biased predictions. Finally, the accuracy of genomic predic-
tions obtained when all sequence-based variants were included was similar or up to 1.4 % lower compared to that 
based on the average predictions across the subsets. By applying parallelization, the split-and-merge procedure was 
completed in 5 days, while the standard analysis including all sequence-based variants took more than three months.

Conclusions:  The split-and-merge approach splits one large computational task into many much smaller ones, 
which allows the use of parallel processing and thus efficient genomic prediction based on whole-genome sequence 
data. The split-and-merge approach did not improve prediction accuracy, probably because we used data on a single 
breed for which relationships between individuals were high. Nevertheless, the split-and-merge approach may have 
potential for applications on data from multiple breeds.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic selection was introduced in many livestock 
breeding programs during the last decade. One of the 
main reasons for its rapid development is the availability 
of 50k single nucleotide polymorphism (SNP) chips for all 
major livestock species, including cattle [1], pigs [2], and 

poultry [3]. Following earlier predictions that a higher 
SNP density was necessary to enhance persistence of 
genomic predictions across generations [4–6] and breeds 
[7–9], SNP chips with at least ten times more SNPs were 
developed for cattle [10], pigs (personal communication 
MAM Groenen and AL Archibald), and poultry [11]. The 
added benefit of using these higher-density SNP chips for 
genomic selection is at best limited, both across genera-
tions (e.g. [12]) and across breeds [9].

At the same time, simulation studies suggested, rather 
optimistically, that the use of (imputed) whole-genome 
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sequence data could result in considerably increased 
accuracy of genomic prediction [5, 6]. An important 
limitation for genomic prediction using whole-genome 
sequence data, is the required computation time due to 
the sharp increase in SNP number, e.g. from 50k to over 
10 million. One strategy to deal with this, involves pre-
selection of SNPs that can, for instance, be based on 
the data from genome-wide association studies using 
imputed sequence data, and then on the selection of the 
SNPs with a significant association. Brøndum et al. [13] 
showed that combining data from such SNPs with the 
50k-SNP chip data can slightly increase the reliability 
of genomic prediction by up to 5 percentage points, but 
Veerkamp et al. [14] found no improvement in reliability 
using a similar approach. However, the initial idea behind 
genomic prediction was to simply include all SNPs in 
the genomic prediction model, and to perform variable 
selection [15]. Early results from empirical studies with 
imputed sequence data that simply included all imputed 
SNPs together in one genomic prediction model, showed 
little or no improvement over the use of 50k or higher-
density SNP chips, even when a Bayesian variable selec-
tion model was used, which is expected to identify the 
SNPs associated with the trait of interest [16, 17]. There 
are several possible explanations for this result: (1) 
imputed sequence data may still miss a significant pro-
portion of the causal SNPs; (2) strong LD between mul-
tiple SNPs and a QTL that potentially segregate together 
in long haplotypes, makes it more difficult to pinpoint 
the causal SNP, even when it is included in the data; and 
(3) the n  ≪  p (n for number of recorded phenotypes 
and p for number of estimated SNP effects) problem is 
much greater with imputed sequence data than with 
e.g. the 50k-SNP chip, because p increases considerably, 
while n remains the same. In addition, computation time 
increases proportionally to the sharp increase in p.

The issues involved in genomic prediction using 
sequence data, as described above, could be, at least 
partly, solved by reducing the number of SNPs by remov-
ing those that are not associated with the trait of interest. 
This can be achieved by performing a genome-wide asso-
ciation study [13, 18], or by pooling SNPs based on func-
tional data [17]. An alternative is to first apply a Bayesian 
variable selection model independently to subsets of the 
sequence data, such that SNPs are selected within each 
of the subsets. The second step involves merging of the 
selected SNPs across the subsets, and then analyzing the 
merged dataset by using a variable selection model to 
estimate the final genomic predictions. This approach 
was proposed for ultrahigh-dimensional regression, of 
which genomic prediction using whole-genome sequence 
is one example, and is termed “split-and-merge Bayesian 
variable selection” [19]. To date and to our knowledge, no 

applications of split-and-merge (SAM) Bayesian variable 
selection for genomic prediction using sequence data 
have been reported.

The objective of this study was to investigate the 
accuracy of SAM Bayesian variable selection applied to 
whole-genome sequence data. SAM modelling involves a 
series of initial analyses on subsets of SNPs, to select a 
final set of SNPs that are in strong association with the 
trait of interest. Our hypothesis is that the SAM Bayes-
ian variable selection model is able to alleviate the severe 
n  ≪  p problem that is encountered when all SNPs in 
the sequence data are simultaneously fitted in a single 
genomic prediction model.

Methods
Data
The data included de-regressed proofs (DRP) and effec-
tive daughter contributions (EDC; [20]) for 5556 Hol-
stein–Friesian bulls for somatic cell score (SCS), protein 
yield (PY), and interval first to last insemination (IFL) 
that were available from CRV (Cooperative Cattle 
Improvement Organization, Arnhem, The Netherlands). 
In addition, the bulls were genotyped with the Illumina 
BovineHD Bead chip (HD; 734,403 SNPs; Illumina Inc., 
San Diego), or with the 50k-SNP panel and the genotypes 
were then imputed to high-density.

Imputation to whole‑genome sequence
The BovineHD genotypes of the bulls were imputed to 
whole-genome sequence using the sequenced individu-
als from the 1000 Bull Genomes Project Run 4 as refer-
ence population. This multi-breed reference population 
comprised 1147 sequenced animals with on average an 
11-fold coverage of which 311 were Holstein bulls, but 
all the individuals were included in the reference popu-
lation because earlier studies showed that a multi-breed 
sequenced reference population can be beneficial for 
imputation accuracy, especially for variants with a low 
minor allele frequency (MAF) [21–23]. Polymorphic sites, 
including SNPs and short insertions and deletions, were 
identified across the 1147 individuals using the multi-
sample approach implemented in SAMtools’ mpileup 
along with the BCFtools as described in Daetwyler et al. 
[23]. Since the considered polymorphic sites include dif-
ferent types of variants, they will hereafter be jointly 
referred to as (sequence-based) variants. The genotype 
calls of the 1000 Bull Genomes reference population were 
improved with BEAGLE [24] using genotype likelihoods 
from SAMtools and inferred haplotypes in the samples. 
The sequence data contained 36,916,855 variants of which 
30,339,468 with four or more copies in the reference pop-
ulation were used for imputation. HD genotypes were 
imputed to whole-genome sequence by using standard 
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settings in MINIMAC2 [25] and the pre-phased reference 
genotypes obtained from BEAGLE. Selection of variants 
that had a MAF higher than 0.01 in the imputed Holstein 
population reduced the number of variants to 13,968,906.

Editing steps of the imputed sequence data involved 
removing variants for which all three genotypes were not 
observed and thus reduced their number from 13,968,906 
to 12,254,506 variants (Table 1).

Strategy to split genotyping data
Initially, the strategy to split the genotyping data was 
based on creating subsets of equally-spaced variants in 
terms of their relative position on the genome. Consider-
ing that n subsets would be formed, the subset x would 
contain variant x, n + x, 2n + x, etc. However, a prelimi-
nary analysis within those subsets showed that several 
subsets contained quite a few variants that displayed 
very high levels of linkage disequilibrium (LD) between 
them, which reduced model performance as observed 
from the strongly inflated SNP variance component. To 
alleviate this problem, the following additional edits were 
performed. Throughout the whole genome, for any group 
of variants with a squared correlation of 1 between geno-
types in the reference population, only the “rightmost” 
variant was retained, which drastically reduced the num-
ber of variants from 12,254,506 to 4,249,573 (Table 1).

Starting with these 4,249,573 variants, to further 
reduce the levels of LD within the subsets, subsets were 
formed using an alternative strategy. Variants were first 
sorted based on their MAF, which was used as a very 
simple proxy for high LD, considering that high LD 
between two loci can only be achieved if the loci have 
similar MAF [26, 27]. Based on the list of variants sorted 
in this way, 106 (= n) subsets of 40,090 or 40,091 variants 
were formed, where subset x contained variant x, n + x, 
2n + x, etc. The first 33 subsets contained 40,091 variants 
and the last 73 subsets contained 40,090 variants.

Initial analyses on these subsets revealed that, in spite 
of sorting variants on MAF to allocate those in high LD 

across subsets, the performance of the model for sev-
eral subsets still suffered from levels of LD that were too 
high. To alleviate this, for all subsets, the variant groups 
that had a squared correlation between genotypes higher 
than 0.95, only the “rightmost” was retained. For a lim-
ited number of subsets, the performance of the model 
was still poor, thus we repeated the same editing step 
again with a lower threshold of 0.90 for 16 subsets, and 
again with a threshold of 0.85 for two of those 16 subsets. 
Finally, the combined sorting of variants based on MAF 
and checking for LD within subsets reduced the number 
of variants from 4,249,573 to 4,154,064. See Table  1 for 
an overview of the number of variants removed during 
each editing step.

Model
Within each of the 106 subsets, a Bayesian stochastic search 
variable selection model (BSSVS) was applied for each of 
the three traits. The BSSVS model can be described as:

where 1 is a vector of ones, µ is the overall mean, u is a 
vector that contains residual polygenic effects of all bulls 
distributed as u

∣

∣A, σ 2
u ∼ N

(

0,Aσ 2
u

)

, where A is the 
numerator relationship matrix derived from the pedigree 
and σ 2

u is the polygenic variance, X is a matrix that con-
tains centered and scaled genotypes where each column 
j, denoted as vector xj, contains the genotypes of locus 
j (which takes the values of 0−2pj√

2pj(1−pj)
, 1−2pj√

2pj(1−pj)
, or 

2−2pj√
2pj(1−pj)

), for all variants (columns) for all bulls (rows), 

with pj the allele frequency at locus j, α is a vector that 
contains the (random) effects for all variants, and e is a 
vector of residuals distributed as e

∣

∣D, σ 2
e ∼ N

(

0,Dσ 2
e

)

, 
where D is a diagonal matrix containing e.g. 1/EDCi on 
the diagonal i, where EDCi is the EDC value of bull i, 
and σ 2

e  is the residual variance. The prior for µ was a con-
stant and both σ 2

u and σ 2
e  had a flat, uninformative prior 

distribution.
In BSSVS, the effect for locus j, αj, is sampled at each 

iteration from its conditional posterior density:

where �j = ωj σ̂
2
e

σ̂ 2
α
, which includes σ2α hereafter referred to 

as the SNP variance component, and α̂j is the conditional 
mean of the effect at locus j, which is computed as:

y = 1µ+ Zu + Xα + e,

N

(

α̂j;
ωjσ̂

2
e

x′jD
−1xj + �j

)

,

α̂j =
x′jD

−1y∗j
x′jD

−1xj + �j
,

Table 1  Overview of the number of variants removed dur-
ing each of the editing steps

Description Number of variants

Total Removed

Initial total 13,968,906

Only heterozygotes 179,871

Only two genotypes observed 1,534,529

Complete LD with other variants 8,004,933

High LD within subsets 95,509

Finally remaining 4,154,064
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where y∗j  is a vector of conditional phenotypes for 
locus j, defined as y∗j = y − 1µ̂− Zû − X1:j−1α̂1:j−1

−Xj+1:nα̂j+1:n, i.e. the phenotypes corrected for all esti-
mated effects other than those of locus j, n is the total 
number of variants in the analysis, and

The conditional posterior density of σ2α is an inverse-χ2 
distribution:

where να is the number of degrees of freedom that was 
set to 4.2 following [28], and the scale parameter S2α is cal-
culated as S2α = σ̃ 2

α (να−2)

να
, α̂2 is a vector of the squares of 

the current estimates of the effects of all loci, weighted 
by vector ω, which contains values ωj of 1 or 100 for each 
locus j.

Finally, the conditional posterior distribution of the 
indicator Ij for being associated with a quantitative trait 
locus (QTL) was:

where 1− π (π) is the prior probability that Ij = 1 
(Ij = 0), rj = x′jD

−1y∗j + x′jD
−1xjα̂j, where y∗j  contains 

the conditional phenotypes as defined previously, and 
f (rj|Ij = δ), where δ is either 0 or 1, is proportional to 
1√
v
e−

r2j
2v, where v =

(

x′jD
−1xj

)2 σ2αj
ωj

+ x′jD
−1xjσ

2
e.

The conditional posterior densities of σ2u and σ2e were 
inverse-χ2 distributions, respectively σ2u|u,A−1 ∼ χ−2 
(

np − 2,u′A−1u
)

 and σ2e |e,D−1 ∼ χ−2
(

nr − 2, e′D−1e
)

, 
where np is the number of animals in the pedigree, and 
nr is the number of animals with records.

The Gibbs sampler was implemented using right-hand-
side updating [29]. For each of the subsets, a Gibbs chain 
of 30,000 with a burn-in of 10,000 iterations was run. 
More information on the implementation of this model is 
in [29]. For all subsets, the parameter π was set to 0.999.

Merge (selected) genotyping data
Based on the results of the analyses within subsets, vari-
ants were sorted based on their posterior probabilities, 
i.e. the posterior means of the QTL-indicators Ij. Then, 
genotypes of the top ranked variants were merged as fol-
lows. In the merged data file, variants 1 to 106 were the 
number 1 ranked variants of subsets 1  to  106, variants 
107 to 212 were the number 2 ranked variants of subsets 
1  to  106, etc. From each subset, the 5000 variants with 
the highest posterior probability were included in the 

ωj = 1 if Ij = 1,

ωj = 100 if Ij = 0.

σ2α|α ∼ χ−2
(

να + n, S2α + ω
′
α̂
2
)

,

Pr
(

Ij = 1
)

= f(rj|Ij = 1)(1− π)

f
(

rj|Ij = 0
)

π + f(rj|Ij = 1)(1− π)
,

merged genotype file, yielding a total of 530,000 variants. 
Again to avoid problems due to high levels of LD between 
variants, in this merged dataset, of pairs of variants that 
had a squared correlation between the genotypes higher 
than 0.99, only the “rightmost” variant was retained, 
which reduced the number of variants in the merged 
dataset from 530,000 to 460,158 for SCS, 471,528 for IFL, 
and 472,492 for PY. Subsequently, the BSSVS model was 
run using the first 1060, 5300, 10,600, 53,000, 106,000 
variants for each of the traits, or all the variants (460,158, 
471,528, or 472,492) in the merged genotype dataset.

Alternatives to the split‑and‑merge strategy
To compare the SAM procedure based on imputed 
sequence data to other strategies, all predictions with the 
merged subsets were either performed with or without 
adding all 50k SNPs from the BovineSNP50 chip (Illu-
mina Inc., San Diego). In total, 41,682 SNPs on the com-
monly used 50k-SNP chip were included in the dataset 
after imputation to whole-genome sequence, and were 
used in all the scenarios that included the SNPs of the 
50k-chip. Predictions were also performed using only 
the 50k SNPs or all 4,154,064 variants that included 
the 41,682 SNPs of the 50k-chip. As a final alternative, 
genomic estimated breeding values (GEBV) for the selec-
tion candidates were computed as the average of the 
GEBV obtained within each of the 106 subsets. This can 
be considered as an average of the predictions generated 
from randomly well-spaced and informative genome-
wide 50k-like sets of variants.

Because some of the analyses on the merged datasets 
and some of the alternative strategies described above 
involved considerably more variants than the analyses for 
the subsets, all analyses on the merged datasets and the 
alternative strategies were performed by running a Gibbs 
chain of 300,000 iterations with a burn-in of 50,000. For 
all merged datasets, the parameter π was set to 0.999, 
thus, analyzing all 4,154,064 variants in a single analysis, 
implied that 4154 of the variants were assumed to have a 
large effect. To investigate the impact of the value used 
for π, a limited number of the merged datasets was also 
analyzed with a value of π = nmerged−4154

nmerged
 where nmerged is 

the number of variants included in the merged dataset.

Model convergence
One potential benefit of the SAM BSSVS approach, 
as indicated above, is that within the subsets the n ≪ p 
problem is expected to be much less severe than for an 
analysis that involves all the variants, simply because 
the number of variants (p) within each subset is much 
smaller. In addition, both the creation of subsets of 
variants and the editing carried out to remove variants 
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in complete or high LD, are expected to have a posi-
tive impact on model performance within the subsets, 
in terms of convergence. To assess model convergence, 
effective sample sizes of the SNP variance component σ2α 
of all the analyses were computed following [30]. In addi-
tion, for the analyses on the merged subset, and those 
including all variants, the correlation was computed 
between the posterior GEBV obtained after 50,000 ver-
sus 250,000 iterations of the same Gibbs chain after the 
burn-in. This correlation is an indication of the change 
of the GEBV between 50,000 and 250,000 iterations after 
the burn-in.

Evaluation of predictions
To evaluate prediction accuracy of all applied models, the 
animal data were split into 3415 reference bulls, all born 
before 2001, and 2138 validation bulls born between 
2001 and 2008. For all the models described previously, 
only the phenotypes of the 3415 reference bulls were 
used. The targeted prediction for validation bull i, i.e. 
its GEBV, was computed as GEBVi = ui + x′iα, where x′i 
contains the genotypes of bull i. Prediction accuracies 
were computed as the correlation between the DRP and 
the computed GEBV for the 2138 validation bulls. Bias 
was assessed via the coefficient of the regression of the 
DRP on computed GEBV for the validation bulls.

To investigate the impact of using the different final 
datasets on the detection of QTL, which is the ultimate 
goal when using sequence data for genomic prediction, 
the posterior probabilities of all the variants of all models 
were evaluated. This was done by displaying the Manhat-
tan plots with Bayes factors greater than 1. Bayes factors 
were computed as:

where H1 is the hypothesis that the variant has a large 
effect, Pr

(

H1|y
)

 is the posterior probability of the hypoth-
esis and Pr(H1) is the prior probability of the hypothesis. 
1− Pr

(

H1|y
)

 and 1− Pr(H1) represent, the posterior and 
prior probability for the alternative hypothesis, respec-
tively. A high Bayes factor indicates that a variant is 
strongly associated with the trait.

Results
Genomic prediction in the split subsets
For each of the 106 subsets, the estimated effects of vari-
ants were used to predict GEBV for the 2138 validation 
animals. These prediction accuracies were generally quite 
close to the accuracies obtained with the 50k-SNP chip, 
although some subsets yielded slightly lower accuracies, 

BF =
Pr

(

H1|y
)

1− Pr
(

H1|y
) ÷ Pr(H1)

1− Pr(H1)
,

and a few subsets even considerably lower accuracies 
(Fig.  1). Plotting the prediction accuracies against the 
variance of the GEBV revealed that prediction accura-
cies that were similar to those obtained with the 50k-
SNP chip were associated with a slightly smaller variance 
of the GEBV than that with the 50k-SNP chip (Fig.  2). 
In addition, most of the lower prediction accuracies 
obtained for subsets were associated with an inflated 
variance of the GEBV. This suggests that for some of the 
subsets, analyses still suffered from the co-linearity being 
too high among the variants included, in spite of the edits 
performed to alleviate this issue.

To further illustrate the poor model performance due 
to high LD, accuracies for SCS obtained before the addi-
tional step of LD pruning were plotted against the vari-
ance of the GEBV for the 16 subsets for which additional 
LD pruning was performed (see Additional file 1: Figure 
S1A). This figure clearly shows that, in some cases, the 
variance of the GEBV was severely inflated and asso-
ciated with considerably decreased accuracies. Com-
parison of the initial accuracies against those after the 
additional LD pruning step showed that, in most cases, 
this step largely resolved the issue.

Genomic prediction using the merged final dataset
Using the merged dataset, after selecting variants from 
the subsets based on posterior probabilities, analy-
ses were performed using a minimum of 1060 variants 
and a maximum of 460,158 variants for SCS, 471,528 
variants for PY, and 472,492 variants for IFL. Accura-
cies increased considerably as the number of variants 
included increased up to ~53,000 variants, while small 
additional increases were observed as the number of 
variants increased until the maximum values (Fig.  3). 
When the 50k SNPs were added to the merged dataset, 
accuracies started to increase at a higher level when the 
number of added variants from the merged dataset was 
small, but they reached values very close to those based 
on the merged data without the 50k SNPs as the num-
ber of variants used increased (Fig. 3). In almost all cases, 
the maximum accuracies that were achieved using the 
variants from the merged dataset were at best equal to 
those achieved using only the 50k SNPs. In fact, for IFL, 
using only the 50k SNPs resulted in considerably bet-
ter accuracy than using any number of variants from 
the merged dataset, regardless of whether the 50k SNPs 
were included or not. The accuracies of the GEBV that 
were computed as the average of the GEBV computed for 
each of the 106 subsets, were highest for all three traits 
and were 0.5  to  1.1  % higher than those obtained with 
the 50k SNPs. Finally, compared to the average GEBV 
across the subsets, the accuracies of the GEBV based on 
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all variants were 0.3, 1.5, and 1.0 % lower for SCS, PY, and 
IFL, respectively.

Bias of the GEBV was assessed as the coefficient of the 
regression of observed EBV on the GEBV (Fig.  4). This 
showed that, in almost all cases, the bias of the GEBV 

based on any of the merged datasets was greater than 
that of the GEBV obtained with the 50k SNPs, since the 
regression coefficients were even more smaller than 1 
than for the GEBV based on the 50k SNPs. The GEBV 
based on all 4,154,064 variants were less biased than 

Fig. 1  Prediction accuracies achieved in each of the 106 subsets for SCS, PY and IFL. The dashed red vertical line indicates the prediction accuracy 
obtained using 41,682 SNPs included on the 50k-SNP chip

Fig. 2  Prediction accuracies versus variance of GEBV in each of the 106 subsets for SCS, PY and IFL. Open blue circles indicate values for subsets. The 
red solid triangle indicates the prediction accuracy and variance of GEBV obtained using SNPs included on the 50k-SNP chip
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those based on the 50k SNPs, while the average of the 
GEBV computed for each of the 106 subsets were the 
least biased for all three traits.

To investigate the potential impact of the value used 
for the parameter π, analyses based on the 50k SNPs 
alone or supplemented with 1060  to  53,000 sequence-
based variants were repeated by setting a π value that 
assumed that, in each analysis, 4154 variants had a 
large effect. The results obtained, compared to those 
using a π value of 0.999, showed that the value of π has 
little effect on the accuracy and bias of the final GEBV 
(Table 2).

Effective size of Gibbs sampling chain
Effective sample sizes of the SNP variance component 
of all the analyses were computed to compare the model 
convergence. A larger effective sample size achieved with 
the same number of Gibbs iterations indicates better 
mixing of the Gibbs chains and hence better convergence. 
Within traits across the subsets, average effective sam-
ple sizes of 112.7, 84.8 and 94.6 were obtained, respec-
tively, for SCS, PY and IFL (Fig. 5). Effective sample sizes 
obtained with the 50k SNPs, when analysed with a Gibbs 
chain of 30,000 iterations as for the subsets, were equal to 
126.4, 128.1 and 87.2.8 for SCS, PY and IFL, respectively 
and were close to the average (SCS and IFL) or higher 
than the average value (PY) obtained across the subsets 
(Fig. 5).

The effective sample size based on a Gibbs chain of 
300,000 iterations with 50,000 discarded as burn in, aver-
aged across the three traits, was equal to 1247.4 for the 
50k SNPs (Fig. 6). The effective sample size obtained with 
the merged dataset was large regardless of whether 1060 
or 5300 variants were used, but decreased rapidly as the 
number of included variants increased (Fig.  6). Adding 
the 50k SNPs to the merged datasets yielded somewhat 
smaller effective sample sizes with 10,600 or less vari-
ants included in the merged dataset, but larger effective 
sample sizes as the number of variants included in the 
merged dataset increased. Finally, including all 4,154,064 
variants in the analysis resulted on average in an effective 
sample size of 48.6.

The values of these effective sample sizes show that 
300,000 iterations with 50,000 discarded for burn-in was 
in general sufficient for the merged datasets and the data 
including all 4,154,064 variants. To investigate whether a 
smaller number of iterations would lead to the same result, 
in spite of the smaller effective chain sizes, GEBV for the 
validation animals were also computed using only 50,000 
iterations after the burn-in. For the merged final datasets, 
the correlation between these GEBV and those computed 
using 250,000 iterations after the burn-in was higher than 
0.998, while it was higher than 0.9999 for the analysis using 
all 4,154,064 variants (results not shown). This demon-
strates that a Gibbs chain based on 100,000 iterations with 
50,000 as burn-in was sufficient for any of these analyses.

Fig. 3  Prediction accuracies achieved using increasingly more variants in the merged dataset for SCS, PY and IFL. Merged variants were either 
included alone (blue dots) or combined with the 41,682 50k-chip SNPs (green triangles). Horizontal lines indicate the prediction accuracy obtained 
using the average GEBV across subsets (dashed black), GEBV computed using all 4,154,064 variants (dot-dashed grey), or the 50k SNPs (red dashed)
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Ability of the model to select variants in QTL regions
To better understand the ability of the model to select 
variants in QTL regions across the different datasets, we 
made Manhattan plots for all Bayes factors greater than 1. 
First, we considered analyses based on 50k SNPs, merged 
data from 1060 to ~470,000 variants, or all 4,154,064 
variants (Figs. 7, 8, 9, for traits SCS, PY, and IFL, respec-
tively). The results using only the 50k SNPs showed sev-
eral peaks for each of the three traits. Several of these 
peaks are also observed when using only the merged 

data including 1060 variants, although, in this case, the 
maximum Bayes factors were smaller. Adding more vari-
ants to the merged data, i.e. going from 1060 to ~470,000 
variants, resulted in an increase of the maximum Bayes 
factors for some of the peaks but at a certain point, i.e. 
generally when more than 53,000 variants were used, 
most of the peaks disappeared.

Based on the prior specifications of the model, these 
results can be interpreted as follows. In the model, we 
used the same value for π regardless of the number of 

Fig. 4  Slope of the regression of observed EBV on the GEBV when using increasingly more variants in the merged dataset for SCS, PY and IFL. 
Merged variants were either included alone (blue dots) or combined with the 41,682 50k chip SNPs (green triangles). Horizontal lines indicate the 
slope obtained using the average GEBV across subsets (dashed black), GEBV computed using all 4,154,064 variants (dot-dashed grey), or the 50k SNPs 
(red dashed)

Table 2  Prediction accuracies and bias of the GEBV

GEBV are computed using 50k SNPs alone or supplemented with 1060 to 53,000 sequence-based variants. Bias is assessed as the slope of the regression of observed 
EBV on the GEBV

Analyses used either a π value of 0.999, or a value calculated assuming that 4154 (i.e. 0.1 % of 4,154,064) variants were assumed to have a large effect

Subset π Accuracy Slope

SCS PY IFL SCS PY IFL

50k 0.999 0.711 0.707 0.627 0.945 0.882 0.837

50k + 1060 0.999 0.712 0.702 0.603 0.909 0.843 0.737

50k + 5300 0.999 0.711 0.647 0.591 0.865 0.647 0.709

50k + 10,600 0.999 0.710 0.698 0.609 0.865 0.840 0.771

50k + 53,000 0.999 0.710 0.701 0.606 0.888 0.862 0.782

50k 0.900 0.714 0.703 0.625 0.953 0.879 0.839

50k + 1060 0.903 0.710 0.694 0.609 0.897 0.829 0.778

50k + 5300 0.912 0.704 0.685 0.607 0.862 0.813 0.772

50k + 10,600 0.921 0.705 0.691 0.601 0.867 0.831 0.764

50k + 53,000 0.956 0.706 0.689 0.601 0.884 0.847 0.773
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variants included in the analysis. When using only 1060 
variants, a proportion of 0.999 of those a priori was con-
sidered to have a “small” effect. This implies that due to 
this prior setting the model was hardly able to allocate a 
large effect to any of the variants in many iterations of the 
Gibbs chain. As a result, the maximum posterior prob-
abilities and Bayes factors were relatively low in these 

situations. As the number of added variants increased, 
on average the size of the effects sampled from the dis-
tribution of “small” effects decreased, because these vari-
ants were assumed to be less strongly associated with 
the trait than those already included in the merged data-
set. Thus, variants that displayed a strong association 
in more iterations of the Gibbs chain were assigned a 
large effect, which generally yielded larger Bayes factors 
than when a limited number of variants were included 
in addition to the initial 1060 variants. However, if the 
number of included variants increased considerably, 
the competition between variants to capture a certain 
effect increased and the estimated effects per variant 
decreased, which is translated by the model as a decrease 
in the amount of evidence for a variant to have a strong 
association with a trait. This eventually leads to a lower 
baseline of the Bayes factors, as was clearly the case when 
all variants were included.

The trends in Bayes Factors that were observed 
when only merged datasets including a limited num-
ber of sequence-based variants were used (Figs.  7, 8, 
9), changed drastically when the 50k SNPs were added 
in the analysis (Figs.  10, 11, 12 for traits SCS, PY, and 
IFL, respectively). This is because the merged dataset 
contained all 50k SNPs of which a large number most 
likely had (very) small effects. The trends in Bayes fac-
tors that were observed when only merged datasets 

Fig. 5  Effective sample size of the SNP variance component (ESS SNP VC) achieved for each of the 106 subsets for SCS, PY and IFL. The dashed red 
vertical lines indicate the effective sample size of the SNP variance component obtained using 41,682 SNPs included on the 50k-SNP chip and a 
Gibbs chain of 30,000 iterations

Fig. 6  Effective sample size of the SNP variance component aver-
aged within the computation strategy across SCS, PY and IFL. Merged 
variants were either included alone (blue dots) or combined with the 
41,682 50k chip SNPs (green triangles). Horizontal lines indicate the 
effective sample size obtained using the 50k SNPs (dashed red) or all 
4,154,064 variants (dot-dashed grey)
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including a large number of variants were used, were 
also found when these same variants and the 50k SNPs 
were included in the analysis, simply because the relative 
impact of the 50k SNPs on the results rapidly decreased 
as the number of sequence-based variants included 
increased. To further investigate the impact of increasing 
the number of sequence-based variants in the analysis in 
addition to the 50k SNPs, we zoomed in on the Manhat-
tan plot for PY across two chromosomal regions that are 
known to have associations to the investigated traits: (1) 
the DGAT1 region [31, 32] (see Additional file 2: Figure 
S2), and (2) the region that comprises the casein genes 
CSN1S1, CSN1S2, CSN2, and CSN3 [33] (see Additional 
file 3: Figure S3). The results of these plots show that in 

the analyses based on the merged datasets, the number 
of loci with high Bayes factors in regions that have well-
known large effects was considerably enriched, although 
they did not generate more precise or higher Bayes factor 
peaks.

Overall, in terms of Bayes factors, the clearest peaks 
were observed when the 50k SNPs and the 1060 
sequence-based variants with the strongest association 
with the trait were included in the analysis.

Computing resources
The BSSVS analysis on the subsets that comprise 3415 
animals with phenotypes and on average 39,189 vari-
ants, which involved a Gibbs chain of 30,000 iterations, 

Fig. 7  Bayes factors greater than 1 for SCS using different sets of variants. Considered sets of variants are the 50k SNPs, increasingly larger subsets 
(1060 to 460,158) of variants, or all 4,154,064 variants
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took ~140 min and required 108 Mb of memory. Increas-
ing the number of iterations of the Gibbs chain natu-
rally results in a linear increase in CPU time. Increasing 
the number of variants also resulted in a linear increase 
in CPU time and a linear increase in memory use. For 
instance, the BSSVS analysis for all 472,492 selected vari-
ants for IFL, which involved a Gibbs chain of 300,000 
iterations, took 277  h and required a peak memory of 
1.01 Gb. The BSSVS analyses including all 4,154,064 vari-
ants, which also involved a Gibbs chain of 300,000 itera-
tions, took on average across the three traits ~110  days 
and required a peak memory of 9.4 Gb.

Discussion
The objective of this study was to investigate the accuracy 
of SAM Bayesian variable selection applied to whole-
genome sequence data. Our initial analyses showed 
that pruning for (near) complete LD is very important 
for applications of Bayesian genomic prediction models 
that explicitly estimate a SNP variance component using 
sequence data, since it may reduce the performance 
of these models. Based on our results, pruning within 
the subsets based on an LD threshold of 0.9 is recom-
mended. Whether this threshold is sufficient can be eas-
ily monitored by checking the variance of the GEBV in 

Fig. 8  Bayes factors greater than 1 for PY using different sets of variants. Considered sets of variants are the 50k SNPs, increasingly larger subsets 
(1060 to 471,528) of variants, or all 4,154,064 variants
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the training data, where inflated values indicate impaired 
model performance and probably decreased prediction 
accuracy.

Our results showed that the SAM Bayesian variable 
selection model provides a procedure to consider all 
sequence-based variants in the prediction model, while 
at least part of the analysis can be performed in parallel. 
At the same time, the performance of the model in terms 
of achieved effective sample size of the estimated SNP 
variance component was, within the subsets, reasonably 
similar to that of the analysis based on the 50k SNPs. 
However, for the merged datasets, increasing the num-
ber of included variants required an increasingly longer 
Gibbs chain to achieve the same effective sample size. 

The accuracy achieved based on the merged data was 
at best similar to that based on the 50k SNPs, and only 
slightly larger when the average GEBV across the subsets 
was used to predict the validation bulls.

(Lack of) Benefit of using sequence data
Results of simulation studies showed that the impact of 
using whole-genome sequence data on the accuracy of 
genomic prediction depends, at least partly, on the char-
acteristics of the simulated data. Gains in accuracy were 
reported to be either large when causal variants had a low 
MAF [34] or the number of QTL was relatively small [5, 
6], or small but significant when the MAF of the causal 
variants had a neutral distribution [34], or small to 

Fig. 9  Bayes factors greater than 1 for IFL using different sets of variants. Considered sets of variants are the 50k SNPs, increasingly larger subsets 
(1060 to 472,492) of variants, or all 4,154,064 variants
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virtually non-existent when the simulated data reflected 
Holstein–Friesian data [35, 36]. However, recent empiri-
cal studies using whole-genome sequence data observed 
at best only a very small increase in accuracy compared 
to using the 50k or HD chips [16, 17, 37]. In our study, 
simply using the average GEBV across all 106 subsets 
yielded a marginal increase in accuracy compared to 
using 50k SNPs. It should be noted that using such an 
average GEBV is a somewhat simplistic approach. Nor-
mally, when different sources of information are for 
instance combined in a selection index, the covariances 
between those sources of information are considered. In 
this respect, simply taking the average GEBV is the same 
as assuming that the correlations between GEBV from all 

possible pairs of split subsets are the same, and that the 
accuracy of the GEBV of each of the split subsets is also 
the same. This assumption may be approximately valid, 
since LD was considered (based on MAF) when variants 
were allocated to different subsets.

Using all variants, either simultaneously or by comput-
ing average GEBV across all subsets, resulted in GEBV 
that were considerably less biased than the 50k GEBV. 
The GEBV of the merged subsets were the most biased 
i.e. had the most inflated variance. These results can be 
explained as follows. Selection of variants and the subse-
quent prediction based on the merged dataset were both 
based on the same phenotypic data. Variants for which 
effects were overestimated in the first step, are more 

Fig. 10  Bayes factors greater than 1 for SCS using 50k SNPs and increasingly more selected sequence-based variants. Considered sets of variants 
are the 50k SNPs, or the 50k SNPs plus increasingly larger subsets (1060 to 460,158) of variants



Page 14 of 19Calus et al. Genet Sel Evol  (2016) 48:49 

likely to be selected into the merged dataset, than other 
variants. As a result, estimated variant effects and estima-
tion errors are correlated, and the effects of the selected 
variants will tend to be overestimated in the second step 
as well [38], which results in an inflated GEBV variance. 
These inflated GEBV variances can probably be avoided 
only by performing variant selection and the final predic-
tion in independent datasets. The 50k SNPs are selected 
to have a high MAF, and thus they can capture a large 
amount of the variance with a relatively low number of 
SNPs. This ascertainment bias apparently also introduces 
some bias in the GEBV. Finally, using average GEBV 
across all subsets was the approach that introduced the 
least bias in the GEBV.

Several reasons may explain the generally observed 
lack of improvement in prediction accuracy when using 
imputed sequence data: (1) impaired accuracy of imputed 
genotypes relative to e.g. 50k genotypes; (2) causal muta-
tions may have a much lower MAF than most of the vari-
ants on commonly used SNP arrays, and may therefore 
be more easily filtered out of the data; and (3) imputa-
tion accuracy of sequence variants with a low MAF was 
shown to be, in general, poorer than that of common 
variants [21, 39], which would indicate that the value of 
such variants in the prediction process may be low. Other 
reasons that may explain why prediction accuracy was 
not improved are related to the model. One issue might 
be that the model fails to put sufficient weight on the 

Fig. 11  Bayes factors greater than 1 for PY using 50k SNPs and increasingly more selected sequence-based variants. Considered sets of variants are 
the 50k SNPs, or the 50k SNPs plus increasingly larger subsets of variants (1060 to 471,528)
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causal variants due to the increasing importance of the 
n ≪ p problem, or because a more correct identification 
of the variants that have strong associations simply did 
not improve the prediction for the considered validation 
animals. These topics related to model performance will 
be discussed in the next section.

In our study, the validation population consisted of ani-
mals from generations after those from which the train-
ing animals originated, e.g. 84 % of the validation animals 
had their sire included in the training dataset. If only the 
341 validation bulls without their sire in the reference 
population were considered, similar results (not shown) 
were obtained, probably because this subset of bulls still 
had strong relationships with the reference population. 

The relatively strong relationships between validation 
and training animals may explain why there was no ben-
efit from including e.g. the 1060 sequence-based variants 
that had a strong association to the traits in addition to 
the 50k SNPs, although the Bayes factors suggested that 
this particular analysis performed slightly better to detect 
loci that were strongly associated with the trait of inter-
est. It should be noted that this scenario is very similar 
to the approach of Brøndum et  al. [13], in which 1623 
QTL that had been filtered for associations with traits 
of interest, were added to a custom chip in addition to 
the 50k SNPs. These authors observed small increases in 
reliability up to 5 percentage points. A similar approach 
that consists in detecting QTL across rather than within 

Fig. 12  Bayes factors greater than 1 for IFL using 50k SNPs and increasingly more selected sequence-based variants. Considered sets of variants are 
the 50k SNPs, or the 50k SNPs plus increasingly larger subsets of variants (1060 to 472,492)
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breeds, may lead to similar or slightly greater improve-
ments in reliability. Such applications using sequence-
based variants are also expected to increase accuracies 
across multiple generations, and also for a breed not 
included in the reference population.

One of the specific aims of our application of the SAM 
approach, was to alleviate issues due to the severe n ≪ p 
problem when using whole-genome sequence data. On 
the one hand, our results clearly showed that reduc-
ing the number of variants based on the SAM approach 
resulted in a considerable increase in effective sample 
sizes of the Gibbs chain. On the other hand, given that 
the accuracies did not change when the Gibbs chain 
was increased from 100,000 to 300,000 samples and all 
4,154,064 variants were included (results not shown), 
one can question the importance of the effective sample 
size of the SNP variance component when many variants 
in high LD are included in the model. In this case, there 
is probably a very large number of different sets of esti-
mated variant effects that all yield very similar results in 
terms of GEBV.

The issue of high LD, which may extend across long 
distances and therefore over many variants, can be, at 
least partly, solved by preselecting variants. Attractive 
approaches to do this, are either to perform the SAM 
strategy proposed here, or a GWAS [40] across multi-
ple breeds. Using multiple breeds is anticipated to yield 
much narrower peaks and thus much more precise iden-
tification of significant loci than within-breed analy-
ses, because LD decays much faster across than within 
breeds.

In conclusion, the SAM approach applied to whole-
genome sequence data did not improve prediction 
accuracies in our study, probably because training and 
prediction took place within a single breed in which 
relationships between animals are high. This is also in 
agreement with the results of MacLeod et al. [36]. Nev-
ertheless, the SAM approach has the potential to filter 
important sequence-based variants that should help to 
improve the accuracy of across-breed or multiple-breed 
genomic prediction, for which results of simulation [41] 
and empirical studies [18] suggest that focusing on SNPs 
in QTL regions does lead to an improvement in accuracy 
of genomic prediction.

Prior specification Bayesian variable selection model
One of the features of variable selection models is that 
they propose a priori variances that lead to differential 
shrinkage across loci. Overall, the differences between 
any of the prediction models belonging to the so-called 
“Bayesian Alphabet” type [42], are due to differences in 

prior specifications, which ultimately result in differ-
ences in differential shrinkage between these models 
[43]. Based on empirical studies that mostly used com-
mon 50k-SNP chips, such differences are not consist-
ent and thus do not favour any of these models [43]. An 
unanswered question is whether differences between 
these models will appear when applied to whole-genome 
sequence data, possibly combined with the SAM or any 
other procedure to pre-select variants.

As the number of included variants increases, it may 
become necessary to adapt the model settings to the 
specific characteristics of the data. In the majority of the 
analyses, we considered a priori that 99.9 % of the vari-
ants of all the datasets had a small effect. In reality, this 
number may be quite different across the range of data-
sets considered. An alternative strategy is to assume 
that the absolute number of variants with a large effect 
remains the same regardless of the number of variants 
included, and to adapt π accordingly [16]. We tested this 
approach for several of the merged datasets (Table  2), 
and concluded that the value of π had little impact on 
the final GEBV. However, the value of π does affect the 
estimated effects of individual loci. Assuming the same π 
when many more variants are included may result in too 
many variants, which actually have a small effect, being 
allocated a large effect in the model. As a result, the size 
of large effects allocated by the model will decrease con-
siderably, as observed in our study. This suggests that the 
optimal proportion of variants that are a priori assumed 
to have a large effect in the model, increases as the num-
ber of variants included increases, but at a slower rate 
than the number of variants itself.

When using whole-genome sequence data, the level of 
LD between close variants is very high. After additional 
editing, the number of variants in the dataset decreased 
by 65 % by pruning for r2 values between genotypes of 1. 
The effective number of loci relative to the total number 
of loci is expected to decrease if the level of LD increases. 
Perhaps prior probabilities should be defined as the effec-
tive number of loci expected to be associated with a trait, 
divided by the total number of effective loci. Neverthe-
less, there is currently no straightforward available pro-
cedure to determine the number of loci that really affect a 
trait. The high level of LD could also be taken into consid-
eration in the prior specification of the model. Although 
few studies have investigated this approach, one study 
showed that it results in small increases in accuracy of 
genomic prediction when the SNP density used is com-
parable to that of 50k-SNP chips or lower [44]. Another 
study showed that considering the dependency between 
SNPs may lead to a more parsimonious parameterization 
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of the model [45], which may be also achieved in  situa-
tions with high LD between SNPs by modelling haplo-
types instead of SNPs, e.g. [46].

Efficiency
Our results confirmed that the SAM procedure combined 
with Bayesian variable selection models provided a pro-
cedure that can use whole-genome sequence in genomic 
prediction models while limiting the overall comput-
ing time. Assuming that all analyses of the split datasets 
can be performed in parallel, the total computation time 
was 124 h, i.e. 5 h for the split analysis and 119 h for the 
analysis of the merged data, considering the scenario in 
which 212,000 selected variants were included in the final 
analysis. The computing time increased linearly as the 
number of variants included increased, and as a result 
the analysis of all 4,154,064 variants with a Gibbs chain of 
300,000 iterations took 111 days. Processing fewer vari-
ants simply results in less computation time for a single 
iteration of the Gibbs chain. At the same time, our results 
showed that pre-selection of variants leads to faster con-
vergence, thus to decreased length of the Gibbs chain.

Conclusions
We showed that the SAM approach, combined with the 
BSSVS model, was able to perform genomic prediction 
efficiently using whole-genome sequence data. Effectively, 
it splits one large computational task into many much 
smaller ones, and thereby makes use of parallel process-
ing. As a result, the whole procedure can be completed in 
less than two days, considering that only a few thousand 
variants from the sequence data are included in the final 
merged dataset, instead of 111  days when all sequence-
based variants are included simultaneously. If the average 
of the GEBV across subsets is used, with parallel process-
ing of the analyses, computation time can be shortened to 
5 h. In addition, the SAM procedure improved the mix-
ing properties of the Gibbs chains in the analysis, sim-
ply by reducing the total number of variants included in 
any of the analyses. In particular, it is important to prune 
variants, within the subsets, that have complete or high 
levels of LD, i.e. for which r2 values between genotypes 
are greater than 0.9 since they reduce the prediction per-
formance. Predictions based on variants in the merged 
dataset did not outperform those based on the 50k-SNP 
chip, although we observed that the model was able to 
considerably enrich the number of selected variants in 
a few well-known QTL regions, even when only small 
to moderate numbers of selected sequence-based vari-
ants were added. One drawback of the SAM procedure is 
that it leads to bias in terms of inflated GEBV variances, 
which, probably, can be avoided only by performing vari-
ant selection and the final prediction in independent 

datasets, a procedure that may be difficult to perform 
in practice. Using GEBV computed as the average of the 
GEBV computed in each of the subsets, achieved the 
highest accuracy for all three traits, i.e. it was 0.5 to 1.1 % 
higher than the accuracies obtained with the 50k-SNP 
chip. These average GEBV were also the least biased for 
all three traits analyzed. Lack of improvement in predic-
tion accuracy with the SAM approach in our study was 
probably due to training and prediction being performed 
within a single breed with high relationships between 
individuals. Nevertheless, the SAM approach may have 
the potential to improve accuracy of across-breed or 
multiple-breed genomic prediction.
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