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Abstract 

Background:  In many animal breeding programs, with the increasing number of genotyped animals, estimation of 
genomic breeding values by the single-step method is becoming limited by excessive computing requirements. A 
recently proposed algorithm for proven and young animals (APY) is an approximation that reduces computing time 
drastically by dividing genotyped animals into core and non-core animals, with only computations for core animals 
being time-consuming. We hypothesized that choosing core animals based on representing all generations, minimiz-
ing the relatedness within the core group, or maximizing the number of genotyped offspring, would result in greater 
accuracies of estimated breeding values (EBV).

Methods:  We compared eight different core groups for the three pig breeds DanAvl Duroc, DanAvl Landrace and 
DanAvl Yorkshire. These eight sparse approximations of the single-step method were evaluated based on correlations 
of EBV for genotyped animals obtained from the sparse methods with those obtained from the usual version of the 
single-step method. We used a single-trait model with daily gain as trait.

Results:  For core groups that distributed animals across generations, correlations for genotyped animals (from 0.977 
to 0.989) were higher than for those that did not distribute core animals across generations (from 0.934 to 0.956). For 
core groups that maximized the number of genotyped offspring, correlations for genotyped animals (from 0.983 to 
0.989) were higher than for other core groups (from 0.934 to 0.981). There was no clear association between low relat-
edness within the core group and accuracy of approximations.

Conclusions:  We found that for core groups that represent all generations and that maximize the number of geno-
typed offspring, accurate approximations of EBV were obtained. However, we did not find a clear association between 
accuracy and relatedness within the core group. For the APY method, this is the first study that reports systematic cri-
teria for the creation of core groups that result in more accurate EBV than a similar-sized random core group. Random 
core groups only ensure across-generation representation. Therefore, we recommend choosing a core group that 
represents all generations and that maximizes the number of genotyped offspring for single-step genomic evaluation 
using the APY method.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
To estimate genomic breeding values, the single-step 
method is the method-of-choice for many animal breed-
ing programs [1–4]. A challenge when using this method 
is the long computing time when the number of geno-
typed animals increases [5, 6], which puts a constraint on 
the estimation of genomic breeding values in most breed-
ing schemes. Misztal et al. [5] proposed a computationally 

efficient solution to this problem, called the algorithm for 
proven and young animals (APY). APY computes sparse 
approximations of the inverse genomic relationship matrix 
by allocating animals to two groups: core and non-core 
animals [7]. The algorithm is computationally efficient 
because it ignores genomic relationships among non-core 
animals and only requires inversion of the genomic rela-
tionship matrix for core animals. Estimated breeding val-
ues (EBV) computed with APY can be nearly identical to 
those computed using the full version of the single-step 
method, where all genomic relationships are included. The 
APY approximations become more accurate when the core 
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group size increases [5, 6]. Fragomeni et  al. [8] suggested 
that, when a small number of animals is allocated to the 
core group to reduce computing time, accurate approxima-
tions are obtained when animals in the core group are cho-
sen at random from all genotyped animals. Although other 
ways of choosing core animals have been proposed [6, 9], 
no study has reported a formal choice of the core animals 
that results in more accurate approximations than choosing 
them at random while keeping the size of the core group 
constant [5–11]. This is surprising because based on [12], 
the accuracy of APY is related to how well the animals in 
the core group represent the independent chromosome 
segments that are present in the population. This suggests 
that approximations of EBV obtained with APY could be 
more accurate by choosing core animals that represent the 
most independent chromosome segments. We propose 
three criteria to increase accuracies by choosing animals 
that represent the most independent chromosome seg-
ments: (1) choosing animals from all generations, since new 
cross-overs occur each generation and thus, new independ-
ent chromosome segments are created; (2) minimizing the 
degree of relatedness within the core group by increasing 
the number of families in the core group, which should lead 
to a better representation of independent chromosome seg-
ments; and (3) including genotyped parents of genotyped 
animals in the core group since they represent the inde-
pendent chromosome segments of their offspring. Based 
on these assumptions, we hypothesized that choosing core 
animals based on representing all generations, minimizing 
the relatedness within the core group, or maximizing the 
number of genotyped offspring, will increase the accuracy 
of the resulting EBV. We tested this hypothesis by estimat-
ing accuracies of approximations of EBV for daily gain for 
three Danish pig breeds.

Methods
We compared eight core groups for the three pig breeds 
DanAvl Duroc, DanAvl Landrace and DanAvl Yorkshire. 
EBV for genotyped animals from the sparse single-step 
methods were correlated with EBV from the usual ver-
sion of the single-step method. We used a single-trait 
model on daily gain.

Sparse single‑step
To understand the computing issues of the single-step 
procedure, first we provide a summary on this method. 
We used the single-step procedure that was formulated 
in Christensen et  al. [3], in which the inverse pedigree 
relationship matrix for all animals A−1

full is replaced by 
H−1 , where:

H−1
= A−1

full +

(

0 0

0 G−1
− A−1

22

)

where G = (1− wa)Ga + waA22 and A−1
22

 is the inverse 
of the part of the pedigree relationship matrix for geno-
typed animals, wa is the weight on the pedigree rela-
tionship matrix, and Ga is the genomic relationship 
matrix adjusted to the same scale as A22 by the following 
calculation:

where β and α solve the equations:

and

where mean() represents the mean of the elements and 
diag() represent the diagonal elements of a matrix.

In the above procedure, matrix H is sub-divided into 
non-genotyped and genotyped animals and index 2 
denotes the genotyped individuals. The genomic relation-
ship matrix Gm is defined as:

where matrix M contains the genotypes coded 0, 1, 2, 
vector p contains the allele frequencies computed from 
all genotyped animals, and 1 denotes a vector of ones.

The computationally heavy load of the single-step pro-
cedure is partly due to the increasing number of non-zero 
elements in H−1, which increases the time necessary for 
preconditioned conjugate gradient (PCG) iteration, but 
also partly due to the need to invert A22 and G. Note that 
the definition of H−1 includes both G−1 and A−1

22 , and if 
the same elements of these matrices could be zero, an 
even sparser H−1 would be achieved.

Sparse inverse genomic relationship matrix
According to Misztal et al. [5], the inverse genomic rela-
tionship matrix, G−1, can be approximated by separating 
the genotyped animals into two groups using the APY 
algorithm:

where index c denotes animals in the core group, index n 
denotes animals in the non-core group, and Dnn is a diag-
onal matrix with dimension equal to number of non-core 
animals and diagonal elements as:

where Gic denotes the ith row of Gnc. The APY approxi-
mation only requires inversion of the submatrix Gcc, 
which is more time and memory efficient than inversion 

Ga = βGm + α,

mean
(

diag(Gm)
)

β+ α = mean
(

diag(A22)
)

,

mean(Gm)β+ α = mean(A22),

Gm =
(

M − 2p1′
)(

M − 2p1′
)

′
/
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of the full genomic relationship matrix. Furthermore, 
the inverse of the genomic relationship matrix approxi-
mated with APY is sparse with non-zero blocks among 
the core animals and between core and non-core animals, 
but only non-zero diagonal elements among the non-core 
animals [5].

Although this approach does not require calculation 
of the full G, we did calculate it. For an implementation, 
it would be sufficient to calculate only Gcc, Gnc and Dnn , 
where α and β are estimated based on the core animals 
only.

Sparse inverse pedigree relationship matrix for genotyped 
animals
The inverse pedigree relationship matrix for genotyped 
animals is also dense, partly because of the numeri-
cal inversion. However, APY works very poorly for A−1

22  
because the resulting H−1 is not positive definite (pre-
liminary results not shown). Therefore, A−1

22  needs to be 
made sparse using e.g., the approach proposed by Faux 
and Gengler [13] or by Misztal et al. [5].

For pig data, the number of genotyped animals is typi-
cally much larger than the number of their non-geno-
typed ancestors, or at least this will soon be the case with 
the increasing numbers of genotyped animals. Therefore, 
the inverse of the pedigree relationship matrix for geno-
typed animals can be calculated efficiently by absorbing 
non-genotyped ancestors using the following equation 
[14]:

where the inverse of the pedigree relationship matrix for 
animals in the reduced pedigree for genotyped animals 
A−1
red is sub-divided into:

where superscript 1 denotes non-genotyped animals 
in the pedigree for genotyped animals, and superscript 
2 denotes genotyped animals. This entails that only the 
usually small part, A11, of the inverse pedigree relation-
ship matrix containing non-genotyped animals in the 
pedigree for genotyped animals needs to be inverted.

A−1
22 = A22

− A21
(

A11
)

−1
A12,

A−1
red =

[

A11 A12

A21 A22

]

,

According to Misztal et  al. [5], sparsity of A−1
22

 can be 
achieved without large consequences by simply setting 
small elements of A−1

22  equal to zero. A sparse version of 
A−1
22  was achieved here (95  to  99  % sparsity) by setting 

elements in the range from −0.0001 to 0.0001 equal to 
zero. We note that, although the resulting sparse ver-
sion of A−1

22  was not positive definite for the three data-
sets studied here, the resulting approximation of H−1 was 
positive definite in all cases.

Data and model
We used data on records of daily gain for pigs of the 
DanAvl Duroc, DanAvl Landrace and DanAvl York-
shire breeds that were born between 2009 and 2014; 
their pedigree was traced back to 1996 (see Table 1 for 
details on the data). A single-trait model for daily gain 
with variance components from the routine genomic 
evaluations was used. All animals were phenotyped for 
daily gain before genotyping and before selection and 
mating decisions. Further details on the data are in 
Ostersen et al. [15]. For all genomic evaluation models, 
a weight wa of 0.25 was put on the traditional relation-
ships, which is the standard value used in the routine 
genomic evaluation for this trait (for details see Chris-
tensen et al. [3]).

Pigs born before August 2013 were genotyped with the 
Illumina PorcineSNP60 Bead chip and pigs born after 
this date were genotyped with the 8.5  K GGP-Porcine 
LD Illumina Bead chip. Missing genotypes were imputed 
using Beagle version 3.3.2 [16]. The following SNP quality 
controls were applied: SNPs with a call-rate lower than 
90  % across all samples genotyped with the 60  K chip 
were removed; SNPs with a minor allele frequency lower 
than 0.01 were filtered out; SNPs that deviated strongly 
from Hardy–Weinberg equilibrium (p  <  10−7) were 
excluded; SNPs that were not mapped in the porcine ref-
erence genome build 10.2 [17] were also excluded. A total 
of 33,028, 37,841 and 36,919 SNPs were retained for the 
Duroc, Landrace and Yorkshire datasets, respectively. 
An animal’s genotypes were only retained if they had a 
call frequency higher than 90  % for that animal. Except 
for quality control and imputation of SNPs, all other data 
preparations and analyses were run in R [18] and DMU 
[19].

Table 1  Overview of data

DanAvl Duroc DanAvl Landrace DanAvl Yorkshire

Number of observations 110,072 227,786 211,311

Number of animals in pedigree 119,930 239,378 220,998

Number of genotyped animals 13,809 21,681 21,634

Number of animals in pedigree for genotyped animals 25,425 28,774 28,318



Page 4 of 10Ostersen et al. Genet Sel Evol  (2016) 48:48 

Scenarios evaluated
NormalG
This scenario was used as reference for all other sce-
narios, and was the usual single-step procedure, where 
matrices for genotyped animals were fully inverted and 
no sparsity was gained.

Random10, Random30, Random50
We chose these core groups at random with subset sizes 
of 10, 30 and 50 % of the genotyped animals. These sce-
narios were intended to show the effect of across-gen-
eration distribution. In addition to Random10, we used 
Random30 and Random50 to evaluate the number of 
core animals required for these pig populations. We 
investigated different random subsets, but the difference 
in results between two random subsets of the same size 
was so small (less than 0.001 difference in correlations for 
all scenarios), that we only report one. This is in agree-
ment with findings from bovine studies [6].

Unrelated10
For this scenario, we chose a core group that included 
10 % of the genotyped animals that minimized the aver-
age degree of relatedness between core animals. The opti-
mization was achieved using a genetic algorithm [20] by a 
simulated evolution of a set of potential solutions driven 
by recombination and mutation, which is based on a fit-
ness function that was the average relationship of the 
core group.

Offspring10
In this scenario, 10 % of the genotyped animals were cho-
sen based on their number of genotyped offspring. Thus, 
animals were ranked according to number of genotyped 
offspring and the 10 % animals that had the largest num-
ber of genotyped offspring were chosen.

OffspringRandom10
This was a combination of the Random10 and Off-
spring10 scenarios. For the youngest genotyped animals 
(last year of birth), 10  % of the animals were chosen at 
random. For the oldest genotyped animals (excluding the 
last year of birth), 10 % of the animals were chosen based 
on the number of genotyped offspring. Thus, the result-
ing core group size across old and young animals was 
10 % of all genotyped animals.

Old10
This core group consisted of the 10 % oldest genotyped 
animals. This scenario was used for comparison to the 
other scenarios, since its characteristics were the oppo-
site of those of the Random10 scenario. Hence, the core 
group represented only the oldest generations.

Young10
This core group consisted of the 10  % youngest geno-
typed animals. This scenario was used for comparison 
to the other scenarios, since its characteristics were the 
opposite of those of the Random10, Unrelated10 and 
Offspring10 scenarios. Hence, none of the animals in the 
core group had genotyped offspring, and they were more 
related and represented only one generation.

NormalA
In this scenario, we discarded genotypic information 
completely to act as a baseline scenario.

Performance criteria
We evaluated each scenario based on four indicators. 
First, we calculated Pearson correlations of EBV from 
each scenario with EBV from the usual version of the 
single-step procedure for genotyped animals. Second, 
we calculated these correlations for all animals. The main 
criterion was the correlation of EBV for genotyped ani-
mals. Differences between scenarios were assessed using 
a Hotelling-Williams t test. Third, we evaluated each sce-
nario based on the number of PCG iterations, since they 
are indicators of how numerically well-conditioned the 
equations are, which influences computation time. The 
fourth indicator was the sparsity of G−1

− A−1
22 , which 

also influences computation time.

Results
Ignoring genomic information, as in the NormalA sce-
nario, resulted in correlations of EBV with EBV based on 
the full single-step method for genotyped animals that 
were on average equal to 0.873 across the three breeds. 
In the following, results for alternate APY scenarios are 
compared to those of the full single-step methods.

Core animals
Correlations between EBV from the full model and EBV 
from each of the eight core groups that were created for 
the three pig breeds were significantly different from 
each other (p < 0.05). The largest correlations were real-
ized by core groups with animals that were distributed 
across generations and that had many genotyped off-
spring. For the scenarios that distributed core animals 
across generations, i.e. Random10 and OffspringRan-
dom10, correlations for genotyped animals in the three 
breeds ranged from 0.977 to 0.989 (Tables  2, 3, 4, 5, 6, 
7). For the scenarios that did not distribute core animals 
across generations, i.e. Unrelated10, Old10 and Young10, 
correlations for genotyped animals ranged from 0.934 
to 0.956. Likewise, for core groups that maximized the 
number of genotyped offspring, i.e. Offspring10 and Off-
springRandom10, correlations for genotyped animals 
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ranged from 0.983 to 0.989 (Tables 2, 3, 4, 5, 6, 7). Finally, 
for the scenarios that did not maximize the number of 
genotyped offspring, i.e. Random10, Unrelated10, Old10 
and Young10, correlations for genotyped animals ranged 
from 0.934 to 0.981 (Tables 2, 3, 4, 5, 6, 7).

Correlations did not increase with decreasing pedigree 
relatedness between the core animals. The scenario with 
the lowest average pedigree relationship between core 
animals, Unrelated10, was not among the most accurate 
scenarios. However, there was no clear pattern between 
low relatedness and accuracy of approximations. For the 
core groups with the lowest average pedigree related-
ness between core animals, i.e. Unrelated10 and Old10, 
correlations for genotyped animals ranged from 0.936 to 
0.956 (Tables 2, 3, 4, 5, 6, 7). For the core groups with the 
highest relatedness between core animals, i.e. Young10, 
OffspringRandom10 and Random10, correlations for 
genotyped animals ranged from 0.934 to 0.989.

We observed strong confounding between low relat-
edness and across-generation distribution, i.e. the Unre-
lated10 and Old10 scenarios, for which older animals 
were favored, both showed a poor across-generation 
distribution compared to Random10 (Tables  5, 6, 7). 
Similarly, we observed some confounding between low 
relatedness and number of genotyped offspring, i.e. 

Old10 and Unrelated10 had some genotyped offspring, as 
opposed to Young10 (Tables 5, 6, 7), which made it diffi-
cult to determine whether the differences in correlations 
between these scenarios were due to differences in relat-
edness or in number of genotyped offspring.

Iterations and sparsity
The scenarios that performed well in terms of accuracy 
also tended to perform well in terms of number of itera-
tions needed for convergence and sparsity (Tables  2, 3, 
4). For instance, for the Offspring10 and OffspringRan-
dom10 scenarios, for which correlations were highest, 
6 to 12 % fewer PCG iterations were required compared 
to the Random10 scenario. Furthermore, for the Off-
spring10 and OffspringRandom10 scenarios, sparsity 
was improved by 0.2 to 1.6 percentage units compared to 
Random10 (Tables 2, 3, 4).

Proportion of genotyped animals in the core group
To obtain correlations for genotyped animals higher than 
99.5 %, the size of the core groups had to be greater than 
30  % for all three breeds when the animals were cho-
sen randomly. Choosing a size of 50  % instead of 30  % 
increased correlations for genotyped animals from an 
average of 0.996 to an average of 0.999 (Tables 2, 3, 4).

Table 2  Correlations between EBV from alternate core groups and EBV from the full single-step model for DanAvl Duroc 

Correlations were calculated for all animals (Cor all) and genotyped animals (Cor genotyped)

Number of PCG iterations and sparsity of the matrix involved in the single-step formula (G−1
− A

−1

22
)

All correlations were significantly different from each other (p < 0.05)
a  NormalG is the usual single-step procedure without sparse approximations
b  Random10, Random30, Random50 are the sparse single-step, where a random subset of animals (10, 30, 50 %) were treated as core
c  Unrelated10 is 10 % animals chosen as core by minimizing the degree of relatedness between core animals
d  Offspring10 is 10 % animals chosen based on the number of genotyped offspring
e  OffspringRandom10 is, for old animals (excluding last year of birth) 10 % animals chosen based on the number of genotyped offspring, whereas for young animals 
(last year of birth) 10 % of the animals were chosen at random
f  Old10 is the sparse single-step, where the 10 % oldest animals were treated as core
g  Young10 is the sparse single-step, where the 10 % youngest animals were treated as core
h  NormalA is where genotypes are ignored completely

Scenario Cor all Cor genotyped PCG iterations Sparsity of (G−1
− A

−1

22
)

NormalGa 1 1 301 0.0 %

Random10b 0.993 0.981 309 76.9 %

Unrelated10c 0.968 0.944 412 77.4 %

Offspring10d 0.996 0.985 298 78.5 %

OffspringRandom10e 0.997 0.989 287 78.1 %

Random30b 0.999 0.997 306 46.5 %

Random50b 1.000 0.999 284 23.7 %

Old10f 0.947 0.939 405 77.7 %

Young10g 0.963 0.934 370 76.1 %

NormalAh 0.965 0.901 320 –
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Table 3  Correlations between  EBV from  alternate core groups and  EBV from  the full single-step model  for DanAvl  
Landrace

Correlations were calculated for all animals (Cor all) and genotyped animals (Cor genotyped)

Number of PCG iterations and sparsity of the matrix involved in the single step formula (G−1
− A

−1

22
)

All correlations were significantly different from each other (p < 0.05)
a  NormalG is the usual single-step procedure without sparse approximations
b  Random10, Random30, Random50 are the sparse single-step, where a random subset of animals (10, 30, 50 %) were treated as core
c  Unrelated10 is 10 % animals chosen as core by minimizing the degree of relatedness between core animals
d  Offspring10 is 10 % animals chosen based on the number of genotyped offspring
e  OffspringRandom10 is, for old animals (excluding last year of birth) 10 % animals chosen based on the number of genotyped offspring, whereas for young animals 
(last year of birth) 10 % of the animals were chosen at random
f  Old10 is the sparse single-step, where the 10 % oldest animals were treated as core
g  Young10 is the sparse single-step, where the 10 % youngest animals were treated as core
h  NormalA is where genotypes are ignored completely

Scenario Cor all Cor genotyped PCG iterations Sparsity of (G−1
− A

−1

22
)

NormalGa 1 1 306 0.0 %

Random10b 0.995 0.977 377 80.1 %

Unrelated10c 0.982 0.954 492 79.9 %

Offspring10d 0.987 0.983 330 80.4 %

OffspringRandom10e 0.991 0.984 340 80.3 %

Random30b 0.997 0.996 346 48.4 %

Random50b 0.996 0.999 312 24.7 %

Old10f 0.944 0.936 463 80.1 %

Young10g 0.897 0.937 444 79.7 %

NormalAh 0.977 0.858 321 –

Table 4  Correlations between  EBV from  alternate core groups and  EBV from  the full single step model  for DanAvl  
Yorkshire 

Correlations were calculated for all animals (Cor all) and genotyped animals (Cor genotyped)

Number of PCG iterations and sparsity of the matrix involved in the single step formula (G−1
− A

−1

22
)

All correlations were significantly different from each other (p < 0.05)
a  NormalG is the usual single-step procedure without sparse approximations
b  Random10, Random30, Random50 are the sparse single-step, where a random subset of animals (10, 30, 50 %) were treated as core
c  Unrelated10 is 10 % animals chosen as core by minimizing the degree of relatedness between core animals
d  Offspring10 is 10 % animals chosen based on the number of genotyped offspring
e  OffspringRandom10 is, for old animals (excluding last year of birth) 10 % animals chosen based on the number of genotyped offspring, whereas for young animals 
(last year of birth) 10 % of the animals were chosen at random
f  Old10 is the sparse single-step, where the 10 % oldest animals were treated as core
g  Young10 is the sparse single-step, where the 10 % youngest animals were treated as core
h  NormalA is where genotypes are ignored completely

Scenario Cor all Cor genotyped PCG iterations Sparsity of (G−1
− A

−1

22
)

NormalGa 1 1 303 0 %

Random10b 0.995 0.978 348 80.1 %

Unrelated10c 0.985 0.956 471 80.0 %

Offspring10d 0.997 0.984 319 80.4 %

OffspringRandom10e 0.997 0.985 325 80.4 %

Random30b 0.999 0.996 321 48.4 %

Random50b 1.000 0.999 292 24.7 %

Old10f 0.967 0.946 442 80.2 %

Young10g 0.980 0.943 439 79.8 %

NormalAh 0.976 0.858 300 –



Page 7 of 10Ostersen et al. Genet Sel Evol  (2016) 48:48 

Discussion
Choosing core animals from all generations in the gen-
otyped population (Random10) and maximizing the 
number of genotyped offspring (OffspringRandom10), 

resulted in accurate approximations of EBV based on the 
APY method. This, however, only partly supports our 
hypothesis, since we could not find a clear association 
between relatedness within the core group (Unrelated10) 

Table 5  Summary statistics for animals in the core groups for the Duroc breed for alternate scenarios for choice of the 
core group

a  NormalG is the usual single-step procedure without sparse approximations
b  Random10, Random30, Random50 are the sparse single-step, where a random subset of animals (10, 30, 50 %) were treated as core
c  Unrelated10 is 10 % animals chosen as core by minimizing the degree of relatedness between core animals
d  Offspring10 is 10 % animals chosen based on the number of genotyped offspring
e  OffspringRandom10 is, for old animals (excluding last year of birth) 10 % animals chosen based on the number of genotyped offspring, whereas for young animals 
(last year of birth) 10 % of the animals were chosen at random
f  Old10 is the sparse single-step, where the 10 % oldest animals were treated as core
g  Young10 is the sparse single-step, where the 10 % youngest animals were treated as core

Scenario Mean pedigree 
relatedness 
within core

Mean of absolute  
values of columns 
of A−1

22
 for core

Mean number 
of genotyped 
offspring

Part of genotyped animals in core for each birth 
year

2014 2013 2012 2011 <2011

NormalGa 0.21 0.0005 1.0 1 1 1 1 1

Random10b 0.21 0.0006 1.0 0.10 0.10 0.11 0.10 0.10

Unrelated10c 0.15 0.0006 0.7 0 0 0.01 0.05 0.44

Offspring10d 0.19 0.0022 9.8 0 0.08 0.17 0.13 0.23

OffspringRandom10e 0.21 0.0021 9.4 0.09 0.06 0.13 0.10 0.13

Random30b 0.21 0.0005 1.0 0.31 0.29 0.31 0.29 0.30

Random50b 0.21 0.0006 1.0 0.50 0.48 0.50 0.50 0.51

Old10f 0.15 0.0008 1.6 0 0 0 0 0.48

Young10g 0.25 0.0003 0 0.29 0 0 0 0

Table 6  Summary statistics for animals in the core groups for the Landrace breed for alternate scenarios for choice of the 
core group

a  NormalG is the usual single-step procedure without sparse approximations
b  Random10, Random30, Random50 are the sparse single-step, where a random subset of animals (10, 30, 50 %) were treated as core
c  Unrelated10 is 10 % animals chosen as core by minimizing the degree of relatedness between core animals
d  Offspring10 is 10 % animals chosen based on the number of genotyped offspring
e  OffspringRandom10 is, for old animals (excluding last year of birth) 10 % animals chosen based on the number of genotyped offspring, whereas for young animals 
(last year of birth) 10 % of the animals were chosen at random
f  Old10 is the sparse single-step, where the 10 % oldest animals were treated as core
g  Young10 is the sparse single-step, where the 10 % youngest animals were treated as core

Scenario Mean pedigree 
relatedness 
within core

Mean of absolute  
values of columns 
of A−1

22
 for core

Mean number 
of genotyped 
offspring

Part of genotyped animals in core for each birth 
year

2014 2013 2012 2011 <2011

NormalGa 0.25 0.0004 1.3 1 1 1 1 1

Random10b 0.25 0.0004 1.5 0.10 0.10 0.10 0.10 0.09

Unrelated10c 0.17 0.0004 1.2 0.01 0.03 0.08 0.17 0.73

Offspring10d 0.23 0.0016 12.5 0.01 0.15 0.16 0.11 0.27

OffspringRandom10e 0.25 0.0015 11.4 0.09 0.09 0.11 0.08 0.15

Random30b 0.25 0.0004 1.4 0.29 0.30 0.31 0.31 0.29

Random50b 0.25 0.0004 1.4 0.50 0.50 0.52 0.50 0.48

Old10f 0.18 0.0006 2.5 0 0 0 0.17 1

Young10g 0.27 0.0002 0 0.21 0 0 0 0
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and accuracy of the APY approximation. The increases 
in accuracy that we found for the three pig breeds when 
using OffspringRandom10 are useful when estimating 
breeding values for breeding schemes with time con-
straints for breeding value estimation. Using the APY 
approximation, accurate breeding values can be achieved 
with less computing time and without burdening the 
breeding program with additional costs. This is the first 
study to report criteria that realize more accurate EBV 
than a random core group of similar size. It deviates 
from the indication of Fragomeni et al. [6], who proposed 
that the choice of animals for the core group was mostly 
arbitrary. We found, however, that the choice of core 
animals is important for the accuracy of APY. This was 
best highlighted by the Unrelated10, Old10 and Young10 
scenarios, for which the least related, old or young ani-
mals were chosen. In these scenarios, approximations of 
EBV were less accurate, which indicates that the choice of 
core animals is not arbitrary. Therefore, when using APY 
to reduce computing time, we recommend choosing core 
animals from all generations and that have the largest 
number of genotyped offspring.

As we mentioned, one possible reason for the more 
accurate approximations realized with the OffspringRan-
dom10 scenario (for which the core group included ani-
mals from across generations and animals with many 
genotyped offspring), was that the core group for this 
scenario represented a greater proportion of the inde-
pendent chromosome segments from the genotyped 

animals than the other scenarios. Including animals 
from all generations presumably increased the num-
ber of independent chromosome segments in the core 
group because each generation is expected to generate 
new cross-overs and, hence, new independent chromo-
some segments. This means that the core group should 
ensure an equal representation of genotyped animals in 
each generation. However, choosing animals with many 
genotyped offspring further increases the number of 
independent chromosome segments represented in the 
core group because parents represent the independent 
chromosome segments of their offspring. This reasoning 
can also be demonstrated mathematically, since animals 
that have many genotyped offspring represent the col-
umns of the sparse version of A−1

22  with most non-zero 
elements. Approximately, the same animals have the larg-
est sums of absolute deviations from zero for elements in 
A−1
22 , G−1 and G−1

− A−1
22 . As a result, choosing animals 

for the core group with large numbers of offspring causes 
less numerical change in H−1. Therefore, the optimal 
core group represents the largest number of independent 
chromosome segments and the least numerical change in 
H−1.

Reducing relatedness within the core group did not 
improve the accuracy of the APY approximation. This is 
because reducing relatedness favored old animals with-
out many genotyped offspring, which counteracts the two 
criteria that were found to increase the accuracy of the 
approximation, i.e. maximizing the number of genotyped 

Table 7  Summary statistics for animals in the core groups for the Yorkshire breed for alternate scenarios for choice of the 
core group

a  NormalG is the usual single-step procedure without sparse approximations
b  Random10, Random30, Random50 are the sparse single-step, where a random subset of animals (10, 30, 50 %) were treated as core
c  Unrelated10 is 10 % animals chosen as core by minimizing the degree of relatedness between core animals
d  Offspring10 is 10 % animals chosen based on the number of genotyped offspring
e  OffspringRandom10 is, for old animals (excluding last year of birth) 10 % animals chosen based on the number of genotyped offspring, whereas for young animals 
(last year of birth) 10 % of the animals were chosen at random
f  Old10 is the sparse single-step, where the 10 % oldest animals were treated as core
g  Young10 is the sparse single-step, where the 10 % youngest animals were treated as core

Scenario Mean pedigree 
relatedness 
within core

Mean of absolute  
values of columns 
of A−1

22
 for core

Mean number 
of genotyped 
offspring

Part of genotyped animals in core for each birth 
year

2014 2013 2012 2011 <2011

NormalGa 0.21 0.0004 1.3 1 1 1 1 1

Random10b 0.20 0.0004 1.3 0.10 0.10 0.10 0.11 0.11

Unrelated10c 0.12 0.0004 1.5 0 0.02 0.07 0.21 0.84

Offspring10d 0.19 0.0016 12.2 0.01 0.15 0.17 0.12 0.27

OffspringRandom10e 0.21 0.0014 11.2 0.09 0.08 0.12 0.10 0.14

Random30b 0.21 0.0004 1.3 0.30 0.30 0.30 0.32 0.30

Random50b 0.21 0.0004 1.2 0.50 0.50 0.50 0.53 0.49

Old10f 0.13 0.0006 2.5 0 0 0 0.28 1

Young10g 0.24 0.0002 0 0.21 0 0 0 0
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offspring and the distribution across generations. Thus, 
for maximizing accuracy, it is sufficient to maximize the 
number of genotyped offspring while ensuring across-
generation representation and reducing relatedness of 
the core group is less important.

For core groups with animals that were chosen at ran-
dom, approximations were nearly as accurate as in the 
OffspringRandom10 and Offspring10 scenarios. The 
reason for this good performance is presumably that the 
randomly selected core group ensures across-generation 
representation but it does not ensure that animals with 
many genotyped offspring are chosen. This good perfor-
mance of random core groups is probably the reason why 
no other studies detected a core group that performed 
better than a similar-sized random group of animals—
although this was not the goal of any of these studies 
[5–11]. Lourenco et al. [9, 11] also evaluated a core group 
based on genotyped offspring, but they did not compare 
it with a similar-sized random core group, which makes 
it difficult to evaluate if such a core group performed 
better. Because of the convincing results of a randomly 
chosen core group, Fragomeni et  al. [6] stated that the 
choice of animals for the core group is mostly arbitrary. 
However, our results indicate that it is not completely 
arbitrary, since it was easy to choose animals in such a 
way that accuracy of the EBV decreased considerably. For 
instance, with the Unrelated10, Old10 and Young10 sce-
narios, accuracies of EBV were lower and computation 
times were longer, compared to the Random10 scenario, 
presumably because of the poor across-generation repre-
sentation. This shows that it is easy to choose animals for 
the core group that will lead to a decrease in the accu-
racy of EBV compared to a randomly selected core group. 
Although these conclusions are based on rather small 
core group sizes of 10 %, we also tested these conclusions 
on larger core group sizes of 30 %, which resulted in the 
same conclusions (unpublished results).Therefore, it is 
clear that the choice of animals in the core group is not 
arbitrary.

We set out to find a core group that performed better 
than a random core group, and we found an improved 
core group for all generations except the last generation. 
In the last generation, which has no genotyped offspring, 
we examined many ways of choosing the core group 
(results not shown). We examined a core group that was 
chosen based on, the smallest number of parents in the 
core group of the older generations, smallest number 
of genotyped parents, largest sums of absolute devia-
tions from zero in A−1

22 , and different family limitations 
such as a maximum of one core animal per litter. These 
alternative ways of choosing the last generation all per-
formed well, but none performed better than a random 
sample. We noted that there was little variation for the 

last generation both in terms of number of non-zero ele-
ments in A−1

22 , and sums of absolute deviations from zero 
in A−1

22 . This indicates that there is little to be gained by a 
systematic choice of young animals. Therefore, we believe 
that there is very little to be gained in terms of a good 
representation of independent chromosome segments 
and little numerical change in H−1 by choosing the last 
generation non-randomly.

We found that treating 30 % of the genotyped animals 
as the core animals, corresponding to 4500 to 6500 ani-
mals, was sufficient to achieve correlations higher than 
99 % for genotyped animals. It is not clear from our study 
whether the number of core animals needed to obtain an 
accurate approximation is a constant or a percentage of 
the number of genotyped animals. Results (not shown) 
on subsets of our data indicated that the minimum per-
centage of animals required in the core group decreased 
as the number of genotyped animals increased. When the 
total number of genotyped animals was reduced to one 
third, the minimum percentage required as core animals 
increased to about 50  % of the genotyped animals, cor-
responding to 2500 to 3500 animals. This is presumably 
because the small subset of genotyped animals did not 
include as many independent chromosome segments, 
and therefore required fewer core animals to repre-
sent them. Whether the optimal size of the core group 
becomes a constant for larger numbers of genotyped ani-
mals, as argued by Fragomeni et al. [6] in cattle, remains 
unclear. We recommend a performance surveillance of 
the sparse single-step model at larger data sizes, since 
this issue cannot be investigated based on our current 
size of data. Regardless of whether the optimal core size 
is a constant or a decreasing percentage, the sparsity of 
G−1 measured as a percentage will increase as the num-
ber of genotyped animals increases, and this will increase 
the computational gains from sparse single-step methods 
as the number of genotyped animals increases. There-
fore, the sparse single-step method can be applied to pig 
breeding—especially when there are more than 20,000 
genotyped animals.

The number of core animals needed to obtain an accu-
rate approximation is expected to be a function of the 
number of independent chromosome segments, and thus 
of the degree of linkage disequilibrium (LD). The smaller 
number of core animals needed for the Duroc compared 
to the Landrace and Yorkshire breeds, could be explained 
by the somewhat higher LD over short distances in the 
Duroc breed [21]. This can also explain why the num-
ber of animals needed in the core group was smaller for 
the Danish pig breeds compared to Holstein cattle, since 
Danish pig breeds have a higher degree of LD than Hol-
stein cattle [21, 22]. Another explanation for the smaller 
core group size for Duroc could be that fewer SNPs are 
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available for this breed, which has been shown to affect 
the dimensionality of G [23]. Thus, differences in the 
number of core animals needed between the Danish pig 
breeds and with Holstein cattle can be explained by the 
level of LD in the population and the number of SNPs 
genotyped.

Conclusions
We found that for core groups representing all gen-
erations and maximizing the number of genotyped 
offspring, APY approximations of EBV were accurate. 
However, we did not find a clear association between 
accuracy and relatedness within the core group. This is 
the first study to report systematic criteria that realize 
more accurate EBV than a similar-sized random core 
group, which only ensures across-generation represen-
tation. Therefore, we recommend choosing a core group 
that represents all generations and maximizes the num-
ber of genotyped offspring.
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