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Abstract 

Background:  Mortality due to cannibalism causes both economic and welfare problems in laying hens. To limit 
mortality due to cannibalism, laying hens are often beak-trimmed, which is undesirable for animal welfare reasons. 
Genetic selection is an alternative strategy to increase survival and is more efficient by taking heritable variation that 
originates from social interactions into account, which are modelled as the so-called indirect genetic effects (IGE). 
Despite the considerable heritable variation in survival time due to IGE, genetic improvement of survival time in lay-
ing hens is still challenging because the detected heritable variation of the trait with IGE is still limited, ranging from 
0.06 to 0.26, and individuals that are still alive at the end of the recording period are censored. Furthermore, survival 
time records are available late in life and only on females. To cope with these challenges, we tested the hypothesis 
that genomic prediction increases the accuracy of estimated breeding values (EBV) compared to parental average 
EBV, and increases response to selection for survival time compared to a traditional breeding scheme. We tested this 
hypothesis in two lines of brown layers with intact beaks, which show cannibalism, and also the hypothesis that the 
rate of inbreeding per year is lower for genomic selection than for the traditional breeding scheme.

Results and discussion:  The standard deviation of genomic prediction EBV for survival time was around 22 days for 
both lines, indicating good prospects for selection against mortality in laying hens with intact beaks. Genomic predic-
tion increased the accuracy of the EBV by 35 and 32 % compared to the parent average EBV for the two lines. At the 
current reference population size, predicted response to selection was 91 % higher when using genomic selection 
than with the traditional breeding scheme, as a result of a shorter generation interval in males and greater accuracy of 
selection in females. The predicted rate of inbreeding per generation with truncation selection was substantially lower 
for genomic selection than for the traditional breeding scheme for both lines.

Conclusions:  Genomic selection for socially affected traits is a promising tool for the improvement of survival time in 
laying hens with intact beaks.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Mortality due to cannibalism is an economic and welfare 
problem in laying hens, which reduces survival time [1]. 
Beak trimming and genetic selection are two strategies to 
reduce cannibalism and increase survival time. Although 
genetic selection to increase survival time has been 
implemented, responses to selection have been limited, 

in part because the heritability of the trait is low (around 
0.02  to  0.10) [2]. Moreover, survival of laying hens that 
show cannibalism depends on social interactions among 
cage mates and may have a heritable component [3–6]; 
such social interactions are modelled as the so-called 
indirect genetic effects (IGE; [7]). Ignoring heritable com-
ponents due to social interactions decreases response 
to selection, and may even cause a negative response to 
selection [3].

Recently, genetic selection methods for socially affected 
traits have become more efficient by taking IGE among 
cage mates into account [2, 4, 8, 9]. In laying hens that 
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show cannibalism, accounting for IGE increases the 
detected heritable variation two to five times compared 
to the classical direct additive genetic variance [2, 10]. 
Although survival time has considerable heritable vari-
ation when IGE are accounted for, genetic improvement 
of survival time in laying hens is still challenging. First, 
heritable variation of the trait is relatively low, even with 
IGE (the proportion of total heritable variation to phe-
notypic variation ranges from 0.06 to 0.26). Second, and 
more importantly, survival time records are available 
late in life and only for females and many individuals are 
censored, i.e., still alive at the end of the testing period 
[2, 11]. Third, breeding females are kept in single bird 
cages and, therefore, own performance records for sur-
vival time under field conditions, i.e., measured in cages 
with multiple birds, are not available on female selection 
candidates. Thus, selection of females for survival time 
is based on pedigree and sib information, which leads 
to limited accuracy of selection. Selection of males for 
survival time also relies on information on the relatives, 
mainly from progeny information, which leads to a long 
generation interval. Consequently, response to selection 
for survival time is expected to be low. Thus, we need a 
better genetic tool, such as genomic selection, to increase 
response to selection.

Genomic selection is a genetic selection method in 
which genotypes at single nucleotide polymorphisms 
(SNPs) that cover the whole genome are used, so that all 
quantitative trait loci are expected to be in linkage dis-
equilibrium with at least one SNP [12], and this infor-
mation is used to predict breeding values. Genomic 
selection can increase the response to selection com-
pared with traditional selection because genomic selec-
tion can increase the accuracy of estimated breeding 
values (EBV), particularly when compared with the par-
ent average EBV [13–16], and genomic selection can 
reduce generation intervals compared to, e.g., schemes 
based on progeny testing. Thus, genomic selection 
schemes can result in greater response to selection per 
year compared with traditional breeding programs. For 
instance, in dairy cattle, genomic selection was predicted 
to increase genetic gain by 50 to 100 % [17, 18], and real-
ized genetic progress in milk yield has been estimated to 
have increased by approximately 50  % in US Holsteins 
[19].

Currently, breeding programmes for laying hens are 
changing from progeny testing to genomic selection, par-
ticularly because it allows a substantial reduction in gen-
eration interval. Response to selection per year for egg 
number using genomic selection is expected to be higher 
than with progeny testing [20, 21]. A relevant question 
is whether genomic selection will also work for survival 
time in laying hens showing cannibalism, compared 

with the traditional breeding scheme, which refers to a 
scheme where males are selected based on progeny test-
ing and females are selected based on sib and pedigree 
information.

Genomic evaluation can be implemented using 
genomic best linear unbiased prediction (GBLUP), for 
which a relationship matrix based on markers is used 
in BLUP [22, 23]. In this study, we estimated genomic 
breeding values using information on individuals that 
are both genotyped and phenotyped, as well as individu-
als that are phenotyped only. To exploit information on 
individuals that are phenotyped only in genomic evalua-
tion, single-step GBLUP (ssGBLUP) was developed [24]. 
This procedure combines the relationship matrix derived 
from pedigree (A) and from genome-wide markers (G) 
into a single relationship matrix (H) [24–26]. The accu-
racy of EBV with correct blending of G and A for ssGB-
LUP is higher than with either GBLUP or pedigree-based 
BLUP [27].

Genetic selection with IGE coupled with genomic 
information may increase the response to selection in 
survival time for layers, compared with selection on 
pedigree-BLUP EBV. This can be tested by comparing 
the accuracy of EBV for survival time from ssGBLUP ver-
sus pedigree-BLUP, as well as by comparing responses 
to selection and rates of inbreeding when using genomic 
selection versus a traditional breeding scheme. Thus, 
the objective of this study was to investigate whether 
genomic prediction increases the accuracy of EBV and 
response to selection for survival time compared to a 
traditional breeding scheme, using data on crossbred 
brown layers. We also investigated the impact of genomic 
selection on the rate of inbreeding in a layer breeding 
program.

Methods
Population and pedigree
Data were provided by the Institut de Sélection Ani-
male B.V., the layer breeding division of Hendrix Genet-
ics. Phenotypes were available on crossbred individuals. 
In total, there were nine crosses from two sire lines and 
nine dam lines (Table  1); 19,975 crossbred laying hens 
had B1 as sire line, and 10,910 had BD as sire line. Sires 
were mated to approximately eight dams and each dam 
produced ~five male and ~five female offspring. Of each 
crossbred individual, only the sire ID was recorded; dam 
ID were unknown. Analyses were performed by sire line.

Data were collected in eight batches from 2008 to 
2011 (Tables 2, 3). Post-hatching, the chicks were wing-
banded, sexed, and vaccinated for infectious bronchitis 
and Marek’s disease. Their beaks were kept intact. At 
approximately 17 weeks of age, hens were placed in laying 
houses with battery cages. Battery cages were arranged in 
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rows, each row with multiple levels. Cages consisted of 
five paternal half-sibs from the same cross. We removed 
cages with less than five individuals at the start of the 
experiment from the data (81 cages for line BD and no 
cages for line B1).

The trait of interest, “survival time”, was defined as “the 
number of days from the start of the laying period till 
either death or the end of the experiment”. The different 
batches had different censoring points (Table  2 for BD 

and Table 3 for B1). To avoid an effect of censoring at dif-
ferent time points on the analysis, we decided to censor 
all batches at the same time. Note that, with a proper sur-
vival analysis, the choice of a censoring point would have 
been irrelevant. However, Ellen et al. [28] found no bene-
fit of survival analysis compared to a linear model for the 
analysis of survival time in laying hens when censoring 
occurred at the same time point. Hence, rather than using 
survival analysis, we decided to censor all batches at the 
same time point. Setting a common censoring point for 
all batches results in a trade-off between the proportions 
of censored individuals within the data and the amount 
of data included. On the one hand, choosing an early cen-
soring point leads to many censored individuals. On the 
other hand, when choosing a very late censoring point, 
batches that have ended before this time point cannot 
be included in the analysis. We did not choose the com-
mon censoring points based on either the shortest batch, 
or the longest batch, which both would have resulted in 
the censoring or removal of many individuals. Therefore, 
for line BD, we took 372 days as the censoring point, so 
that 40  % of the individuals were censored and 32  % of 
the data were lost. For line B1, we took 395 days as the 
censoring point, which resulted in 54 % of the individuals 
being censored and 20 % of the data being lost (Table 2).

Genomic data
Genotypes were available for part of the sires, i.e., 207 of 
the 509 B1 sires and 242 of the 284 BD sires were geno-
typed, both with 60  k SNP chips. The following quality 
controls were performed, separately for each line. Mark-
ers with a call rate less than 90 % or with a minor allele 
frequency (MAF) of 2  % or less were excluded. Setting 
the MAF at 2 % gave the highest accuracy of EBV com-
pared to excluding SNPs with MAF <1, 3, 4, or 5 %. SNPs 
with a χ2 statistic greater than 600 for deviation from 
Hardy–Weinberg equilibrium were excluded (P value 
<0.00001). After quality control, a total of 35,361 SNPs 
for line B1 and 33,898 SNPs for BD remained.

Table 1  Numbers of  individuals and  sires in  the different 
crossbred populations analyzed

Cross (♂ × ♀) Number 
of individuals

Number 
of sires

Number of  
genotyped sires

B1 × BA 3570 93 68

B1 × BB 1270 34 30

B1 × BD 5735 149 20

B1 × BE 1365 35 31

B1 × BF 4715 121 58

B1 × BH 3100 77 0

BD × B1 790 18 3

BD × B5 5415 150 138

BD × B6 4705 116 101

Table 2  Number of individuals censored (Nb ind) at differ-
ent censoring points for line BD by batch

a  Total number of individuals without removing any batch. The ≥sign refers to 
individuals that were still alive at this censoring point. For example, for batch 
201042, 2461 individuals were still alive at 351 days
b  With a censoring point of 372 days, batch 201042 was removed. Thus, the 
number of individuals that remained for analysis was 4525 + 6385 = 10,910

Batch Nb ind Nb ind 
≥351 days

Nb ind 
≥372 days

Nb ind 
≥413 days

201042 5122 2461 0b 0

201182 4525 2694 2774 0

2009191 6385 3772 3673 3540

Total 16,032a 8927 6447 3540

Table 3  Number of individuals (Nb ind) censored at different censoring points for line B1 by batch

a  Total number of individuals without removing any batch. The ≥ sign refers to the individuals that were still alive at this censoring moment. For example, for batch 
2008102, 3241 individuals were still alive at 372 days
b  With a censoring point of 395 days, batch 201182 was removed. Thus, the number of individuals that remained for analysis was 
5397 + 5228 + 5692 + 3658 = 19,975

Batch Nb ind Nb ind ≥372 Nb ind ≥395 Nb ind ≥414 Nb ind ≥419 Nb ind ≥421

2008102 5397 3241 3129 3055 3027 0

200961 5228 3783 3711 3644 3617 3617

201124 5692 4181 4070 3933 0 0

201182 4981 3503 0b 0 0 0

2012102 3658 2675 2616 0 0 0

Total 24,956a 17,383 13,526 10,632 6644 3617
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Data analysis
Data for each sire line were analysed separately. To deter-
mine which fixed effects should be included in the model 
to estimate genetic parameters, data on survival time 
were analysed using the GLM procedure in R [29]. The 
fixed effects of batch, cross and a contemporary group 
effect of laying house by row by level were fitted. The lat-
ter also accounts for infrastructural effects (e.g., differ-
ences in light intensity).

Because dam ID were unknown, sire models were fit-
ted. The sire model only included a “direct” sire effect 
but, because cages consisted of paternal half sibs, this 
effect captures the total sire effect, including indirect 
genetic effects (IGE) [30]. The model was as follows:

where y is a vector of survival times, X is the incidence 
matrix for fixed effects, b is the vector of the aforemen-
tioned fixed effects, c is a vector of random group effects 
(i.e., cage effects), with c ∼ N

(

0, Icσ
2
c

)

, Ic is an identity 
matrix, W an incidence matrix for cage, σ2c is the cage 
variance, Z is an incidence matrix for the additive sire 
genetic effect, u is vector of sire-effects, and e is a vector 
of residuals. Two methods were used to implement this 
model.

Method 1 was pedigree-BLUP, where the breed-
ing values were assumed normally distributed as: 
u ∼ N

(

0,Aσ2u
)

, where A is the genetic relationship 
matrix derived using five generations of pedigree infor-
mation, and σ2u is the sire variance, which is equal to one-
fourth of the variance of the total breeding values.

Method 2 was ssGBLUP, where breeding values were 
assumed normally distributed as u ∼ N

(

0,Hσ2u
)

, where 
H is the relationship matrix that combines both pedi-
gree and genomic relationships. The inverse of H was 
obtained as [26, 31]:

where A−1 is the inverse of the numerator relationship 
matrix, G is the genomic relationship matrix, which 
was constructed following Method 1 of VanRaden [23] 
using the observed allele frequencies, and A22 is the sub-
matrix of A for genotyped animals. We avoided singu-
larity problems by regressing G towards A, by weighting 
G(α = 0.95) and A22(β = 2− α = 0.05) [23].

Genetic parameters and breeding values were esti-
mated by residual maximum likelihood using the 
programme BLUPF90 [32, 33]. We did not use the “sire-
model” option in BLUPF90 because it is not compat-
ible with marker information. Instead, the phenotypes 
of hens were linked to the sires’ breeding values but we 
used a complete relationship matrix, including the full 

(1)y = Xb+Wc+ Zu + e,

(2)H−1
= A−1

+

[

0 0

0 (αG+ βA22)
−1 − A−1

22

]

,

pedigree of the sires (for Method 1) or the full pedigree 
and the genotypes of the sires (for Method 2).

Cross‑validation
We considered four scenarios for estimating breeding 
values for each sire line; two types of reference training 
populations (genotyped sires only or both genotyped 
and non-genotyped sires), and two estimation meth-
ods (Methods 1 and 2) and compared the accuracy of 
predicted breeding values using cross-validation. We 
produced five mutually exclusive validation datasets 
by randomly sampling approximately 20  % of the geno-
typed sires (n = 207 for B1 and n = 242 for BD) without 
replacement. For each validation dataset, the remaining 
80 % of the dataset served as the training dataset, which 
was used to estimate the breeding values for all individu-
als. For the scenario with both genotyped and non-geno-
typed sires, all non-genotyped sires were added to each 
training set.

Cross-validation requires observed phenotypes on the 
individuals in the validation dataset but, in our case, EBV 
were predicted on the sires, while records were avail-
able on offspring, and part of the offspring had censored 
records. Therefore, the following steps were taken to esti-
mate the accuracy of EBV based on the Spearman rank 
correlation between the true and estimated breeding 
value of the sires in the validation set following [28]. First, 
the observed phenotypes were adjusted for fixed effects, 
using a linear model that included only the fixed effects 
(

y = Xb+ e
)

 and residuals from this model served as 
corrected phenotypes for non-censored records. Second, 
the corrected phenotypes of the non-censored individu-
als were ranked from low to high survival time and cen-
sored records were assigned random ranks greater than 
the highest rank of the censored records. Then, the ranks 
of the censored records were replaced by the mean rank 
of the censored records [28]. Third, the “observed” rank 
of the sire was calculated as the mean observed rank 
of its daughters. Fourth, the correlation between the 
ranks of the estimated breeding values of sires and the 
observed ranks of the sires was calculated. This proce-
dure was repeated for each validation set. The standard 
error of the correlation for each validation set was com-
puted using SE

(

r̂
)

= 1−r̂2

sqrt(n), where n refers to the number 
of individuals in the validation set and r̂2 to the estimated 
squared correlation between the predicted and observed 
ranks of sires [34]. The rank correlation between pre-
dicted and observed sire ranks across the five sets, which 
was denoted as ρ

Âs,P̄off
, and its standard error was esti-

mated as the residual correlation from a bivariate analy-
sis of predicted and observed sire ranks, with validation 
set as the only fixed effect, using the ASREML software 
[35]. Finally, based on path-coefficients, the correlation 
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between the EBV of a sire based on the training data 
and the mean performance of its offspring in the valida-
tion data is the product of the accuracy of the sire EBV 
(

ρ
As ,Âs

)

 and the correlation of the true sire breeding value 
with the offspring mean 

(

ρ
Âs ,P̄off

)

: ρ
Âs ,P̄off

= ρ
As ,Âs

ρAs ,P̄off
 

[28]. Thus the accuracy of EBV of sires was calculated as:

The accuracy of progeny testing, i.e., the correlation 
between the true total breeding value of the sire and its 
estimated total breeding value from data on a progeny 
group, was calculated using:

where σ̂ 2
p̄  is the variance of the mean progeny phenotypes 

for survival time among sires and σ̂ 2
u is the sire variance 

estimated from the linear model (see above). Equation  3 
represents the square-root of the proportion of the variance 
in the progeny average that is explained by the sire [36].

Response to selection
To investigate the benefit of genomic selection with the 
current reference population size, response to selection 
and rate of inbreeding were compared between a tradi-
tional breeding scheme and a genomic selection scheme. 
Response to selection was predicted using deterministic 
simulation based on selection index theory, using the 
SelAction software [37]. SelAction predicts response and 
accuracy of selection for breeding programmes while 
accounting for the reduction in variance due to selection, 
known as the “Bulmer effect” [38]. This is essential when 
comparing genomic selection and traditional breeding 
programs, particularly when accuracies differ substan-
tially between the sexes, which is the case in traditional 
breeding schemes in laying hens [16, 39, 40]. Note that, 
since selection is for a single trait here (survival time), 
accuracy of EBV and accuracy of selection are the same 
thing. However, we interpreted the EBV accuracies from 
cross-validation as referring to an unselected popula-
tion, whereas accuracies from SelAction are reduced by 
the Bulmer-effect. Hence, results given below refer to 
response and accuracy for a population after reaching 
Bulmer equilibrium [38].

For the breeding schemes, the inputs shown in Table 4 
were used in SelAction (provided by Hendrix genetics). 
We used selected proportions of 8 % in males and females 
for the traditional breeding scheme, and of 2 % in males 
and 8 % in females for the genomic selection scheme for 

ρ
As ,Âs

=

ρ
Âs ,P̄off

ρAs ,P̄off

.

(3)ρAs ,P̄off
=

√

σ̂ 2
u

σ̂ 2
p̄

,

both lines. We used 20 breeding males and 400 breed-
ing females per generation for both the genomic selec-
tion and the traditional breeding scheme for both lines. 
Each sire was mated to 20 dams and each dam produced 
five male and five female offspring. The generation inter-
val for the traditional breeding scheme was 99 weeks for 
males and 55 weeks for females for both lines. The gen-
eration interval for the genomic selection scheme was 
33  weeks for males and 55  weeks for females for both 
lines. In the traditional breeding scheme, males were 
selected based on pedigree information and on the aver-
age phenotype of 40 progeny born from eight dams, 
while females were selected on pedigree information 
only for both lines, because female selection candidates 
are kept in individual cages and therefore do not have 
own performance records on survival in group housing. 
Also, sib information on survival time is not available for 
females at the time of selection. In the genomic selection 
scheme, both male and female selection candidates were 
genotyped and selected based on their GEBV.

For the genetic parameters of survival time, inputs 
were the averages of the estimates for lines B1 and BD, 
taken from Table  5 (the input values used are given in 
the footnote of Table  7). These inputs are sufficient for 
the traditional breeding scheme, which was modelled as 
single-trait selection. The genomic selection scheme was 
simulated by adding a correlated trait with full heritabil-
ity, representing the marker information [41, 42]. Only 
survival time was included in the breeding goal; the eco-
nomic value of the marker information was zero. SelAc-
tion input and output files are included as additional 
information (see Additional file 1, Additional file 2, Addi-
tional file 3, Additional file 4).

Table 4  Inputs used to  estimate response to  selection 
and rate of inbreeding using SelAction

Genetic parameters required for SelAction were taken from the results 
presented in Table 5 (see below), averaged over both lines
a  Own indicates that the selection candidates are genotyped

Input Progeny testing Genomic selection

Selected proportion for 
males

8 % 2 %

Selected proportion for 
females

8 % 8 %

Generation interval for 
males

99 weeks 33 weeks

Generation interval for 
females

55 weeks 55 weeks

Information used for 
males

Parental average, prog-
eny (40)

Owna

Information used for 
females

Parental average Owna

Number of sires (dams) 20 (400) 20 (400)
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For the genomic selection scheme, the key input 
parameter for SelAction is the genetic correlation 
between the marker information and survival time, rg , 
because this parameter determines the accuracy of the 
GEBV for survival time in the genomic selection scheme. 
The input value for rg was based on the relative accuracies 
of genomic versus traditional EBV observed in the cross-
validation. Thus, SelAction was used twice. First, to find 
the rg that agrees with the cross-validation, and second 
to predict response to selection for the genomic selection 
scheme. In the second run, the rg of the first run was used 
as input. The following steps were taken to find the value 
of rg that agreed with the results of the cross-validation:

1.	 The accuracy of the parent-average EBV, ρPA, for 
the traditional breeding scheme was obtained with 
SelAction, considering a population without selec-
tion (selected proportions of 100  % in both sexes). 
Thus, a single trait analysis was done in SelAction, 
including only survival time. This yielded ρPA = 0.45.

2.	 The target accuracy of the genomic selection scheme, 
ρGS , was obtained by multiplying ρPA from step 1 
with the ratio of the accuracy of GS over that of the 
traditional scheme, as found in the cross-validation 
(Table 6). This ratio was ~1.33, so the target accuracy 
of GS was ρGS = 0.45× 1.33 = 0.60.

3.	 The required genetic correlation between the marker 
information and survival time, rg, was found itera-
tively in SelAction by varying rg until the accuracy of 
selection reached 0.60. Thus, a two-trait analysis was 
done in SelAction, including both survival time and 
the marker information. This yielded rg = 0.53.

The next step was to predict response to genomic selec-
tion using rg = 0.53 as input for SelAction. We aimed at 
predicting response for the case when selection candi-
dates have no close relatives in the reference population 
for two reasons: (1) to be conservative, and (2) although 
reference populations will be updated over time, there is 
no guarantee that a substantial proportion of the refer-
ence individuals will be closely-related to the selection 
candidates. However, in the data used for cross-valida-
tion (see above), the majority of the validation sires had 
fathers with female progeny with records on survival 
time. Thus, the validation sires had half-sibs with pheno-
typic information in the reference population. Hence, in 
ssGBLUP, the cross-validation accuracy resulted not only 
from genomic information but also from close pedigree 
relationships with individuals in the reference popula-
tion. To extract the contribution of marker information 
to the accuracy of cross-validation, we used progeny-
tested sires in step 3. Hence, the accuracy of 0.60 in step 3 
refers to individuals that had both progeny-tested fathers 
and marker information, in a population without selec-
tion. This resembles the situation in cross-validation and 
explains why the required rg of 0.53 was smaller than 
0.60, because progeny testing of the fathers also contrib-
uted to the 0.60 accuracy. Simply using rg = ρGS = 0.60 
would over-predict response to GS, as it would attribute 
the full cross-validation accuracy to the marker informa-
tion. In the final SelAction run that was used to predict 
response for the GS-scheme, there was no progeny test-
ing of males, because we assumed that selection candi-
dates had no close relatives in the reference population. 
Hence, the initial (i.e., unselected) accuracy for that 
scheme was equal to rg = 0.53, and thus lower than the 
value of 0.60 found in cross-validation. In the Results, we 
present responses for the Bulmer-equilibrium situation.

Table 5  Estimated variance components for  survival time 
for lines B1 and BD, using pedigree relationships

σ̂
2

AT
= 4σ̂

2

u is the total additive genetic variance, including both direct and the 
indirect components [43]

σ̂
2

P̄off
 is the variance of the mean progeny phenotype among sires. Its standard 

error is computed as σ̂2
P̄off

√

2
n−1

, n denoting the number of sires

T̂2 = σ̂
2

AT
/σ̂

2

P represents total additive genetic variance as a proportion of the 
phenotypic variance

σ̂
2

P = 4σ̂
2

u + σ̂
2

c + σ̂
2

e where σ̂ 2

c is the cage variance and σ̂2e is the residual 
variance

Variance component Line B1 Line BD

σ̂
2

e
8885 ± 99 10,350 ± 156

σ̂
2

c
1084 ± 72 1403 ± 118

σ̂
2

AT

1912 ± 244 2700 ± 424

σ̂
2

P
10,446 ± 115 12,428 ± 189

σ̂
2

P̄off

1327 ± 56 1280 ± 80

T̂2 0.18 ± 0.02 0.22 ± 0.03

Table 6  Cross-validation results for  lines B1 and  BD, 
with genotyped sires as reference population for ssGBLUP 
and pedigree-BLUP

Values are the correlations of the estimated breeding values of sires with the 
average phenotype of their offspring, (ρ

Â,P̄off
)

a  Accuracy of the estimate true breeding value (ρ
As ,Âs

); see Eq. 3

Cross-valida‑
tion folda

SsGBLUP Pedigree-
BLUP

SsGBLUP Pedigree-
BLUPLine B1 Line BD

1st 20 % 0.16 ± 0.15 0.08 ± 0.15 0.36 ± 012 0.23 ± 0.14

2nd 20 % 0.38 ± 0.12 0.17 ± 0.14 0.30 ± 0.13 0.19 ± 0.14

3rd 20 % 0.30 ± 0.15 0.21 ± 0.16 0.29 ± 0.13 0.11 ± 0.14

4th 20 % 0.44 ± 0.12 0.43 ± 0.13 0.16 ± 0.14 0.18 ± 0.14

5th 20 % 0.43 ± 0.13 0.42 ± 013 0.25 ± 0.14 0.27 ± 0.13

Average 0.35 ± 0.06 0.26 ± 0.07 0.27 ± 0.06 0.20 ± 0.07

Accuracy2 0.58 ± 0.08 0.43 ± 0.09 0.37 ± 0.08 0.28 ± 0.09
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Results
Both lines showed considerable mortality (Fig. 1) but the 
average survival time for line B1 was higher than for line 
BD. A significant effect on survival time was found for 
cross, batch, and laying house*row*level for both lines 
(P < 0.001).

Table  5 shows the variance components estimated 
using statistical Method 1 (pedigree BLUP). The total 
heritable variation relative to phenotypic variance, T2, 
was 0.18 for line B1 and 0.22 for line BD. The estimated 
total genetic standard deviation was ~44 days for line B1 
and ~52 days for line BD, which were significantly differ-
ent from zero (P < 0.001) and indicate good prospects for 
genetic improvement. Note that this estimate includes 
both direct and indirect genetic effects.

Table  6 shows the correlations of the EBV of sires 
with the mean corrected rank of their offspring, calcu-
lated from cross-validation, when only the genotyped 
sires were used. The correlation of the EBV of sires with 
the mean phenotype of their offspring was higher for 
ssGBLUP than for pedigree-BLUP, for both lines. With 
ssGBLUP, accuracies of EBV were 35 and 33  % higher 
for lines B1 and BD, respectively, compared to paren-
tal average (0.58 vs. 0.43 for line B1, and 0.37 vs. 0.28 
for line BD). Correlations obtained with ssGBLUP were 
only slightly higher when non-genotyped sires were also 
included in the reference population [0.62 vs. 0.45 for 
line B1, and 0.39 vs. 0.28 for line BD (see Additional 
file 5: Table S1)].

Table  7 shows predicted responses to selection per 
year and predicted rates of inbreeding per genera-
tion and per year. Predicted response for the genomic 
scheme was 91  % higher than that of the traditional 
scheme, primarily because of a reduction in the genera-
tion interval of males and a greater accuracy of selection 
for females. The predicted rate of inbreeding per year 
was 53 % lower for the genomic scheme than for the tra-
ditional scheme.

Discussion
We show that genomic selection increases the accu-
racy of EBV for survival time in brown layers compared 
to the parent average EBV (Table  6). More importantly, 
although the reference population is currently small, 
genomic selection resulted in a substantially higher 
response to selection per year for survival time com-
pared to the traditional breeding scheme. The standard 
deviation in genomic EBV was 25  days for line B1 and 
19 days for line BD, indicating good prospects for selec-
tion against mortality due to cannibalism in these brown 
layer lines.

Genetic parameters
The structure of the design with cages consisting of 
paternal half-sibs makes it possible to directly estimate 
the linear combination of the direct and indirect breed-
ing values, which is the total breeding value [30, 43], but 
the separate contributions of direct and indirect genetic 
effects to the total genetic variance cannot be estimated 
[30]. Using pedigree relationships, the proportion of 
the total heritable variation to phenotypic variance for 
survival time was 0.18 for line B1 and 0.22 for line BD. 
Similar total heritabilities for survival time (0.1–0.2) were 
found in purebred white layers by Ellen et al. [2] and in 
crossbred white layers by Peeters et al. [11]. In white layer 
lines, the indirect genetic variance contributes the major-
ity of the total genetic variance [2, 11]. The total herit-
ability for survival time was considerably higher than 
common heritabilities (0.02–0.1) in white layers [2, 11]. If 
this result extends to brown layers, then indirect genetic 
effects also contribute substantially to the heritable vari-
ance in survival time in our populations.Fig. 1  Proportion of surviving individuals

Table 7  Predicted accuracy and  response to  selection 
in survival time and rate of inbreeding

Values refer to the Bulmer equilibrium; inputs are in Table 4

Additional inputs (unselected base population parameters averaged over lines 
are from Table 5): σ̂ 2

P = 11,500 days2 and h2 = 0.20

For the GS scheme: genetic correlation between survival time and marker 
information rg = 0.53

Corresponding phenotypic correlation rp = hrg = 0.24

Heritability marker information = 100 %, and phenotypic variance marker 
information = 646.7 days2; the latter is obtained as r2gh

2
σ
2
P , which causes the 

regression coefficient of the true breeding value for survival time on the marker-
based EBV to be equal to 1. Note that this value does not impact response to 
selection in survival time. Further details are in [41, 42]

Traditional Genomic selection

Accuracy of males 0.77 0.42

Accuracy of females 0.16 0.42

Response to selection (days/year) 24.6 47.0

Rate of inbreeding (%) per genera-
tion (year)

2.75 (1.86) 0.75 (0.88)
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Accuracy of EBV
We found that the accuracy of genomic EBV was ~33 % 
higher than that of parent average EBV in both lines. 
The absolute increases in accuracy were 0.15 for line B1 
and 0.09 for line BD. While the relative superiority of 
genomic selection over the traditional scheme was simi-
lar for both lines, the absolute accuracies were clearly 
higher for line B1 than for line BD, both for pedigree 
BLUP and for ssGBLUP. In the following, we discuss the 
mechanisms that may cause these differences in accuracy. 
First, we consider the contribution of pedigree informa-
tion, then the contribution of genomic information, and 
finally the joint contribution of both information sources 
to the accuracy of EBV.

The large difference in the accuracy of parent average 
EBV between lines suggests that line B1 benefits more 
from pedigree information than line BD. The key factor 
that determines the accuracy of EBV based on informa-
tion on relatives is the variation in relatedness among 
pairs of individuals rather than the average level of relat-
edness, see [44]. The variance in pedigree relationships, 
i.e., the variance of the off-diagonal elements of the ped-
igree-relationship matrix among the sires of each line 
(509 for B1 and 284 for BD) was 0.00091 for line B1 and 
0.00077 for line BD. Thus, the variation in pedigree rela-
tionships was larger for line B1 than for line BD, which 
agrees with the higher accuracies of the parent average 
EBV for line B1.

With genomic information, the accuracy of EBV 
obtained with GBLUP depends on the average linkage 
disequilibrium (LD) across the genome, the number of 
observations in the reference population, and the reliabil-
ity of the information source recorded in the reference 
population [44–47]. Without LD, all loci would segre-
gate independently and genomic relationships would be 
identical to pedigree relationships [44]. Hence, varia-
tion of genomic relationships around their expectation 
based on pedigree reflects LD, with LD being greater if 
this variation is greater, resulting in greater accuracy of 
GEVB compared to EBV based on pedigree information. 
Thus, the genome-wide average LD can be measured by 
var(G− A22), which denotes the variance of the differ-
ence between the pedigree relationship and the genomic 
relationship, taken over all pairs of individuals (geno-
typed sires here [44]). The reciprocal of the variation in 
genomic relatedness, Me =

1
var(G−A22)

, is a measure of 
the effective number of independently segregating chro-
mosome segments, and represents the effective number 
of independent genetic effects that have to be estimated 
in genomic prediction [44, 46]. As Me increases, the 

genome-wide average LD decreases, resulting in a lower 
accuracy of GEBV [44, 46, 48].

To quantify genome-wide average LD in each line, we 
calculated Me based on the genotyped sires of each line, 
resulting in Me = 799 for B1 and Me = 1020 for BD. 
Thus, variation in genomic relationships around their 
expectation based on pedigree was greater for line B1 
than for line BD, which reflects that the LD was greater 
for line B1 than for line BD [44].

With genomic information only, i.e., in the absence of 
close pedigree relationships, the theoretically expected 
accuracy of GEBV equals (Eq. 1 in [45, 46]; Appendix A 
in [47]):

where r2 refers to the reliability of a phenotypic observa-
tion in the reference population, and Np to performance 
of animals in the reference population. Because our ref-
erence population consisted of progeny-tested sires, we 
used the reliability of progeny testing, which equals the 
square of the accuracy of progeny testing given in Eq. 3. 
Reliabilities of progeny testing, calculated from values 
in Table  5, were r2B1 = 0.36 and r2BD = 0.53. Substitut-
ing those values in Eq.  4 yielded theoretically expected 
accuracies of 0.26 for line B1 and 0.30 for line BD. Thus, 
the contribution of genomic information to the accuracy 
of EBV was similar for both lines; it was slightly higher 
for line BD than for line B1, because the larger reference 
population and the higher value of r2 for BD more than 
compensate for the lower LD in that line.

Finally, we quantified the contributions of pedigree 
and genomic information to the empirical accuracy of 
EBV from ssGBLUP observed in cross-validation (ρ

AÂ
 , 

Table 6). For line B1, the theoretically expected accuracy 
was 0.26 and the empirical accuracy was 0.58. For line 
BD, the theoretically expected accuracy was 0.30 and the 
empirical accuracy was 0.37. Hence, empirical accura-
cies were higher than theoretically expected accuracies, 
particularly for line B1. This demonstrates that pedigree 
relationships also contributed to the accuracy of GEBV. 
The greater contribution of close pedigree relationships 
for line B1 agrees with the greater variation in pedigree 
relationships and the greater accuracy of parent average 
EBV for line B1.

Rate of inbreeding
The predicted rate of inbreeding of ~1.86  % per year 
for the traditional breeding scheme was considerably 

(4)r
ÂA

=

√

Npr2

Npr2 +Me
,
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larger than the 0.88 % per year for the genomic scheme 
(Table  7). Note that these rates of inbreeding refer to a 
breeding scheme where parents are selected solely by 
truncation based on their total longevity EBV, without 
any restriction on the number of individuals selected 
from the same family or on relatedness between selected 
individuals. Rates of inbreeding with truncation selec-
tion were predicted using the theory of long-term genetic 
contributions [49], as implemented in SelAction [37].

The difference in rates of inbreeding between the tra-
ditional and genomic breeding schemes is due to two 
reasons. First, with the traditional breeding scheme, 
females are selected by truncation on parent average 
EBV, resulting in selection of complete families, which 
is known to increase the rate of inbreeding [50]. Second, 
with GS there is a strong Bulmer effect, since the GEBV 
has a heritability of 1, which reduces the rate of inbreed-
ing [51]. The Bulmer effect reduces the between-family 
variance in EBV, which reduces the correlation between 
EBV of sibs and of more distance relatives. A lower cor-
relation between EBV of relatives reduces the probabil-
ity of co-selection of relatives, and causes selection to act 
more strongly within families, which reduces the rate of 
inbreeding. Together, these two mechanisms cause a con-
siderable difference in the expected rates of inbreeding 
between the two schemes.

The predicted rate of inbreeding for the traditional 
scheme (~1.86 %/year) would be viewed as unacceptable 
in practice and, thus, measures would be taken to restrict 
it. Thus, parents would no longer be selected solely by 
truncation on EBV, which would cause a decrease in 
response to selection for the traditional scheme. Hence, 
with restricted inbreeding, compared to the GS scheme 
the traditional breeding scheme would yield even less 
response than suggested by the values in Table 7.

Conclusions
Overall, in spite of the small reference population sizes (207 
genotyped sires for line B1 and 242 for line BD), genomic 
selection showed a reasonably good accuracy for predicted 
true breeding values compared to pedigree-BLUP for sur-
vival time in brown layers. More importantly, it gave a sub-
stantially higher expected response to selection and lower 
rate of inbreeding compared to the traditional breeding 
scheme. Thus, for genetic improvement of survival time 
in laying hens that show cannibalism, genomic selection is 
an attractive alternative for traditional selection, even if the 
available reference population is small.
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