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prediction of novel traits with small reference 
populations: an application to residual feed 
intake in dairy cattle
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Abstract 

Background:  Genomic prediction for novel traits, which can be costly and labor-intensive to measure, is often ham-
pered by low accuracy due to the limited size of the reference population. As an option to improve prediction accu-
racy, we introduced a semi-supervised learning strategy known as the self-training model, and applied this method to 
genomic prediction of residual feed intake (RFI) in dairy cattle.

Methods:  We describe a self-training model that is wrapped around a support vector machine (SVM) algorithm, 
which enables it to use data from animals with and without measured phenotypes. Initially, a SVM model was trained 
using data from 792 animals with measured RFI phenotypes. Then, the resulting SVM was used to generate self-
trained phenotypes for 3000 animals for which RFI measurements were not available. Finally, the SVM model was 
re-trained using data from up to 3792 animals, including those with measured and self-trained RFI phenotypes.

Results:  Incorporation of additional animals with self-trained phenotypes enhanced the accuracy of genomic predic-
tions compared to that of predictions that were derived from the subset of animals with measured phenotypes. The 
optimal ratio of animals with self-trained phenotypes to animals with measured phenotypes (2.5, 2.0, and 1.8) and 
the maximum increase achieved in prediction accuracy measured as the correlation between predicted and actual 
RFI phenotypes (5.9, 4.1, and 2.4%) decreased as the size of the initial training set (300, 400, and 500 animals with 
measured phenotypes) increased. The optimal number of animals with self-trained phenotypes may be smaller when 
prediction accuracy is measured as the mean squared error rather than the correlation between predicted and actual 
RFI phenotypes.

Conclusions:  Our results demonstrate that semi-supervised learning models that incorporate self-trained pheno-
types can achieve genomic prediction accuracies that are comparable to those obtained with models using larger 
training sets that include only animals with measured phenotypes. Semi-supervised learning can be helpful for 
genomic prediction of novel traits, such as RFI, for which the size of reference population is limited, in particular, when 
the animals to be predicted and the animals in the reference population originate from the same herd-environment.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
When using whole-genome markers to predict breed-
ing values or future phenotypes, a main challenge is the 
construction of an effective reference population that 

includes genotyped and phenotyped individuals for 
training the prediction model. Both size of the reference 
population and genetic distance between the reference 
population and the current pool of selection candidates 
are critical factors [1, 2]. Given a sufficient number of 
individuals in the reference population or training set, 
there are several highly effective “supervised learn-
ing” techniques for training prediction models, such as 
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Bayesian regression models, genomic best linear unbi-
ased prediction (BLUP), kernel-based methods, and 
machine-learning algorithms (e.g., [3–6]). Very large ref-
erence populations are available for some traits and spe-
cies, such as for milk yield in Holstein dairy cattle, but for 
other traits such as feed efficiency, the size of the refer-
ence population is often limited by the exorbitant cost or 
intensive labor requirements associated with measuring 
individual phenotypes. For dry matter intake (DMI) in 
dairy cattle, researchers have collated data from multiple 
countries to estimate genetic parameters and perform 
genomic prediction [7, 8]. Alternatively, after several 
years of genomic selection on traits such as milk yield, 
hundreds of thousands of dairy cows and bulls have been 
genotyped, and useful information that can enhance the 
accuracy of genomic prediction for feed efficiency could 
be extracted from the available genomic data of ani-
mals that have not been measured for the phenotype of 
interest.

A powerful tool from the machine-learning commu-
nity has potential for addressing this challenge, i.e. a 
technique known as semi-supervised learning. As its 
name suggests, semi-supervised learning refers to mod-
els that combine attributes of supervised and unsuper-
vised learning [9]. Most genomic prediction models 
that are currently popular, such as genomic BLUP and 
Bayesian regression, rely on supervised model train-
ing. In supervised models, a measured phenotype is 
provided as the desired “label” for an animal, and this 
phenotype supervises the process of model training to 
predict future phenotypes from the corresponding gen-
otypes. In contrast, for unsupervised learning no meas-
ured phenotype is available to supervise the labeling 
of an animal’s genotype. An example of unsupervised 
learning is the use of principal component analysis to 
cluster animals into groups based on the similarity of 
their genotypes.

In this study, and in the context of genomic selection 
for enhanced feed efficiency in dairy cattle, we applied 
a simple but widely used semi-supervised learning algo-
rithm known as the “self-training” model [9]. During the 
learning process, this model uses its own predictions that 
are derived from the subset of “labeled” individuals with 
measured phenotypes, to teach itself on the relationships 
between genotypes and phenotypes of “unlabeled” indi-
viduals with missing phenotypes. The self-training model 
that can be wrapped around a wide variety of genomic 
prediction methods. In this study, we extended a typical 
machine-learning genomic selection model, namely the 
support vector machine (SVM) [10, 11], which provided 
higher prediction accuracies of residual feed intake (RFI) 
using whole-genome molecular markers than the random 
forests model [12]. In this approach, the training data 

consist of a combination of individuals with measured 
phenotypes and model-derived “self-trained” pheno-
types, and both sources of data are used for subsequent 
prediction of genomic breeding values for RFI. Knowl-
edge about the genomic relationships within the popula-
tion of animals without phenotypes can contribute to the 
accuracy of selection, and if this is successful, the result-
ing prediction accuracy will exceed that of a supervised 
learner trained with only the animals that have measured 
phenotypes. The underlying assumptions are that the 
measurement of additional phenotypes for the novel trait 
is difficult or expensive, and that additional genotypes of 
animals without novel trait phenotypes are available at 
little or no cost.

Although, until now, self-training has not been intro-
duced in an animal breeding context, it has been used 
for a variety of promising applications in the broader 
subject area of artificial intelligence. For example, Rosen-
berg et  al. [13] implemented a semi-supervised learn-
ing approach as a wrapper around an existing object 
detector and achieved results that were comparable to 
a model trained with a much larger set of fully labeled 
data. McClosky et  al. [14] self-trained an effective two-
phase parser-re-ranker system using unlabeled data, and 
the semi-supervised model achieved a 12% reduction in 
error compared to the best previous result for parsing. 
Tang et  al. [15] proposed the semi-supervised trans-
ductive regression forest for real-time articulated hand 
pose estimation and showed that accuracies could be 
improved by considering unlabeled data. In genetics, this 
method has been used to increase the accuracy of gene 
start prediction, by combining models of protein-coding 
and non-coding regions and models of regulatory sites 
near the gene start [16]. In the area of gene identification, 
a self-training model was used to find genes in eukaryotic 
genomes in parallel with statistical model estimates that 
were taken directly from anonymous genomic DNA [17].

In this work, we present the first application of a self-
training algorithm in the context of genomic selection of 
livestock, using RFI as the phenotype of choice for meas-
uring feed efficiency in dairy cattle. A comprehensive 
evaluation of the model training process was undertaken 
in order to facilitate effective application of semi-super-
vised learning techniques to predict a complex trait 
such as RFI using whole-genome molecular markers. 
This study focused on determining how performance 
of the predictor is affected by the number of “labeled” 
individuals with measured phenotypes and “unlabeled” 
individuals with self-trained phenotypes. It also aimed at 
providing new insights in genomic selection by enhanc-
ing prediction accuracy through the inclusion of animals 
without measured phenotypes via semi-supervised learn-
ing methods.
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Methods
Description of the semi‑supervised self‑training algorithm
One particular semi-supervised learning strategy, i.e. the 
self-training model, was used in this study. Animals with 
measured phenotypes were separated into training and 
testing sets. The training and testing sets included ani-
mals with genotypes, G1 and GT, and measured pheno-
types, P1 and PT. Animals without measured phenotypes 
only contributed genotypes, denoted as G2. During self-
training, an initial model was trained using the training 
set of G1 and P1 to formulate the base predictor ( f ). This 
predictor was then used to predict the self-trained phe-
notypes, P̂2, for the individuals that lacked measured phe-
notypes. Next, the individuals comprising G2 and P̂2 were 
added to the training set in order to train a new predictor 
( f ∗). In the testing phase, accuracies of f  and f ∗ within 
the testing set (denoted as RSL and RSSL) were compared. 
First, phenotypes P̂T and P̂

∗

T were predicted from GT 
using f  and f ∗, respectively. Second, RSL (RSSL) was com-
puted as the correlation between P̂T (P̂

∗

T) and PT . The self-
training algorithm is summarized below and illustrated 
in Fig. 1.

Step 1: Train a base predictor, f , using genotypes 
G1 and phenotypes P1 from animals with measured 
phenotypes.

Step 2: Predict the self-trained phenotypes (P̂2) 
from the genotypes G2 for animals without measured 
phenotypes.

Step 3: Combine genotypes G1 and G2 with phenotypes 
P1 and P̂2, in order to train a new predictor, f ∗, which is 
used to compute the final genomic predictions.

An SVM algorithm was used as the genomic prediction 
model and implemented using the “svm” function of the 
“e1071” package Version 1.6-1 in R [18] with radial basis 
kernel and default parameters tuned within the training set.

Definition of the RFI phenotypes
The data consisted of 792 lactating Holstein dairy cows 
from the Allenstein Dairy Herd at the University of Wis-
consin–Madison. Phenotypes used in this study were a 
subset of the data analyzed by Tempelman et al. [19], in 
which a detailed description of the data is provided. All 
animals with measured phenotypes were recorded for 
daily DMI, daily milk yield, weekly milk composition (fat 
%, protein %, and lactose %), and weekly body weight 
(BW) during the period from 50 to 200 days postpartum. 
Quality control and editing were similar to Yao et al. [12]. 
Only one lactation record per animal was used.

Residual feed intake was defined as the deviation of 
an animal’s feed intake from the average intake of its 
cohort, after adjusting for milk production and compo-
sition, maintenance of body weight, and known environ-
mental differences. Fixed environmental effects included 

year-season of calving (YSC) with 19 levels (year: 2007–
2013; season: January–March, April–June, July–Septem-
ber, or October–December) and parity-by-age at calving 
(ParAge) with 20 levels (1st parity: ≤23, 24, 25, 26, or 
≥27 months; 2nd parity: ≤35, 36, …, 40, or ≥41 months; 
3rd parity or later: ≤48, 49,50, 51, 52–56, 57–61, 62–69, 
or ≥70 months), while medium days in milk for the week 
(dim) was included as a covariate. A total of 81 rations 
used in specific nutrition experiments were modeled as 
random cohort effects. Weekly mean RFI phenotypes 
were the residuals from this model, calculated as:

where y is a vector of DMI phenotypes, µ is the popu-
lation mean, YSC is a vector of the fixed effects of year-
season of calving, ParAge is a vector of fixed effects of 
parity-by-age at calving interaction, dim is a vector of 
the fixed covariate of the medium days in milk during the 
week with regression coefficient β1, MilkE is a vector of 
the fixed covariate of energy expressed in milk (defined in 
[12]) with regression coefficient β2, MBW is a vector of 
the fixed covariate of the metabolic BW (i.e., BW0.75) with 
regression coefficient β3, ration ∼ N

(

0, Iσ2r
)

 is a vector 
of the random cohort effects, and RFI ∼ N

(

0, Iσ2e
)

 is a 
vector of random residuals. The mixed model equations 
were solved with the restricted maximum likelihood 
(REML) method using the R-package “lme4”, Version 
0.999999-0 [14]. Then, for each animal, the RFI pheno-
type was set to the mean of weekly RFI estimates avail-
able for that animal.

Genetic marker data
Single nucleotide polymorphism (SNP) genotypes were 
available for the 792 cows with measured RFI phenotypes 
and for 3000 cows without measured RFI phenotypes; 
these 3000 cows included 1127 Holstein cows from four 
other university research herds (University of Florida, 
Iowa State University, Michigan State University, and Vir-
ginia Tech University) and 1813 Holstein cows born in 
2009 and selected randomly from the Council on Dairy 
Cattle Breeding (CDCB; Bowie, MD) Holstein genotype 
database. Raw genotypes represented various low-density 
and medium-density arrays, and missing genotypes were 
imputed to higher density using genotype information 
from bulls and cows in the CDCB database [20, 21]. Any 
remaining missing genotypes (about 2%) were imputed 
by using rounded allele frequencies from the current US 
Holstein population. SNPs with minor allele frequen-
cies lower than 5% were removed. A total of 57,491 SNPs 
per individual were available for the genomic prediction 
analysis. The SNP genotype at each locus was coded as 0, 
1, or 2, counting the number of copies of the minor allele.

y = µ+ YSC+ ParAge+ β1dim + β2MilkE

+ β3MBW + ration + RFI,
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Design of the validation study
In practical applications of genomic selection in dairy 
cattle, training is typically carried out using historical 
animals, and the target population of selection candi-
dates for genomic prediction includes, but is not limited 
to, offspring and descendants of animals in the training 
set [22]. In this study, genomic prediction models were 
trained using 540 animals born before January 1, 2010 
and validation of the prediction accuracies was carried 
out using 252 animals born after January 1, 2010. In 
order to assess the impact of size of the reference popula-
tion on the accuracy of genomic prediction with super-
vised learning, size of the training set was varied from 20 
to 540 in increments of 20 (i.e., n = 20, 40, 60, …, 540), 
and prediction accuracy for a given n was averaged over 
100 random samples from the training set. To assess the 
impact of the relative numbers of animals with meas-
ured phenotypes versus self-trained phenotypes in the 

training set, the number of animals with measured phe-
notypes was set to 300, 400, or 500, whereas the number 
of animals with self-trained phenotypes was set to 200, 
400, 600, or 800. Again, the accuracy of genomic pre-
diction was evaluated by averaging over 100 replicates 
of each scenario, for which reference animals with and 
without measured RFI phenotypes were sampled from 
the respective pools of available animals.

Results and discussion
Prediction accuracy of supervised learning
The goal of semi-supervised learning in the context of 
genomic prediction for novel traits is to train a learner 
using genotyped animals that may or may not have a 
measured phenotype for the trait of interest. First, we 
characterized the sensitivity of the prediction model 
for supervised learning to the size of the training set, in 
order to assess the possible gains in prediction accuracy 

Fig. 1  Illustration of the self-training algorithm. Step 1: train a base predictor, f , using G1 and P1 from animals with measured phenotypes. Step 2: 
predict self-trained phenotypes, P̂2, based on G2 for animals without measured phenotypes. Step 3: combine G1, G2, P1, and P̂2 to train a new predic-
tor, f ∗. In the testing phase, compare accuracies of f  and f ∗ on the testing set (RSL and RSSL). First, predict phenotypes P̂T and P̂

∗

T based on GT using f  
and f ∗, respectively and second, calculate RSL (RSSL) as the correlation between P̂T (P̂

∗

T) and PT
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that could be achieved by adding unlabeled animals with-
out measured phenotypes. If performance of the model is 
already at its maximum, given a training set with meas-
ured phenotypes of a specific size, then gains by includ-
ing additional animals without measured phenotypes are 
unlikely. Accuracies of prediction for supervised learning 
with training sets that range in size from 20 to 540 ani-
mals are in Fig. 2, where each point represents the cor-
relation (Fig. 2a) and mean squared error (MSE) (Fig. 2b) 
between genomic predictions and actual RFI phenotypes 
for cows in the testing set, averaged over 100 replicates. 
As shown in Fig. 2, accuracy measured as the correlation 
increased and MSE decreased rapidly until the training 
set reached about 200 animals, and accuracy changed 
more slowly thereafter, while 95% of the confidence 
intervals decreased steadily as the size of the training set 
increased. Clearly a reference population with less than 
200 individuals with measured phenotypes was not suf-
ficient to train the prediction model. The reduction in 
standard error of the predictive accuracy may be attrib-
uted to a greater likelihood that the same individuals 
would be repeated among different replicates as size of 
the training set increased. Overall, Fig. 2 shows that the 
accuracy of genomic prediction increased throughout the 
range of training sets considered, and therefore opportu-
nities for improvement exist by including animals with 
self-trained phenotypes. Based on these results, we set 
the size of the training set with measured phenotypes 
to 300, 400, and 500 for the subsequent semi-supervised 
learning analyses.

Prediction accuracy of semi‑supervised learning
Second, we assessed how the number and proportion of 
animals with self-trained phenotypes changed the accu-
racy of genomic predictions for animals in the testing set. 
This change was calculated by subtracting the accuracy 
of the initial supervised learning model from the final 
accuracy of the corresponding semi-supervised learn-
ing model, i.e. RSL − RSSL. The average baseline accura-
cies, measured as the correlation (as the MSE) between 
predicted and measured RFI phenotypes for supervised 
SVM models trained with 300, 400, and 500 animals 
with measured phenotypes were equal to 22.9 (1.41), 
27.0 (1.39), and 28.7% (1.37), respectively. The results in 
Fig.  3a suggest that including animals with self-trained 
phenotypes can improve prediction accuracy and the 
degree of improvement tended to increase as the num-
ber of additional animals with self-trained phenotypes 
increased. In addition, a 0% change was not included in 
any of the 95% confidence intervals in the graph, which 
suggests that results from semi-supervised and super-
vised learning models were significantly different. The 
MSE in Fig. 3b improved when adding 200 animals with 
self-trained phenotypes and started to decrease at 400 
animals with self-trained phenotypes. Although the 
increases in Fig. 3a were only up to 1.7%, these increases 
are valuable for traits with an estimated heritability of 
0.15 [19]. As shown by Pryce et al. [23], the accuracy (cor-
relation) of genomic prediction of RFI only increased by 
2% (from 11 to 13%) when adding 939 heifers from New 
Zealand to the reference population of 843 Australian 

Fig. 2  Average accuracy of genomic prediction for 252 animals in the testing set. Accuracy of genomic prediction was measured as the a cor-
relation or b mean squared error between predicted and measured residual feed intake phenotypes, plotted against the size of the training set of 
animals with measured phenotypes. The results for each training set size were based on 100 replicates using n = 20, 60, …, 500 random samples 
from the full training set of 540 individuals with measured phenotypes. Error bars indicate the 95% confidence interval for each mean
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heifers. However, the cost to measure the individual feed 
intake of these 939 extra heifers was not negligible.

Figure  3a also indicates that, for a given number of 
animals with self-trained phenotypes, the improve-
ment in accuracy measured as the correlation due to 
semi-supervised learning depends on the number of 
animals with measured phenotypes. The benefit of add-
ing a given number of animals with self-trained phe-
notypes was greater for models that included fewer 
animals with measured phenotypes. A similar outcome 
was reported by Filipovych et al. [24] when using semi-
supervised learning to classify brain images of patients 
with uncertain diagnoses. The reason is that, in general, 
semi-supervised learning is used to address situations 
in which labeled data are scarce [9]. In other words, if 
the sample of training animals is too small or does not 
completely represent the genomes of animals in the test-
ing set, over-fitting specific nuances of the training set 
animals may lead to poor generalization to future test-
ing populations. In semi-supervised learning, the extra 
genomic information from animals without measured 
phenotypes may help to reduce the chance of over-fitting. 
Therefore, potential uses of semi-supervised learning in 
animal breeding could focus on traits such as RFI, for 
which the number of reference animals with phenotypes 
is small. When the number of animals with measured 
phenotypes is sufficient, the potential gains by adding 
information from animals with self-trained phenotypes 
is limited. However, this trend was not clear for the MSE 

shown in Fig. 3b. Figure 3a also shows that the slopes of 
all three curves decreased as the number of animals with 
self-trained phenotypes increased. In other words, the 
gain in prediction accuracy (correlation) associated with 
an increase from 200 to 400 animals with self-trained 
phenotypes was greater than the gain in accuracy associ-
ated with an increase from 400 to 600, and so on. There-
fore, we may approach a plateau beyond which inclusion 
of more animals with self-trained phenotypes provides 
no additional benefit.

Third, we evaluated the number of animals with self-
trained phenotypes that must be added to the training 
set of animals with measured phenotypes in order to 
achieve the maximum improvement in prediction accu-
racy measured using as the correlation. For this purpose, 
we fixed the number of animals with measured pheno-
types, and we increased the number of animals with self-
trained phenotypes by 200, until we reached the point 
at which additional improvements in accuracy were less 
than 0.01% for a given replicate. Figure 4a shows the ratio 
of the number of animals with self-trained phenotypes 
to the number of animals with measured phenotypes at 
the point at which improvements in accuracy measured 
as the correlation became negligible, for a given size of 
the initial training set. These results indicate that the 
optimal ratio of animals with self-trained to animals with 
measured phenotypes decreases as the size of the initial 
labeled training set increases and thus, that more animals 
with self-trained phenotypes are needed to compensate 

Fig. 3  Difference in accuracies of genomic predictions between the supervised and self-training algorithms. Accuracy of genomic prediction was 
tested for 252 animals in the testing set, and measured as the a correlation or b mean squared error between predicted and measured residual 
feed intake phenotypes. The number of initial reference animals with measured phenotypes was 300, 400, or 500, and a total of 200, 400, 600, and 
800 animals with self-trained phenotypes were added to the training set using the self-training algorithm. Error bars indicate the 95% confidence 
intervals for each mean of 100 replicates
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for the smaller labeled training sets. The highest average 
accuracies (correlations) achieved by semi-supervised 
learning were equal to 30.9, 31.4, and 30.9% for initial 
training sets of 300, 400, and 500 animals with meas-
ured phenotypes, respectively. Figure  4b shows that the 
maximum improvement achieved in prediction accuracy 
measured as the correlation was equal to 5.9, 4.1, and 
2.4% by including animals with self-trained phenotypes 
in relation to the size of the initial labeled training set. 
Results show that maximum gains in prediction accuracy 
decreased as the size of the initial training set increased. 
In each case, these exceeded the correlation of 29.2% 
that was achieved using supervised learning with the full 
training set of 540 animals with measured phenotypes. 
Thus, in this study, self-training models achieved predic-
tion accuracies measured as correlations that were com-
parable to those obtained from fully supervised models 
that were trained using larger reference populations with 
measured phenotypes.

Prediction accuracy measured as the correlation is an 
estimator of the linear relationship between predictions 
and responses and does not address the bias of predic-
tions, in contrast to the MSE, as noted by González-
Recio et  al. [5]. The optimal number of animals with 
self-trained phenotypes based on minimizing MSE, was 
less than 400, as shown in Fig. 3b. This optimal number 
was smaller than when it was estimated by using the 
correlation based on minimizing the correlation. Thus, 

depending on the purpose and criterion used for the 
accuracy of the prediction, the optimal number of ani-
mals with self-trained phenotypes may differ. If only the 
linear relationship is important, it is likely that a larger 
number of animals with self-trained phenotypes could be 
used compared with a situation where the bias of the pre-
dictions is critical.

Advantages and limitations of self‑training models
The major advantages of self-training models for semi-
supervised learning are threefold. First, implementa-
tion of the algorithm is simple. Second, self-training 
can be wrapped around any prediction model, such as 
SVM, genomic BLUP, or Bayesian regression. Third, if 
additional genotypes of animals without phenotypes are 
readily available (which is almost always the case), the 
additional costs are negligible. However, a potential dis-
advantage is that a self-training model is allowed to learn 
from its own predictions. Thus, a mistake that is made 
early in the learning process may reinforce itself in the 
self-trained phenotypes, and this could lead to poorer 
predictions from the final genomic prediction model. 
Such mistakes can occur, for example, if assumptions in 
the prediction model are inappropriate for a given data-
set, or if the number of animals with measured pheno-
types in the first step is inadequate to construct a useful 
predictor. As an example, we explored the use of a ran-
dom forests model with a set-up that is similar to that in 

Fig. 4  a Ratio of the number of animals with self-trained phenotypes to that with measured phenotypes and b maximum improvement of the 
correlation (%). Incremental improvement in accuracy of prediction measured as the correlation between predicted and actual residual feed 
intake phenotypes within a replicate due to additional animals with self-trained phenotypes was smaller than 0.01%. The numbers of animals with 
measured phenotypes were 300, 400, and 500, whereas the numbers of animals with self-trained phenotypes started with 200 and increased in 
increments of 200 additional animals. Error bars indicate the 95% confidence intervals for means of 100 replicates
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Yao et  al. [12] instead of using SVM in the self-training 
model, and found no improvement from using self-train-
ing model. As shown in [12], SVM resulted in substan-
tially better prediction accuracy (correlation) than that 
obtained with the random forests model when predicting 
RFI (20.5 vs. 8.876%). Therefore, choosing an appropriate 
prediction model for the self-training method is essen-
tial. Various heuristics have been introduced to address 
this problem [9], and, in practice, many researchers have 
noted that semi-supervised learning does not always 
improve the accuracy of prediction or classification [25, 
26]. Therefore, additional studies in animal breeding or 
livestock production beyond this initial application to 
genomic prediction of RFI in Holstein dairy cattle are 
needed.

Conclusions
We introduced a self-training model, chosen from the 
class of semi-supervised learning strategies, as a novel 
method to achieve potential improvements in the accu-
racy of genomic prediction, with a specific application to 
RFI in dairy cattle. Our results suggest that a self-training 
algorithm wrapped around a SVM prediction model may 
increase the accuracy of genomic prediction by collect-
ing additional genomic information about the popula-
tion from animals without measured phenotypes. For a 
given training set of animals with measured phenotypes, 
improvements in prediction accuracy measured as the 
correlation associated with semi-supervised learning 
increased as the number of additional animals with self-
trained phenotypes increased, and eventually reached a 
plateau. In addition, improvements in accuracy measured 
as the correlation between predicted and measured RFI 
phenotypes from adding animals with self-trained phe-
notypes to the reference population were smaller when 
more animals with measured phenotypes were available 
in the initial testing set. The optimal number of animals 
with self-trained phenotypes can be smaller when predic-
tions are evaluated based on MSE, rather than based on 
a correlation. Semi-supervised learning may be helpful 
to enhance the accuracy of genomic prediction for novel 
traits that are difficult or expensive to measure, and hence 
for small reference populations, but potential gains for 
other traits beyond RFI in dairy cattle should be studied.
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