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Abstract

Background: Cattle resistance to ticks is known to be under genetic control with a complex biological mechanism
within and among breeds. Our aim was to identify genomic segments and tag single nucleotide polymorphisms
(SNPs) associated with tick-resistance in Hereford and Braford cattle. The predictive performance of a very low-density
tag SNP panel was estimated and compared with results obtained with a 50 K SNP dataset.

Results: BayesB (m = 0.99) was initially applied in a genome-wide association study (GWAS) for this complex trait by
using deregressed estimated breeding values for tick counts and 41,045 SNP genotypes from 3455 animals raised in
southern Brazil. To estimate the combined effect of a genomic region that is potentially associated with quantitative
trait loci (QTL), 2519 non-overlapping 1-Mb windows that varied in SNP number were defined, with the top 48 win-
dows including 914 SNPs and explaining more than 20% of the estimated genetic variance for tick resistance. Subse-
quently, the most informative SNPs were selected based on Bayesian parameters (model frequency and t-like statis-
tics), linkage disequilibrium and minor allele frequency to propose a very low-density 58-SNP panel. Some of these
tag SNPs mapped close to or within genes and pseudogenes that are functionally related to tick resistance. Prediction
ability of this SNP panel was investigated by cross-validation using K-means and random clustering and a BayesA
model to predict direct genomic values. Accuracies from these cross-validations were 0.27 = 0.09 and 0.30 4= 0.09
for the K-means and random clustering groups, respectively, compared to respective values of 0.37 £ 0.08 and

043 £ 0.08 when using all 41,045 SNPs and BayesB with m = 0.99, or of 0.28 & 0.07 and 0.40 % 0.08 with m = 0.999.

Conclusions: Bayesian GWAS model parameters can be used to select tag SNPs for a very low-density panel, which
will include SNPs that are potentially linked to functional genes. It can be useful for cost-effective genomic selection

tools, when one or a few key complex traits are of interest.

Background

Bovine ticks are endemic throughout some of the most
productive livestock farming regions in the world [1].
In Brazil, the Rhipicephalus (Boophilus) microplus tick
is one of the main causes of economic losses in cattle
production and affects negatively the performance of
their hosts both directly by blood sucking and indirectly
as a vector of viral, bacterial and protozoal diseases [2].
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Resistance to ticks is known to be under genetic control
and the utility of genetic evaluations to classify cattle as
resistant or susceptible based on natural tick infestations
has already been demonstrated [3]. In addition, it is now
well established that several biological mechanisms con-
trol host genetic resistance within and among breeds [4,
5]. Therefore, understanding the precise biological mech-
anisms that underlie vector—host—pathogen interactions
is essential to develop innovative and sustainable tick
management strategies [6].

The use of genome-wide single nucleotide poly-
morphism (SNP) panels of varying densities to detect
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statistical associations between phenotypes of interest
and SNPs is a powerful method to identify the major
genes that are involved in the control of complex traits.
However, confounding factors, such as multicollinearity
and estimability, which are embedded within multidi-
mensional genotypic and/or phenotypic complex data-
sets must be considered, since it is necessary to weight
the rate of false associations for the interpretation of
results [7].

To date, several genomic regions associated with tick
burden in dairy and/or beef cattle have been identified
through association studies based on different regression
methods [2, 8—14]. However, to estimate a greater pro-
portion of the genetic variance explained by SNPs and
to identify more complex relationships between SNPs, a
shift to models that fit multiple SNPs simultaneously was
proposed [15].

Bayesian methods provide a flexible approach to solve
high-dimensional problems and enable simultaneous
estimation of the effects of high-density SNPs [16]. The
application of Bayesian inference methods in genome-
wide association studies (GWAS) may improve the map-
ping of regions across the genome that contain causal
variants, especially in the case of complex traits for which
the majority of the SNPs each explain a small proportion
of the total observed variance. Identification of the most
informative SNPs associated with complex traits may
contribute to the design of a low-density SNP panel with
high predictive performance. This would be highly desir-
able since cost-effective solutions are needed for genomic
selection to be implemented in most animal production
sectors [17].

In this study, Bayesian methods were used on 50 K SNP
panel data from Hereford and Braford cattle to identify
genomic regions and tag SNPs associated with tick resist-
ance. The predictive performance of the very low-density
panel based on a selected subset of significant SNPs was
estimated and compared with results obtained with the
full SNP panel.

Methods

Animal sampling and data analyzed

All Hereford (HH) and Braford (BO) samples were
derived from eight herds associated with the Delta G
Connection breeding program (Rio Grande do Sul, Bra-
zil). A subset of 3455 phenotyped animals was genotyped
with the Ilumina BovineSNP50 BeadChip. Total tick
counts from one side of the body were recorded for each
animal born between 2008 and 2011, two to three times
consecutively, during the post-weaning period. In total,
10,673 tick counts were available for analyses. Variance
components and breeding values were generated from
log-transformed tick counts [3, 18] with the BLUPf90
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family of programs [19] and estimated breeding values
were used for GWAS analyses.

Quality control analysis

SNP data quality control (QC) was performed using
the R version 3.0.2/snpStats package [20] and the fol-
lowing criteria (thresholds): individuals for which the
call rate was lower than 90%, heterozygosity deviations
were above or below three standard deviations from the
mean of the genotyped animals, with sex misidentifica-
tions and those that showed near-perfect collinearity
with other individuals (>99.5%) were removed. Expected
heterozygosity deviations were checked to identify indi-
viduals with either an excessive or reduced proportion
of heterozygous genotypes, which may be indicative of
DNA sample contamination or inbreeding, respectively.
Individual SNPs were excluded from further analysis if
their call rate was lower than 98%, their minor allele fre-
quency (MAF) was lower than 3%, if they deviated sig-
nificantly from Hardy—Weinberg equilibrium (Chi square
test, P < 1077) and if identical genotypes were found with
other SNPs in neighboring positions. Moreover, only the
SNP with the highest MAF was retained within groups
of SNPs at the same position or that were highly corre-
lated (>98%). A total of 41,045 SNPs (78%) and 3455 ani-
mals (98%) were retained for further analyses; these 3455
animals included 2803 BO and 652 HH and comprised
yearling bulls, steers and heifers with respective pheno-
types for tick count. Sporadically missing genotypes were
imputed using FImpute software [21].

Bayesian GWAS

Estimated breeding values (EBV) were obtained by
adjusting a pedigree-based repeatability animal model to
the tick count data. This model considered fixed effects
for contemporary groups, regression coefficients with
the linear additive effect for the zebu breed proportion,
zebu—HH dominance effect, zebu—HH additive by addi-
tive epistatic effect [22], and linear and quadratic coef-
ficients for animal age. Breed composition coefficients
were derived from pedigree data [18]. Subsequently,
deregressed estimated breeding values (DEBV) for tick
resistance were calculated according to Garrick et al. [23],
in order to remove parent average values and account for
heterogeneous variance. It should be mentioned that the
Hereford and Braford population studied here is evalu-
ated and selected as a single breed-type with common
breeding objectives and variance components by the
Delta G Connection Breeding Program [24]. Moreover,
as demonstrated by Biegelmeyer et al. [25], correlation of
marker phase between these two breeds was estimated at
0.92 for SNPs less than 50 kb apart, which further sup-
ports the assumption that the initial detection analyses
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based on the 50 K SNP panel was suitable [18]. Therefore,
we carried out a joint analysis that accounted for breed
differences and heterosis to calculate DEBV. These pseu-
dophenotypes, which did not include breed effects, were
then analyzed with a model that includes random SNP
allele substitution effects using the GenSel software ver-
sion 4.0 [26]. Different Bayesian methods were applied to
analyze DEBV data using genotypes as explanatory vari-
ables: BayesA, BayesB [16] and BayesCn [27]. In BayesA
and BayesB, each SNP is considered to have a locus-
specific variance, which is derived from a scale inverted
Chi square distribution X~ (v, S) with v = 4 degrees
of freedom and a scale S = 0.0091. In addition, a prior
distribution for the residual variance was also consid-
ered as X~2 (v, S), but with v = 10 and scale S = 0.0572.
Prior expected values of these Chi square distributions
for the dispersion parameters that were equal to 0.0182
and 0.0715, respectively for the genetic and residual vari-
ances, were based on estimates previously obtained for
tick counts in these BO and HH populations [18].

Prior specification for SNP effects in BayesB allows a
proportion of the SNPs to have a zero effect, with a fixed
probability m, while the remaining SNPs have normally
distributed effects with a locus-specific variance and a
probability 1-m. Conversely, in BayesA all SNP covariates
are fitted, i.e., m = 0, for each Markov chain Monte Carlo
(MCMC) cycle. The statistical model used for Bayes-
ian analyses was: y = f:fl'()% diz;ia; + e, where y is a
vector of phenotypes (DEBV); k is the total number of
SNPs; §; indicates whether SNP i is included in (§; = 1) or
excluded (§; = 0) from the model for a given iteration of
the MCMC; z, is a vector of genotypes of the fitted SNP
i, coded —10/0/10; a; is the random substitution effect of
the fitted SNP i with its own variance aazl, and an a priori
zero effect with probability m or a non-zero effect with
probability 1-m, and e is the vector of normally distrib-
uted random residuals. In BayesCn, the probability that a
SNP has a zero effect was treated as unknown and a com-
mon effect variance was assumed for all the SNPs having
a non-zero effect, while for BayesA §; was always equal
to 1. Initial SNP effects were estimated for all individu-
als with BayesCr (setting 7t to 0.5 a priori and as starting
value) as proposed by Sun et al. [28] and de Oliveira et al.
[29]. Subsequent analyses with BayesB tested the poste-
rior mean of m obtained with BayesCmr and m = 0.99. A
total of 41,000 chain iterations was used, of which the
first 1000 were discarded as burn-in. Convergence of
MCMC chains was verified by the Geweke test [30] using
the boa (Bayesian output analysis) R package [31].

Top windows and tag SNPs
SNPs were allocated to 2519 non-overlapping 1-Mb
genome windows that contained different numbers of
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SNPs based on the physical map order derived from the
bovine genome assembly UMD3.1 [32]. Genetic variance
explained jointly by each SNP subset, considered as win-
dow variance, was estimated and subsequently converted
into the proportion of total genetic variance explained by
the window [28, 33].

Genome regions that potentially contained quantitative
trait loci (QTL) associated with tick resistance, referred
to as top windows, were identified based on a threshold
that is defined in terms of genetic variance contribu-
tion as described by Schurink et al. [34]. Top windows
were identified in the GWAS by considering all 3455
animals and 41,045 SNPs and by applying the BayesB
method (it = 0.99). Assuming an equal contribution of
all genomic regions, the expected proportion of genetic
variance explained by each of the 2519 windows was
equal to 0.04%. Hence, 1-Mb size windows that explained
at least 0.2% of the genetic variance, which corresponds
to five times the expected variance (0.04% x 5 = 0.2%),
were considered as putative QTL [35, 36] and selected for
further analyses.

To identify potential SNPs to construct a low-density
panel, a tag SNP selection strategy was tested within
the top windows by considering model frequency (MF),
t-like statistic (TL), linkage disequilibrium (LD) and
minor allele frequency (MAF) parameters. In GenSel,
MF reflects the proportion of post-burn-in iterations
that included that particular covariate (SNP) in the
model, while TL is the absolute value of posterior mean
effects (for only those chains that included the SNP in
the model) divided by the respective standard deviations
of those effects. The R/snpStats package [20] was used
to obtain LD values and the R/LDheatmap package [37]
was applied to generate plots of LD in relation to physical
distances.

We selected SNPs with the maximum MF within each
top window as top SNPs. Then, we also selected all SNPs
within top windows that had MF values above the mini-
mum observed MF value for top SNPs. This step aimed at
selecting SNPs that were not at the top of their own win-
dows, but that had sufficiently large MF to exceed the MF
value of the top SNPs located in other selected windows.
A similar approach was used to evaluate consistency of
SNP effects by considering TL. Within those pre-selected
SNPs based on MF, the minimum TL value was deter-
mined and set as the threshold to select the remaining
SNPs within top windows that exceeded this minimum
TL value. The final step to construct the tag SNP panel
aimed at removing redundant SNPs due to observed
high LD among subsets of SNPs pre-selected by MF and
TL. Thus, when two SNPs were observed with r? values
higher than 0.4 [38], only the SNP with the highest MAF
was retained.
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Prediction ability of selected tag SNP panels

To check the effectiveness of choosing only the most
informative SNPs for genetic prediction of tick resist-
ance, genotypic and tick count data from 3455 animals
were divided into five sub-groups based on two strate-
gies: K-means clustering according to SNP relationship
distance, or randomly, using the R 3.0.2/base package.
Cross-validation was carried out within the group-
ing strategy by selecting subsets of SNPs as described
above using data from four of the five groups and then
testing the derived tag SNP panel for genomic predic-
tion in the group that was not included in the selection
process.

For individuals within each testing group, direct
genomic values (DGV) were calculated based on their
tag SNP genotypes and corresponding allele substitution
effects estimated from training data, which consisted in
data on tick counts and genotypes from the four other
groups. In this step, we used the BayesA method, such
that all selected SNPs had non-zero effects. For the jth
individual:

K
— .
DGV]'= E Zjidi,
i=1

where the estimated SNP effect, a;, is represented by its
posterior mean obtained by the BayesA method, and z;
represents the genotype for the ith SNP from the total K
SNPs included in the very low-density panel.

Pooled prediction accuracies of DGV were derived
from their genetic correlations with tick count data in a
bivariate analysis using a within-group pedigree-based
numerator relationship matrix (A* [39]) and were com-
puted using the Gibbs2f90 software [19]. For our fivefold
cross-validation:

Al ¢+ -

A_, is the numerator relationship matrix within cluster c.

Prediction accuracies were also estimated within
each cluster ¢, as proposed by Legarra et al. [40]. Addi-
tional details of this cross-validation approach have been
described by Cardoso et al. [18] for the full set of 41,045
SNPs.

To further check the effectiveness of our selection pro-
cess, prediction accuracies of DGV were also obtained
with the same fivefold cross-validation with BayesB con-
sidering all 41,045 SNPs and 1 = 0.999. With this model,
the built-in selection process fits, within each cycle, a
number of SNPs that is comparable to that included in
our proposed panel (1 & 1 — #1,,6\p/41,045).
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Functional analysis

To map tag SNPs to genes and genomic regions, the BED-
Tools software [41] was used to relate SNP data with the
Bos taurus genome information provided by the Ensembl
database [42]. Alternatively, for the SNPs that were not
mapped within any known gene within £100 kb on the
Bos taurus genome, the package NCBI2R [43] was used
to search for the closest known genes in the genome of
other species. Using DAVID bioinformatics resources
[44], the biological meaning of the genes mapped to tag
SNPs was extracted. The online software STRING v9.1
[45] was used to identify potential protein—protein inter-
actions related to the identified genes.

Results and discussion

Groups of animals

Genomic relationships between the five groups of ani-
mals based on K-means clustering and the number of
individuals in each group are in Table 1. Each of the five
groups that were obtained from random distribution
contained 691 animals and displayed similar relatedness
within and across groups.

Choice of m

The BayesCm analysis that included all animals and SNPs
simultaneously resulted in a posterior () of 0.9999
and therefore, only approximately four SNPs (0.01%)
were fitted in each iteration of the MCMC chain. Using
= 0.9999 in a BayesB analysis resulted in a very low
estimated heritability (4> = 0.02), which corresponded
to a small fraction of the pedigree-based heritability
(h* = 0.19) obtained with the same dataset [18], and was
similar to the lower-bound heritability estimates recently
reported for cattle tick resistance [14] in a GWAS that
analyzed A. hebraeum tick counts on the tail of South
African Nguni cattle (0.02). Some cycles contained no
fitted SNPs when an extremely high value of 1t (0.9999)
was used in BayesB, which resulted in the absence of any
predictive SNPs, and thus this model contributed mostly
to the estimated residual variance. These results suggest

Table 1 Number of individuals (N) and average (+SD) zebu
proportions, and within- and between-group genomic
relationships (Gij) for the K-means clustering groups

Group N Zebu propor- Within-group Between-group
tion Gij Gij

1 629 0.02 0.140 £ 0.04 —0.030£0.04

2 230 037 0.070 £ 0.05 0.005 £ 0.05

3 1211 035 0.004 £ 0.03 0.003 +0.03

4 471 034 0.010 £ 0.04 0.002 £0.03

5 914 035 0.020 £+ 0.03 0.010 £ 0.04

The majority of the Hereford breed animals were clustered into Group 1
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that BayesCrmt could not estimate m appropriately based the genome is shown in Fig. 1. The number of SNPs
on the present data. included in the windows varied from 1 (only 10 windows)
Subsequently, more SNPs were fitted in the BayesB  to 30. Forty-eight windows represented by 914 SNPs were
model by setting m = 0.99 for the GWAS including all  found to jointly explain more than 20% of the genetic
animals simultaneously and for each group in the cross- variance and were considered as top windows containing
validation process. With this new m value and the full QTL (Table 2).
GWAS data, the proportion of variance explained by SNPs Some of the detected windows coincided with previ-
increased to 0.1132, which corresponds to 58% of the esti-  ously reported QTL from linkage analyses and GWAS
mated heritability based on pedigree-based analysis of this  for tick burden (Cattle QTL database, [49]), i.e. on BTA2
dataset on tick resistance [18]. This reduced genomic her-  (BTA for Bos taurus chromosome) top windows number
itability may result from incomplete linkage disequilibrium 163 located at 4 Mb (identified according to the first SNP
between the SNPs studied and the QTL affecting the trait  position in the window) and number 214 at 55 Mb, top
[46], when only 1% of the markers were fit in each chain =~ windows number 364 at 68 Mb on BTA3, number 553 at
cycle (m = 0.99). Alternatively, the proportion of pheno- 14 Mb on BTA5, number 794 at 13 Mb on BTA7, num-
typic variance explained by SNPs when fitting BayesA with ~ ber 1190 at 77 Mb on BTA10, number 1283 at 65 Mb on
the full SNP panel (0.1755) was much closer to that based = BTA11, and number 1553 at 54 Mb on BTA14 (Table 2).
on pedigree analysis (0.19). These BayesA and pedigree The first 12 top windows jointly explained more than
estimated heritabilities were higher than that reported 10% of the genetic variance and three genomic regions
by Porto Neto et al. [13] for the analysis of tick burden  (top three windows) individually explained more than
in Brahman cattle (0.09). Setting 1 at 0.99, in spite of the 1% of the genetic variance for tick resistance (Table 2). In
lower estimated heritability compared to BayesA or pedi- these three regions (BTA15 at 37 Mb, BTA11 at 101 Mb
gree analysis, has the advantage of fitting only the regions and BTA10 at 51 Mb), within £100 kb on each side of
in strong association with the trait [33, 35, 47]. Accord- the SNPs included in the respective top windows, four
ing to Fernando and Garrick [48], higher values of m can  SNPs (rs110197574 and rs41665212, rs29019899 and
be more discriminating for the identification of the largest  rs110144789) were mapped to annotated genes or pseu-
QTL, which is an important factor for selecting tag SNPs.  dogenes in the bovine or human genomes (see Additional
Moreover, it was shown that the SNP-specific variances file 1). Two SNPs on BTA15, were located at ~40 kb
in BayesB led to less shrinkage for SNPs with the largest apart from each other (rs110197574 and rs41665212)

effects compared to BayesC [27]. and mapped to HSA5 (HSA for Homo sapiens chromo-
All Bayesian GWAS analyses were visually checked and  some) close to the RPS15P8 pseudogene (ribosomal pro-
passed the Geweke’s test for convergence. tein S15, pseudogene 8). Other positional candidate genes
close to SNP rs110144789 (BTA11) are LAMCS3 (laminin,

Top windows and QTL detection gamma 3), ABL1 (ABL proto-oncogene 1, non-receptor

The proportion of genetic variance explained by each of  tyrosine kinase), FIBCD1 (fibrinogen C domain contain-
the 2519 1-Mb windows including all 41,045 SNPs across  ing 1), QRFP (pyroglutamylated RFamide peptide); and
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Fig. 1 Manhattan plot displaying Bayesian genome-wide association estimates (BayesB, m = 0.99) for tick resistance. The Y-axis represents the pro-
portion of the total genetic variance explained by 1-Mb windows across the bovine genome and the X-axis represents the chromosomal location of
windows (2519 non-overlapping windows). Windows explaining more than 0.2% of the genetic variance are above the grey line
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to rs29019899 (BTA10) are ADAMI0 (metallopeptidade
domain 10), LIPC (lipase, hepatic) and the gene 55§_rRNA
(ENSBTAG00000037226, 5S ribosomal RNA); all these
genes are annotated on the bovine genome sequence.

The SNP with the largest effect on tick count
(rs110197574) was mapped to the RPS15P8 gene, which
in humans encodes a ribosomal protein that is a compo-
nent of the 40S subunit [50]. Analysis of the genes that
encode components of the ribosome or proteins involved
in ribosome biosynthesis is very complex, and consid-
ering the wide range of biological processes in which
ribosomal genes may be involved, the potential role of
RPSI5P8 in tick resistance needs to be further investi-
gated. Barendse [10] reported a polymorphism in the
RPS13 (ribosomal protein S13) gene that is associated
with increased tick resistance in cattle. The ADAMI0
(ADAM metallopeptidase domain 10) gene (BTA10)
encodes a characterized member of the ADAM-fam-
ily of metalloproteases, which has a prominent role in
inflammation [51]. Furthermore, different inflammatory
responses can activate ADAM10-mediated proteolysis
of E-cadherin, which is a prime mediator of epithelial
cell-to-cell interactions, in primary human keratinocytes
and in diseased human skin [52]. According to Porto
Neto et al. [53] at approximately 15 Mb on BTA10, some
locus-haplotypes that include SNPs in the ITGA1I (inte-
grin alpha 11) gene are associated with tick burden in
dairy cattle breeds (Australian Red, Brown Swiss, Chan-
nel Isle, Holstein and composites) and Brahman beef
cattle. Although this gene is functionally described as
related with cellular adhesion control, these authors sug-
gested that it had a role in modulating cellular immune
responses. Both of these genes (ADAMI10 and ITGA11I)
are on BTA10 and may be involved in the control of cel-
lular adhesion and migration during the process of skin
infection caused by tick burden. Other studies based
on microsatellite whole-genome scans [2, 54] and a
GWAS with a low-density SNP panel [10] also reported
QTL associated to tick burden on BTA10. In agreement
with Regitano et al. [54], we identified potential QTL
at 18 Mb on BTA10, as well as on BTA4 (97 Mb). On
BTA10, beyond the region that contains the ADAMIO0
gene (~50 Mb), three other top windows (Table 2) were
detected as potential QTL in agreement with Machado
etal. [2].

Anaplasmosis is an infectious rickettsial disease (Ana-
plasma marginale) that is mainly transmitted by ticks
[55] and negatively impacts cattle production in tropi-
cal and subtropical areas [56]. In humans, A. phagocyt-
ophilum, an obligatory intracellular parasite of human
granulocytes, causes a similar disease and was shown
to activate the ABL1 signaling pathway during cell inva-
sion. This protein is critical for intracellular invasion
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and infection establishment. Thus, a novel strategy for
the treatment of human granulocytic anaplasmosis was
proposed through inhibition of the host cell Abl-1 sign-
aling pathway [57]. In addition to being possibly directly
associated with tick resistance, results that we obtained
from the analysis with STRING suggest the occurrence
of interactions between the ABLI gene and other genes
that are associated with the most informative SNPs found
to affect tick count (LAMC3 or PLCGI, phospholipase
C, gamma 1 on BTA13; CDC42, cell division cycle 42 on
BTA2; SDC3, syndecan 3 on BTA2 and EPS8L3, epider-
mal growth factor receptor kinase substrate 8-like protein
3 on BTA3), which indicates that a gene network may be
involved in cattle resistance to ticks. Two other top win-
dows on BTA11 with putative QTL were also reported by
Machado et al. [2].

Other genomic regions on BTA17 at 7 Mb flanked by
SNPs ARS-BFGL-NGS-5880 and BTA-122662-no-rs (top
window 1758, Table 2) also include two SNPs (rs43499108
and rs29011077), which have been reported to be asso-
ciated with R. evertsi evertsi tick count in African cat-
tle [14]. The top SNP in this window (rs109822497) was
mapped to the double cortin-like kinase 2 (DCLK2) gene,
near the LRBA gene, which is suggested by these authors
to be associated with protein kinase A that supports the
secretion and/or membrane deposition of immune effec-
tor molecules.

Selecting tag SNPs

Based on the model frequency (MF) and ¢-like statis-
tic (TL) provided by GenSel, in the strategy used for tag
SNP selection, a minimum MF value of 0.0898 was deter-
mined among all top SNPs representing each of the 48
top windows. Nine additional SNPs with an MF above
this threshold were selected from the list of 914 SNPs
within the top windows. Within those 57 (48 + 9) pre-
selected SNPs, the minimum observed TL of 0.902 was
set as another threshold to select SNPs within the 914-
SNP list that exceeded this lower bound TL value. The
subset of SNPs that were pre-selected based on MF and
TL contained 63 SNPs, which were subsequently ana-
lyzed in terms of LD and MAF, resulting in a final list of
58 SNPs. These selected SNPs were distributed on most
of the bovine chromosomes, except BTA9, 12, 18, 19, 21,
23, 24, 26 and 27. It is interesting to mention that nine
of the 58 SNPs were located on BTA2. Previous studies
identified significant allele effects associated with tick
burden in a GWAS analysis, as well as positional can-
didate genes on chromosome BTA2 [2, 10, 11, 58]. Our
proposed panel included SNPs that represented 47 of the
48 top windows, because SNP rs43669951 was included
in two adjacent windows on BTA11. The resulting mini-
mum MF value among the SNPs in this panel was equal
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to 0.0744 and only two windows included three SNPs on
BTA28 at ~20 Mb and BTA13 at ~80 Mb, while all other
windows included only one or two SNPs.

This strategy to select more informative SNPs that are
uniquely linked to QTL related to cattle tick resistance
within top windows favored those that were more often
included in the Bayesian mixture model (greater MF) and
with a more consistent effect (greater TL), but avoided
redundancy due to LD. Based on that, our goal was to
retain SNPs that had a suitable prediction ability to build
very low-density panels for cost-effective genomic selec-
tion of tick resistance in cattle.

The proportion of fitted models that included a SNP
and used it to infer associations with the phenotype under
study, represented by MF [28, 59], was highly correlated
(r = 0.99) to the SNP adjusted effect, (Zzi)z/var (21,'), in the
subset of 914 SNPs. In contrast, a moderate correlation
was found between MF and TL (r = 0.46). Since TL is an
alternative measure of SNP effect (i.e. ’&i }/sd (Zzi) is calcu-
lated by considering only the cycles in which SNP i was
included in the model) and due to its incomplete correla-
tion with MF, we were able to combine both parameters,
MF and TL, to select informative SNPs for which the
estimated effects were consistent [26].

According to some authors [33, 36], SNPs with an
MEF higher than 0.90 are deemed significant in a Bayes-
ian GWAS analysis, and those with an MF lower than
0.10 represent false positives. In the current study, the
highest MF for a top SNP was 0.7574 for rs110197574/
ARS-BFGL-NGS-5811 located on BTA15 within the
1-Mb window that explained the greatest proportion of
the genetic variance (Table 2). Therefore, this particular
SNP had a non-zero effect in 75% of MCMC samples.
Considering all SNPs with the highest MF within each
of the 48 top windows according to our BayesB analysis
(Table 2), the average MF was equal to 0.23 £ 0.14. This
result indicates that there are no major genes affecting
tick resistance and that most of the SNPs each explained
a small proportion of the phenotypic variation for this
trait. Similar results were reported by other authors who
concluded that selection programs must use SNP pan-
els rather than single SNPs with high predictive value
[60]. This emphasizes the fact that it cannot be expected
to find a very small number of genes with a large effect,
which would lead to accurate prediction for tick resist-
ance. In this regard, our approach was to identify a mini-
mal set of informative SNPs that would still yield useful
predictions compared to those derived from high-density
SNP panels, but potentially reducing genotyping costs.

Figure 2 shows LD-heatmaps and respective MF and
TL values for two distinct windows, which highlight
SNPs in the proposed list of 58 SNPs. The first window,
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on BTA3 at ~33 Mb (Fig. 2a), represents a chromosomal
region that contains the SNP ARS-BFGL-NGS-119309
(rs110043221) selected as its tag SNP. Figure 2a also
illustrates the case of the ARS-BFGL-NGS-77834
(rs110132430) SNP that has TL and MF values higher
than the selection threshold, but that was excluded
because it was in LD (r? > 0.4) with another SNP with a
higher MF (rs110043221). SNPs within this window were
mapped to a bovine genomic region that contains three
genes, EPS8L3 (EPS8-like 3), GSTMI1/3 (glutathione
S-transferase mu 1 and 3), CSF1 (colony stimulating fac-
tor 1—macrophage) and a microRNA bta-mir-2413.
De Rose et al. [61] showed that cytokines, such as the
granulocyte and macrophage colony stimulating factor
(GM-CSF) or interleukin (IL)-1b have increased vac-
cine effectiveness by enhancing the immune response
against Rhipicephalus (Boophilus) microplus in sheep.
The second top window with an effect on tick resist-
ance is located at ~54 Mb on BTA14 (Fig. 2b), contains
15 SNPs and includes an LD block represented by SNP
BTB-00915241 (rs42075995). In this case, SNP BTA-
60194-no-rs (rs41587782) was in high LD with the rep-
resentative tag SNP and thus, was excluded in the final
step of the selection strategy. The differential pattern of
MEF and TL variation of SNPs was critical to effective tag
SNP selection, since the top SNPs were clearly distinct in
the histograms of those windows (Fig. 2). Therefore, most
of the SNPs with low MF/TL were excluded in the first
two selection steps and the remaining ones were evalu-
ated in terms of LD/MATF in a final step with only a few
additional exclusions.

The genes that map to the regions containing the 58
SNPs that were selected to compose the proposed very
low-density panel are listed in Additional file 1. One hun-
dred and three genes are located in the genome regions
that are on either side of 52 of these SNPs, based on
the information derived from the bovine (43 SNPs) and
human (9 SNPs) genomes. Gene ontologies and biologi-
cal pathways which may be related to the biological pro-
cesses that underlie vector-host-pathogen interactions,
such as pathways involved in inflammation mediated by
chemokine and cytokine signaling, cell receptor signal-
ing and calcium signaling, were identified for these genes.
Also, enrichment analysis identified genes that are associ-
ated with biological processes such as regulation of adap-
tive immune response (e.g. ADA), activation of immune
response (e.g. ABL-1), positive regulation of macrophage
derived from cell differentiation (e.g. CSF1), regulation of
inflammatory response and leukocyte chemotaxis (e.g.
ADAM10), cell-cell junction organization (e.g. CDC42)
and leukocyte activation involved in immune response
(e.g. ADA, ABL-1).
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Prediction ability of tag SNP panels

The proposed BayesB (m = 0.99) GWAS and tag SNP
selection strategy was applied to each of five K-means
and five random cross-validation subsets and generated
10 alternative SNP panels, which included 47 to 86 SNPs
(Table 3). Three hundred and fifty unique SNPs were
selected based on the combination of all 10 tag SNP pan-
els derived by the cross-validation analyses. The number
of times that each of the original 58 tag SNPs (our pro-
posed panel using the whole data) was represented in
those 10 cross-validation subsets is presented in Addi-
tional file 1.

The posterior proportions of the phenotypic variance,
which was explained by the SNPs, i.e. the SNP-herita-
bilities (4%), that were estimated with BayesA using the
very low-density panel derived for each of the 10 cross-
validation groups ranged from 0.09 to 0.12, and were very
similar to the 4> estimated with BayesB (11 = 0.99) using
the full set of 41,045 SNPs (Table 3). Conversely, the W
obtained with BayesB also using all 41,045 SNPs but with
= 0.999 (~1-58/41,045) were lower and ranged from
0.04 to 0.06 (Table 3). These results demonstrate that a
very small number of SNPs selected based on the tag-
method explains more variation than a similar number of
SNPs chosen with the Bayes-B method (on average 0.14%
of the total number of available 41,045 SNPs).

Bayesian approaches generally combine shrinkage
procedures to consider different variances for individ-
ual SNPs and mixture models, in which the prior infor-
mation about the distribution of SNP effects is used to
coerce negligible effects towards zero. In the case of tag
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SNP panels, BayesA was chosen because these panels are
expected to include only the most significant SNPs each
with a detectable effect (m = 0), while allowing for SNPs
to have specific variances and consequently different
effect sizes [16].

The effectiveness of the applied strategy for selecting
more informative SNPs for genomic prediction of cat-
tle tick resistance was assessed by pooled breeding value
prediction accuracies measured as the genetic correla-
tion between cross-validation DGV and tick count data,
which were equal to 0.27 £ 0.09 for the K-means cluster-
ing groups and 0.30 £ 0.09 for the random groups.

Accuracies within each cluster were also obtained
using the method of Legarra et al. [38] and substantial
differences between groups were observed with values
ranging from 0.08 to 0.41 (Fig. 3). The lowest values were
observed for K-means group 1, which was the most dis-
tinct cluster that included mainly Hereford animals (the
zebu proportion was near zero) and showed the largest
genetic distance to the other groups (Table 1). Therefore,
this result is consistent with the fact that a reference pop-
ulation that includes only Braford cattle would not result
in suitable accuracies for Hereford selection candidates
[18]. Although all random groups had the same num-
ber of animals and the same genetic distance within and
between clusters, accuracy for Group 3 was considerably
lower (0.16) compared to the other random clusters. The
highest accuracies were observed for K-means Group 5
(0.40) and random Group 2 (0.41).

Using the full set of 41,045 SNPs, pooled cross-vali-
dation accuracies for K-means and random clustering,

Table 3 Posterior mean proportion of variance explained by markers (h?) using different Bayesian methods, and number
of chromosome segments and SNPs involved in the very low-density panel selection by K-means and random cross-vali-

dation group

Group h? SNP panel selection
BayesB m = 0.99 BayesB m = 0.999 BayesA full BayesA tag Top windows? Top SNPs® Tag SNPs¢

K-means 1 0.13 0.06 0.19 0.10 41 741 47
K-means 2 0.10 0.04 017 0.09 46 878 57
K-means 3 0.12 0.05 0.18 0.12 39 727 67
K-means 4 0.12 0.05 0.18 011 48 941 79
K-means 5 0.1 0.04 0.18 0.10 43 799 55
Random 1 0.12 0.05 0.18 0.1 42 778 57
Random 2 0.11 0.04 0.18 012 53 956 70
Random 3 (OA N 0.05 0.18 0.13 52 1008 86
Random 4 0.12 0.05 0.18 0.11 48 900 78
Random 5 (OA N 0.04 0.18 0.12 55 1005 79

@ Top windows represents the number of windows that explained above 0.2% of the genetic variance in the BayesB (m = 0.99) GWAS analysis

b Top SNPs represents the number of SNPs included in those top windows

€ Tag SNPs represents the number of SNPs selected as more informative according to the criteria based on model frequency and t.like statistics, linkage disequilibrium

and minor allele frequency
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Fig. 3 Prediction accuracies of direct genomic values for each
random and K-means clustering cross-validation group according to

the BayesA method

respectively, were equal to 0.37 + 0.08 and 0.43 £ 0.08
for BayesA, 0.37 &= 0.08 and 0.43 =+ 0.08 for BayesB with
1= 0.99, and 0.28 & 0.07 and 0.40 = 0.08 for BayesB with
1T = 0.999. When compared to the above results, accura-
cies that are derived using the proposed very low-density
tag SNP panel with 58 SNPs would represent at least 68%
of the accuracies of predictions obtained using all 41,045
SNPs with BayesB or BayesA methods. These results
demonstrate that tag SNP panels may be used in com-
mercial applications for genomic predictions in beef cat-
tle as an alternative to more costly high-density panels.
Nevertheless, the decision about the most suitable SNP
density should be trait- and population-specific, depend-
ing on the relative accuracy and cost of the alternative
SNP panels.

Cardoso et al. [18] reported pooled cross-validation
accuracies of 0.39 and 0.44 for K-means and random
clustering, respectively, for BayesB (1t = 0.95) predictions
obtained for tick count with the same population. These
preview results obtained with a 50 K SNP panel repre-
sented accuracy gains of 50.0 and 51.7% when compared,
respectively, to pedigree best linear unbiased prediction
(PBLUP) accuracies of 0.26 for K-means and 0.29 for ran-
dom groups obtained by the same authors. Compared
to these results, the very low-density SNP panel that we
propose here shows very similar accuracies to predictions
based on conventional PBLUP. This would be the case for
animals that are closely related to the reference popula-
tion as in Cardoso et al. [18]. Even with similar accura-
cies, the very low-density panel predictions have the
advantage of being applicable in the absence of historical
tick count data, when phenotypes on ancestors may not
be available, thus avoiding the need of population para-
site burden. Moreover, blending strategies to combine
tag SNP panel predictions with historical data from non-
genotyped animals deserves further investigation, since
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they could improve prediction accuracies of selection
candidates using, for example, single-step methodologies
[62—-64]. For these Hereford and Braford tick resistance
datasets and the full set of SNPs, accuracy gains of using
blended historical data by single-step genomic BLUP
compared to Bayes B (m = 0.95) DGV were equal to 23
and 27% respectively for K-means and random cross-val-
idation groups [18].

Bayesian approaches have been proposed for predicting
genomic breeding values with high-density SNP panels,
but in practice they may be more useful for low-density
panels [65]. Decreased predictive abilities are expected
for very low-density in comparison to high-density SNP
panels, due to the expected reduced LD between SNPs
and highly dispersed QTL affecting a particular trait.
However, some studies have demonstrated the superior-
ity of Bayesian methods to capture this LD between SNPs
and QTL [66, 67]. Cleveland et al. [65] compared Bayes-
ian prediction accuracies of different scenarios including
high- and low-density SNP panels. These authors found
similar accuracies when SNPs were selected based on the
size of their additive effects, even when SNP coverage was
extremely low, which corroborates our results. Dynamic
schemes to successfully apply genomic selection technol-
ogy for genetic improvement of livestock, invariably aim
at minimizing genotyping costs while maximizing genetic
gains and overall profits. Genotype data that are gener-
ated at lower costs from small subsets of highly informa-
tive SNPs could be used to genotype most of the animals
in a herd and generate genomic breeding value predic-
tions based on SNP effects that are estimated from high-
density training datasets [68]. Moreover, our results show
that recalculation of genetic effects for the most informa-
tive SNPs that were originally chosen from the full dataset
resulted in the reduction of redundancy and/or confound-
ing effects, which might have been included in estimates
obtained during the original discovery using the 41,045
SNPs, as a result of multicollinearity among SNP effects.
The applied strategy appears promising, since the obtained
DGV retained about 70% of the accuracy of DGV derived
from the full high-density panel, with only about 0.14% of
the SNP density (58 out of 41,045). Similar strategies have
already been proposed for predicting breeding values in
young dairy cattle seedstock by using panels of about 3000
SNPs (larger than the panel proposed here) and resulted in
accuracies representing 80 to 90% of those obtained with
high-density panels with [69].

Genome-wide association studies allow for a much
finer description of the genome and genomic selec-
tion results in increased genetic gains because early and
accurate selection decisions are made possible, for traits
that were previously ignored because of high associ-
ated phenotyping costs. Observed trends of decreasing



Sollero et al. Genet Sel Evol (2017) 49:49

genotyping costs in contrast to increasing expenses for
phenotyping are expected to lead various livestock sec-
tors to widely adopt genomic technology. However, the
development of beef cattle training populations has been
generally conducted by private companies and at a sig-
nificantly slower pace compared to the dairy industry
[17]. For a worldwide adoption of genomic selection in
beef cattle breeding, it is still necessary to develop cost-
effective strategies and robust training populations for
more economically-relevant traits. Very low-density pan-
els including informative SNPs may represent a viable
alternative for including only one or a very few key com-
plex traits of high economic value, such as tick resistance,
that are not yet considered in traditional genetic evalua-
tion, because they are too difficult or too costly to meas-
ure. These additional trait tag-SNP predictions could be
combined with pedigree/phenotype-based breeding val-
ues that are regularly derived for production traits using
selection index theory [70]. However, if genomic predic-
tions require high prediction accuracies for many traits
in a complex breeding goal, the tag-SNP panel strategy
may not be effective due to a likely large number of SNPs
in the panel when adding tag-SNPs across various traits.

Fine-mapping investigation using next-generation
sequencing could also be used to target flanking regions
around the currently identified tag SNPs, which may
be involved in the biological mechanisms of tick resist-
ance in Hereford and Braford cattle. The identification of
causal mutations, along with the availability of a larger
training population or suitable blending with historical
data, would be decisive to propose cost-effective genomic
evaluations based on very low-density marker panels to
improve tick resistance in commercials herds.

Conclusions

BayesB appears to be a suitable method for selecting
tag SNPs based on Bayesian model frequency and ¢-like
statistics. The resulting very low-density panel included
SNPs that are potentially linked to functional gene net-
works and accounted for most of the genetic variance
in tick resistance. The accuracy of genomic predictions
derived from the proposed very low-density SNP panel
using BayesA was moderate and may be useful for deliv-
ering cheaper genomic tests to the industry and for fur-
ther studies related to fine-mapping for causal variants
discovery.
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