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whole‑genome sequence variants to complex 
traits variation in dairy cattle
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Abstract 

Background:  Whole-genome sequencing and imputation methodologies have enabled the study of the effects of 
genomic variants with low to very low minor allele frequency (MAF) on variation in complex traits. Our objective was 
to estimate the proportion of variance explained by imputed sequence variants classified according to their MAF 
compared with the variance explained by the pedigree-based additive genetic relationship matrix for 17 traits in 
Nordic Holstein dairy cattle.

Results:  Imputed sequence variants were grouped into seven classes according to their MAF (0.001–0.01, 0.01–0.05, 
0.05–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4 and 0.4–0.5). The total contribution of all imputed sequence variants to vari-
ance in deregressed estimated breeding values or proofs (DRP) for different traits ranged from 0.41 [standard error 
(SE) = 0.026] for temperament to 0.87 (SE = 0.011) for milk yield. The contribution of rare variants (MAF < 0.01) to 
the total DRP variance explained by all imputed sequence variants was relatively small (a maximum of 12.5% for the 
health index). Rare and low-frequency variants (MAF < 0.05) contributed a larger proportion of the explained DRP 
variances (>13%) for health-related traits than for production traits (<11%). However, a substantial proportion of 
these variance estimates across different MAF classes had large SE, especially when the variance explained by a MAF 
class was small. The proportion of DRP variance that was explained by all imputed whole-genome sequence variants 
improved slightly compared with variance explained by the 50 k Illumina markers, which are routinely used in bovine 
genomic prediction. However, the proportion of DRP variance explained by imputed sequence variants was lower 
than that explained by pedigree relationships, ranging from 1.5% for milk yield to 37.9% for the health index.

Conclusions:  Imputed sequence variants explained more of the variance in DRP than the 50 k markers for most 
traits, but explained less variance than that captured by pedigree-based relationships. Although in humans partition-
ing variants into groups based on MAF and linkage disequilibrium was used to estimate heritability without bias, 
many of our bovine estimates had a high SE. For a reliable estimate of the explained DRP variance for different MAF 
classes, larger sample sizes are needed.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Associations of common genetic variants with com-
plex diseases and quantitative traits have been success-
fully identified in humans and livestock [1–3]. However, 
these loci explain only a small fraction of the total genetic 

variance of a trait. In human genetics, the portion of the 
additive genetic variance that remains unexplained by 
the associated genetic variants is known as the “miss-
ing heritability” [4–6]. One strategy to reduce the miss-
ing heritability is genomic prediction where all markers 
regardless of the magnitude and statistical significance of 
their effects are used to predict genetic values and esti-
mate genetic variances [7–9]. Jensen et  al. [8] reported 
that on average 77.2% of the genetic variance for six dairy 
cattle traits was attributed to genomic relationships con-
structed based on the Illumina BovineSNP50 BeadChip 
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(50 k) single nucleotide polymorphisms (SNP)s. Román-
Ponce et  al. [7] reported that a genomic relationship 
matrix based on the 50 k SNP chip could explain between 
51 and 94% of the genetic variance, depending on the 
reliabilities of the phenotypes used for milk yield, fat 
yield, protein yield and somatic cell count [1]. However, 
previous studies also showed that a wide gap remains 
between the proportion of variance explained using 
genomic relationships constructed from 50 k SNP chips 
and the genetic variance explained by pedigree-based 
relationships [7, 8, 10, 11]. This “missing” proportion of 
the genetic variance may affect the maximum accuracy 
that genomic prediction could achieve in livestock breed-
ing [12].

Rare variants may play a significant role in quantitative 
trait variation [6, 13, 14] and contribute to the “missing 
heritability”. With the development of whole-genome 
sequencing technologies, next-generation sequence data 
have been generated for a large number of individuals in 
various cattle populations [15]. These sequence data have 
predominantly been used as a reference to impute SNP 
array genotypes to whole-genome sequences for indi-
viduals with phenotypes [16]. By using imputed sequence 
data, rare and low-frequency variants can be identified 
and studied for much larger numbers of individuals.

When whole-genome sequence data are available, link-
age disequilibrium (LD) between SNPs and causal vari-
ants increases and a large fraction of the causal variants 
themselves will be available for analysis. Therefore, an 
increase in the proportion of the variance that can be 
explained for quantitative traits is expected when whole-
genome sequence variants are used compared with the 
use of SNP array data [7, 8].

However, using whole-genome regressions which 
regress phenotypes on the whole-genome sequence 
variants using a linear model to infer the proportion of 
variance explained for a trait may result in biased esti-
mates [17, 18]. First, if the causal variants are enriched 
in regions with higher or lower than average LD, herit-
ability estimated based on genomic information is biased 
[1, 18]. Second, if causal variants have a different spec-
trum of minor allele frequencies (MAF) than the SNPs 
used, heritability estimated based on genomic informa-
tion will also be biased [18]. Due to strong artificial selec-
tion, causal variants in dairy cattle are expected to often 
have extreme allele frequencies, whereas the content of 
DNA chips is biased by design towards highly polymor-
phic SNPs. Therefore, the spectrum of the allele frequen-
cies of causal variants is expected to be quite different 
from that of SNPs on the commonly used 50 k chip. The 
effect of differences in the spectrum of allele frequencies 
and in LD heterogeneity on heritability estimates based 

on genomic information has not yet been studied in dairy 
cattle. However, several studies have shown that LD in 
bovine populations is relatively high, with long haplo-
type blocks, compared to that in human populations [19, 
20]. Thus, we expect that the effect of heterogeneity in 
LD on heritability estimates is relatively small in bovine 
populations.

Recently, Yang et al. [18] proposed an LD- and MAF-
stratified genomic-relatedness-based restricted maxi-
mum-likelihood (GREML-LDMS) method for human 
data that partitions the variance explained across classes 
of variants with different MAF. It also accounts for 
region-specific heterogeneity in LD [1]. They showed that 
heritability estimates obtained with the GREML-LDMS 
method were unbiased for human height and body 
mass index and found negligible missing heritability for 
both traits when using imputed variants [18]. Thus, we 
expect that, in cattle, the variance explained by imputed 
sequence data when estimated using the GREML-LDMS 
approach will capture larger proportions of the variance 
compared to estimates obtained from GREML using 
genomic relationships based on SNP chip genotypes [1, 
21, 22].

The objectives of this study were to: (1) estimate the 
proportion of variance explained by whole-genome 
sequence variants for 17 traits in Nordic Holstein cattle; 
(2) estimate the proportion of variance explained by par-
titioning variants according to MAF, and with or with-
out taking LD heterogeneity into consideration; and (3) 
compare estimates of the proportions of genetic variance 
explained by relationships based on pedigree, 50 k SNPs, 
and imputed whole-genome sequence variants.

Methods
Phenotypes and genotypes
In total, 5065 Holstein progeny-tested bulls with esti-
mated breeding values were genotyped using the 
BovineSNP50 BeadChip (50 k) array version 1 or 2 (Illu-
mina, San Diego, CA, USA). The phenotypes used in 
this study were deregressed estimated breeding values 
or proofs (DRP) with a minimum reliability of 0.2 for 17 
traits (Table 1). For details regarding the 17 traits, record-
ing procedures and models to estimate breeding values 
for these three indices, see http://www.nordicebv.info/
ntm-and-breeding-values. The number of bulls with both 
genotype data and DRP for different traits ranged from 
4485 to 4949 (Table 1).

DNA was extracted using standard procedures from 
either semen or blood samples. Genotyping was per-
formed by GenoSkan A/S, Tjele, Denmark or the Depart-
ment of Molecular Biology and Genetics in Aarhus 
University. The data editing steps were the same as in 

http://www.nordicebv.info/ntm-and-breeding-values
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[23]. Quality parameters used to select SNPs were a mini-
mum call rate of 85% for individuals and of 95% for loci. 
SNPs that were monomorphic or deviated from Hardy–
Weinberg proportions (P  <  0.00001) were excluded. 
The minimal acceptable GenCall score (GC) was 0.60 
for SNPs and 0.65 for individuals. After quality control, 
43,415 SNPs and 5065 individuals remained for analy-
ses. The genomic positions of SNPs were taken from the 
UMD3.1 Bovine genome assembly [24].

In a previous study [23], the 50  k genotypes of 5065 
animals were imputed to whole-genome sequence data 
using a two-step approach by first imputing 50 k geno-
types to a high-density BovineHD BeadChip (HD, Illu-
mina) using a multi-breed reference of 3383 animals, 
followed by imputing to the whole-genome sequence 
level using a multi-breed reference consisting of 1228 
animals from run4 of the 1000 bull genomes project [15] 
and additional whole-genome sequences from Aarhus 
University [25]. The whole-genome sequence refer-
ence genotypes were pre-phased with BEAGLE4 r1274 
[26]. Imputation to HD genotypes was done by using 
IMPUTE2 v2.3.1 [27] and imputation to the whole-
genome level by using Minimac2 [28]. The imputed 
variants were filtered to remove those with a MAF lower 
than 0.001, which means that SNPs with less than ~10 
copies of the minor allele in the data analysed were 
removed.

Contribution of different classes of genetic variants based 
on MAF to DRP variance
The GREML-MS and GREML-LDMS methods [18] 
were used to calculate the proportion of DRP variance 
explained by imputed sequence variants. For the GREML-
MS method, the imputed sequence variants were grouped 
into seven classes based on their MAF (0.001–0.01, 0.01–
0.05, 0.05–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4 and 0.4–0.5). The 
number of variants was very similar across MAF groups 
(Fig. 1). Rare variants were defined as those with a MAF 
ranging from 0.001 to 0.01; low-frequency variants as 
those with a MAF ranging from 0.01 to 0.05; and com-
mon variants had a MAF higher 0.05. Average imputation 
accuracies (IMPUTE-INFO score defined by [29]) for rare 
and low-frequency variants were 0.850 and 0.873, respec-
tively [see Additional file  1: Table S1]. We did not filter 
variants strictly based on imputation accuracy, i.e. all vari-
ants with IMPUTE-INFO score were included in the anal-
yses, because a study using human data suggested that 
removing variants based on a more restrictive IMPUTE-
INFO threshold leads to a loss of variance explained [18].

Genomic relationship matrices (GRM) for each of the 
seven classes of variants were calculated following [1] 
and fitted jointly in a multicomponent REML analysis:

(1)y = 1µ+

7
∑

i=1

gi + e,

Table 1  Description of the traits

Name of the trait Abbreviations Average DRP reliability Standard deviation 
of DRP reliability

Range of DRP reliability Number of bulls 
with DRP in the 
reference set

Yield index YIELD 0.936 0.027 0.634–0.990 4649

Milk yield MILK 0.934 0.031 0.634–0.990 4949

Protein yield PROT 0.934 0.031 0.634–0.990 4876

Fat yield FAT 0.933 0.031 0.634–0.990 4883

Udder index MILKORG 0.773 0.080 0.444–0.990 4834

Milking speed MILKSP 0.768 0.128 0.327–0.990 4753

Longevity LONG 0.747 0.093 0.304–0.993 4551

Mastitis MASTI 0.814 0.078 0.344–0.983 4858

Other-diseases (health) HEALTH 0.577 0.132 0.207–0.990 4593

Feet and legs LEG 0.570 0.121 0.204–0.990 4831

Daughter calving index 
(calving index)

CALV 0.670 0.090 0.204–0.990 4788

Service sire calving index 
(birth index)

BIRTH 0.738 0.083 0.442–0.990 4795

Fertility FERT 0.671 0.112 0.214–0.990 4806

Body conformation index BODY 0.805 0.071 0.513–0.990 4832

Growth GROWTH 0.912 0.048 0.513–0.990 4397

Temperament TEMP 0.603 0.135 0.212–0.990 4526

Nordic total merit index 
(NTM)

NTM 0.934 0.031 0.634–0.990 4834
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where y is the vector of phenotypes (DRP), 1 is a vec-
tor of 1s, µ is the general mean, gi is a vector of the 
genetic values for the ith variant class (i  =  1,2,…,7), 
gi ∼ N

(

0,Giσ
2
i

)

 , where Gi is the GRM of the ith class, 
and e is a vector of residuals with e ∼ N

(

0, Iσ2e
)

. The 
variance components were estimated by using the REML 
approach implemented in the genome-wide complex 
trait analysis (GCTA) software [30, 31]. The proportion 
of variance in DRP explained by class i of variants was 
calculated as:

To account for the region-specific heterogeneity in LD, 
we used the GREML-LDMS approach proposed by Yang 
et al. [18]. First, for each SNP, an LD score was computed 
as the sum of the LD measure r2 between this SNP and 
other SNPs in a 20-Mb region centered on this SNP. 
Then, the mean LD score of the variants in each segment 
which contained twice the average number of variants 
per 100-kb window of a chromosome was calculated and 
these were used to partition the variants within each of 
the seven MAF classes into four equally-sized LD groups 
based on increasing mean LD scores, following Yang et al. 
[18], resulting in 28 groups. Then, Model (1) was fitted 
using these 28 genetic components. In addition, to com-
pare the estimates of variance components based on the 

σ̂ 2
i

/

∑7
i=1 σ̂

2
i + σ̂ 2

e
.

GREML-MS and GREML-LDMS methods, the variants 
were also stratified into three different LD groups within 
each of the seven MAF classes, resulting in 21 genetic 
components. The proportion of DRP variance explained 
by rare, low-frequency and common variants, as defined 
previously, was divided by the sum of the DRP variances 
to compare their relative contribution to the total DRP 
variance explained.

The GRM used in GCTA, assumes that allelic effects of 
both common and rare variants follow the same distribu-
tion, similar to VanRaden’s method 2 [21, 32]. This means 
that a common variant explains more variance than a 
rare variant. To verify whether this assumption is reason-
able, expected contributions of different classes of MAF 
variants to the variance were compared to our empirical 
results. The expected variance explained by the variants 
from different MAF classes were computed under the 
assumptions of VanRaden’s methods 1 and 2 [21]. For 
VanRaden’s method 1, the expected variance explained 
by a class of variants is:

where pi is the MAF of the ith locus and the numerator is 
the sum for the variants in each class until the j1th locus 
and the denominator is the sum for all the variants until 

j1
∑

i=1

2pi(1− pi)/

j2
∑

i=1

2pi(1− pi),

Fig. 1  Proportion of variants in different MAF classes and their relative contribution to DRP variance for different traits. On the x axis are the variants 
with MAF classes: 0.001–0.01; 0.01–0.05; 0.05–0.1; 0.1–0.2; 0.2–0.3; 0.3–0.4 and 0.4–0.5 and on the y axis is the proportion of number of variants over 
the total number of imputed sequence variants (dark blue), relative contribution of explained DRP variance for different MAF classes variants for dif-
ferent traits based on “Trait abbreviation” in different colors
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the j2th locus. For VanRaden’s method 2, the expected 
proportion of genetic variance explained by a class of 
variants is Nclass/N , where Nclass is the number of vari-
ants per class, and N  is the total number of loci used in 
the calculation. Correspondingly, VanRaden’s method 1 
assigns a large amount of variance to common variants, 
while VanRaden’s method 2 puts more emphasis on rare 
variants.

The phenotypes used in our analysis, as is often the 
case in animal breeding, were DRP derived from esti-
mated breeding values with varying reliabilities. Weights 
derived from those reliabilities are commonly used in 
analyses that use DRP. However, the GCTA software does 
not support the use of weights, because it was developed 
in the context of human data analysis where the pheno-
types used are typically directly measured on the geno-
typed individuals. However, the average reliability of the 
DRP used here were quite high (Table  1). For example, 
the average reliability of milk yield was 93.4%. Therefore, 
ignoring DRP reliabilities in our analyses is not expected 
to affect the results.

Proportion of DRP variance captured by pedigree  
and 50 k SNPs
The genetic variance estimated by using the pedi-
gree relationship matrix was compared to the variance 
explained by the imputed sequence variants and the 50 k 
SNPs. The proportions of DRP variance explained by 
pedigree and genomic relationships were estimated by 
fitting pedigree and 50 k data separately or jointly in the 
model as described below:

where y is the vector of phenotypes, 1 is a vector of 1s, µ 
is the general mean. Zg and Za are incidence matrices that 
relate DRP to breeding values in g1, g2, a1 and a2, respec-
tively. Vectors a1 and a2 contain random effects with 
variance var(a) = Aσ 2

a , where A is the additive genetic 
relationship matrix computed from pedigree records. 
Finally, e is a vector of residuals with e ∼ N

(

0, Iσ2e
)

.
Models (2), (3) and (4) are labeled as “REML-PED”, 

“REML-GRM” and “REML-PEDGRM”, respectively. 
Analyses using pedigree relationships were implemented 
in the DMU software [31]. The vectors g1 and g2 contain 
random effects with variance var

(

g
)

= Gσ 2
g , where G is 

the GRM calculated following VanRaden’s method 1 [21]:

(2)y = 1′µ+ Zaa1 + e,

(3)y = 1′µ+ Zgg1 + e,

(4)y = 1
′µ+ Zgg2 + Zaa2 + e,

G =

(

X − 2p1′
)(

X − 2p1′
)

2
∑n

j=1 pj
(

1− pj
) ,

where X is the allele sharing matrix with the num-
ber of copies of the second allele, p is a vector with 
allele frequencies, and 1 is a vector of 1s. The factor 
2
∑n

j=1 pj
(

1− pj
)

 scales G to be comparable to the pedi-
gree relationship matrix. Analyses using the 50  k data 
GRM were implemented using the REML-GRM model 
of the GCTA software [32]. In addition, the REML-
PEDGRM model was fitted with a2 and g2 simultane-
ously implemented in the DMU software. Reliabilities 
of DRP were not used in the models analyzed by DMU 
for consistency with the analyses using GCTA. The vari-
ance explained by pedigree relationship was re-scaled for 
REML-PED and REML-PEDGRM to use the same base 
genomic relationships, following Legarra [33].

Results
Contribution of different classes of genetic variants based 
on MAF to DRP variance
Additional file 1: Table S1 shows the proportion of DRP 
variance explained and standard error (SE) for variants 
partitioned into seven MAF groups for 17 traits and 
Additional file 2: Table S2 presents the same for variants 
partitioned into seven MAF groups and four LD groups 
for 17 traits. A substantial proportion of the variance 
estimates had large SE for most traits when variants were 
partitioned into seven MAF groups and four LD groups 
[see Additional file 2: Table S2]. A similar pattern of large 
SE for the estimates was observed when variants were 
partitioned into seven MAF groups and three LD groups. 
However, relatively better estimates were obtained when 
variants were partitioned into seven MAF groups only 
[see Additional file  1: Table S1]. Therefore, only results 
for variants partitioned into seven MAF groups are pre-
sented here. However, partitioning variants into seven 
MAF groups also resulted in several variance estimates 
with large SE, especially when the estimates were small 
[see Additional file 1: Table S1].

Interestingly, we observed that the relative contribution 
of variants with a MAF between 0.2 and 0.3 was substan-
tially higher than that of other classes for MILK, FAT and 
PROT, as well as for LEG and LONG, while the imputed 
sequence variants were more or less evenly distributed 
across each MAF class (Fig. 1). This might be due to the 
DGAT1 gene [34] (located on chromosome 14, position 
1,802,265  bp with a MAF =  0.29), which is the largest 
milk-related QTL, explaining 11.2% of the DRP variance 
in MILK, 16.9% of the DRP variance in FAT and 2.9% of 
the DRP variance in PROT.

The proportion of DRP variance explained by rare 
(MAF  <  0.01), low-frequency (MAF  =  0.01–0.05) and 
common variants (i.e. MAF = 0.05–0.1, 0.1–0.2, 0.2–0.3, 
0.3–0.4 and 0.4–0.5) in Additional file  1: Table S1 was 
divided by the total proportion of DRP variance explained 
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and the results are summarized in Table  2 with three 
classes of variants (i.e. rare, low-frequency and common 
variants). The proportion of the DRP variance explained 
by the imputed sequence variants ranged from 0.406 
(SE = 0.026) for TEMP to 0.872 (SE = 0.011) for MILK. 
The highest relative contribution among different classes 
of MAF was observed for the group of common vari-
ants (MAF ≥ 0.05) and ranged from 0.755 for HEALTH 
to 0.980 for BIRTH. For rare variants (MAF < 0.01), the 
contribution to the DRP variance explained was rela-
tively small (ranging from 0 (with high SE) for FERT and 
BIRTH to 0.125 for HEALTH) compared with that from 
common variants (Table 2). The rare and low frequency 
variants (MAF  <  0.05) contributed higher proportions 
of the explained DRP variance (in total >0.13 based on 
Table  2) for the health-related traits [i.e. fertility, other-
diseases (health), longevity, feet and legs] compared with 
the production traits (in total <0.11 based on Table 2, i.e. 
yield index, protein yield and milk yield) (Table 2; Fig. 1).

Proportion of DRP variance captured by pedigree  
and 50 k SNPs
The proportions of DRP variance explained for 17 traits 
by the different models (i.e. GREML-MS, REML-PED, 
REML-GRM and REML-PEDGRM) and using different 
information sources to construct relationship matrices 
(i.e. imputed sequence variants, 50  k SNPs or pedigree 

data) are in Table  3. Estimates of residual variance over 
the total variance of DRP are in Additional file  3: Table 
S3 and the Akaike information criterion (AIC) [35] of 
the different models are in Additional file 4: Table S4. We 
observed that estimates of the residual variance and total 
DRP variance were similar across all models and infor-
mation sources for a given trait. Therefore, the propor-
tion of DRP variance explained was comparable across 
models and data sources for a trait [see Additional file 3: 
Table S3]. For most traits, REML-PEDGRM had the low-
est AIC value, which means that this model fit the data 
best, whereas for some traits, GREML-MS fit the data 
best [see Additional file 4: Table S4].

Imputed sequence variants explained more DRP vari-
ance than 50 k SNPs for most traits (Table 3). However, 
the DRP variance explained by imputed sequence vari-
ants was still smaller than the genetic variance estimated 
by using the pedigree-based relationship matrix; the dif-
ference was smallest for MILK (0.015) and largest for 
HEALTH (0.379).

The variance explained by fitting both pedigree and 
genomic relationship matrices (GRM) using the 50  k 
data in the PED + 50 k-DMU model, relative to the vari-
ance explained by the pedigree-based relationship matrix 
alone (PED-DMU), ranged from 109.2% for MASTI to 
90.3% for FERT (Table  3). Furthermore, the proportion 
of explained DRP variance by 50  k-based GRM in the 

Table 2  Relative contribution to  the proportion of  DRP variance explained by  variants in  different MAF classes for  17 
traits

All the variants were partitioned into seven MAF classes. In this table, we report the proportion of DRP variance explained for three groups of MAF classes (rare: 
MAF < 0.01, low-frequency: 0.01 ≤ MAF < 0.05 and common: MAF ≥ 0.05). For the group of common variants, the proportion of DRP variance explained was equal to 
the sum of the proportions of DRP variance explained for classes of variants with MAF: 0.05–0.1; 0.1–0.2; 0.2–0.3; 0.3–0.4 and 0.4–0.5

Traits and scenarios Relative contribution of MAF classes to the explained DRP variance Total proportion of  
DRP variance explained

0.001–0.01 0.01–0.05 0.05–0.5

YIELD 0.063 0.038 0.899 0.860

MILK 0.015 0.030 0.955 0.872

PROT 0.054 0.038 0.908 0.858

FAT 0.022 0.012 0.966 0.854

MILKORG 0.072 0.003 0.925 0.679

MILKSP 0.005 0.035 0.960 0.719

LONG 0.081 0.141 0.778 0.630

MASTI 0.019 0.000 0.981 0.669

HEALTH 0.125 0.121 0.755 0.514

LEG 0.059 0.149 0.796 0.525

CALV 0.037 0.000 0.963 0.507

BIRTH 0.000 0.020 0.980 0.602

FERT 0.000 0.133 0.867 0.600

BODY 0.088 0.026 0.886 0.568

GROWTH 0.010 0.087 0.903 0.814

TEMP 0.054 0.059 0.887 0.406

NTM 0.031 0.030 0.940 0.847
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total explained genetic variance from both 50  k-based 
GRM and pedigree-based relationship matrix using 
PED + 50 k-DMU model ranged from 79.8% for FAT to 
26.1% for HEALTH. These results indicate that common 
variants were able to capture a large proportion of the 
genetic variance, especially for production traits.

Discussion
Contribution of MAF classes to the variance of DRP
We estimated the relative contribution of genetic variants 
in different MAF classes to the explained DRP variance. 
However, many of these estimates had large SE when var-
iants were partitioned into MAF and LD groups, or only 
into MAF groups. Although the method of partition-
ing variants in different MAF and LD groups was used 
to estimate heritability accurately in human data, many 
of our estimates for this bovine population had large SE. 
The number of individuals used in the human study was 
44,126 [18], which was much larger than the sample size 
used in this study in cattle (~5000). Therefore, to obtain 
reliable estimates of the explained DRP variance for dif-
ferent MAF classes, a larger sample size is needed in cat-
tle population.

For all traits, the relative contribution of rare and low 
frequency variants to the proportion of DRP variance 

explained was small compared to the contribution of 
common variants. For health-related traits, the propor-
tion of DRP variance explained by rare and low frequency 
variants was on average more than 13%, which was high 
compared to that for production traits. Gonzalez-Recio 
et  al. [36] also reported that rare variants explained 
14% of the genetic variance for fertility in Holstein cat-
tle. These results reflect that the genetic architecture of 
health-related traits probably differs from that of produc-
tion traits in the sense that rare variants have a relatively 
larger impact on variation in health-related traits. This is 
expected since selection is purging the rare variants with 
a negative effect on fitness, for example, the rare delete-
rious variants will be purged by selection. However, the 
rare and low-frequency variants with a positive effect 
such as selective advantage could be very relevant for 
long-term selection response if they have a medium to 
large effect [37].

The variance explained by the class of variants with a 
MAF between 0.2 and 0.3 was low (0.001) for HEALTH 
(Fig. 1) and [see Additional file 1: Table S1] but is proba-
bly not biologically relevant given the large SE of this esti-
mate. When we compared DRP variance among the traits 
analysed, we observed no specific pattern of rare fre-
quency variants explaining more DRP variance than low-
frequency variants. However, again the large SE for the 
estimates may mask any pattern that may be present. For 
YIELD, PROT, MILKORG, MASTI, CALV and BODY, 
rare variants explained more variance than low-fre-
quency variants; for MILK, FAT, MILKSP, LEG, BIRTH, 
FERT and GROWTH, low-frequency variants explained 
more variance than rare variants; and for HEALTH, 
TEMP and NTM, rare variants explained a similar pro-
portion of variance as that found for low-frequency vari-
ants. Rare or low-frequency variants with more explained 
DRP variance for different traits might reflect the genetic 
architecture (i.e. what kind of causal variants underlie 
the traits). Rare or low-frequency causal variants gen-
erally have larger effect sizes [38] and might also have a 
larger contribution to phenotypic variation. For human 
height, rare variants explained 8.4% of the genetic vari-
ance and variants with a MAF ranging from 0.01 to 0.1 
explained 13% of the genetic variance [18]. However, a 
previous study on bovine fertility reported that rare vari-
ants explained 14% of the genetic variance, while low-fre-
quency variants (0.01 < MAF ≤ 0.05) explained 0% of the 
genetic variance [36], but this may result from an impre-
cise estimate due to a small sample size, as in our study.

Computing correlations between the GRM that was 
constructed with rare variants and with the GRM con-
structed with other MAF class variants suggested that the 
GRM that were constructed with common variants cap-
tured at least some of the variance that was captured by 

Table 3  Proportion of DRP variance explained using differ-
ent methods

GREML-MS refers to estimation using the GREML-MS method with imputed 
sequence variants partitioned into MAF classes. REML-GRM refers to estimation 
using 50 k SNPs with the REML-GRM model implemented in GCTA. REML-PED 
refers to using pedigree relationship in the REML-PED model implemented in 
DMU. REML-PEDGRM refers to fitting both 50 k SNPs and pedigree relationship 
in the REML-PEDGRM model implemented in DMU
a  The model did not converge

Traits GREML-MS REML-GRM REML-PED REML-PEDGRM

YIELD 0.860 0.845 0.923 0.941

MILK 0.872 0.844 0.887 0.927

PROT 0.858 0.847 0.943 0.963

FAT 0.854 0.840 0.898 0.914

MILKORG 0.679 0.703 0.811 0.816

MILKSP 0.719 0.715 0.748 0.840

LONG 0.630 0.606 0.884 0.881

MASTI 0.669 0.684 0.704 0.769

HEALTH 0.514 0.502 0.893 0.892

LEG 0.525 0.525 0.709 0.669

CALV 0.507 0.504 0.698 0.689

BIRTH 0.602 0.612 0.698 0.695

FERT 0.600 0.594 0.851 0.769

BODY 0.568 0.560 0.633 0.594

GROWTH 0.814 0.800 0.916 0.943

TEMP 0.406 0.403 0.645 0.645

NTM 0.847 0.839 –a –
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the GRM built with rare variants (Table 4). Table 5 shows 
the comparison between expected and estimated variance 
explained by each MAF class for LEG. The differences 
between estimated and expected variances for the rare 
and low-frequency variants for LEG were large (0.137 and 
−0.125 for expected variances using VanRaden’s methods 
1 and 2, respectively) and the estimated variance was actu-
ally intermediate to the expected variances obtained with 
the two VanRaden methods [21]. The difference between 
expected variances with the two VanRaden methods was 
much larger for rare and low-frequency variants than for 
common variants. Thus, it might be necessary to correct 
the current model (two VanRaden’s methods), as pro-
posed by Speed et al. [39]; generally, the genomic relation-
ship matrix (Xi,j) is calculated as:

where Si,j is the number of copies of the minor allele car-
ried by individual i at SNP j, fj is the allele frequency at 
the SNP j and α is commonly set to −1 in human genet-
ics and to 0 in animal and plant genetics [39]. Speed et al. 
[39] found that the optimal α was −0.25 for their human 
data. [39]. Our results support the need of exploring the 
optimal α to be used for constructing genomic relation-
ship matrices.

Xi,j =
(

Si,j − 2fj
)

×
(

2fj
(

1− fj
))α/2

,

It was previously shown that the contribution of rare 
variants to phenotypic variance of disease and stature in 
humans is large [18, 40]. In dairy cattle, we observed that 
rare variants play a bigger role for health-related traits 
than for production traits. Similar to the findings for 
human height, we also observed that rare variants con-
tributed significantly (the contribution of rare variants 
for BODY was 0.088) to the body conformation index, for 
which stature is the main component trait.

In our study, the sequence data that was used to estimate 
the variance explained by different MAF classes of variants 
was imputed sequence data. Imputation errors can result 
in underestimation of the variance explained by rare vari-
ants since they typically have a lower imputation accuracy 
[16]. The average imputation accuracy for rare variants in 
this study was 0.85, compared to 0.92 for other variants 
[see Additional file 1: Table S1], which indicates that impu-
tation accuracy may be an important contributor in our 
study. The 17 traits studied in this analysis are all highly 
polygenic traits that are affected by a large number of loci. 
To better study rare variants, next-generation sequencing 
data from considerably more individuals in the reference 
population may be useful to improve imputation accuracy 
and reduce the cut-off threshold for MAF. In addition, the 
number of animals with phenotypes should be increased 
to obtain more reliable variance component estimates.

Table 4  Correlations of the off-diagonal elements of the genomic relationship matrix (GRM) built using variants in differ-
ent classes of MAF

MAF class of variants used 
to construct the GRM

0.001–0.01 0.01–0.05 0.05–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5

0.001–0.01 1.000 0.546 0.372 0.339 0.322 0.313 0.310

0.01–0.05 1.000 0.811 0.756 0.723 0.704 0.696

0.05–0.1 1.000 0.911 0.865 0.845 0.835

0.1–0.2 1.000 0.948 0.925 0.915

0.2–0.3 1.000 0.962 0.950

0.3–0.4 1.000 0.968

0.4–0.5 1.000

Table 5  Expectations and  estimates of  the proportion of  variance explained by  the variants in  different MAF classes 
using imputed sequence data for the feet and legs trait

All proportions are scaled to sum to 1 across all MAF classes
a  Expectations of the proportion of variance explained based on the assumption of VanRaden’s methods 1 (VR1) and 2 (VR2); see [21]
b  Estimated proportion of DRP variance explained for feet and legs using the GREML-MS method with partitioning of imputed sequence variants into seven MAF 
groups

MAF class

0.001–0.01 0.01–0.05 0.05–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5

Expectation VR1a 0.006 0.065 0.079 0.252 0.210 0.194 0.193

Expectation VR2a 0.147 0.186 0.134 0.169 0.132 0.118 0.114

Estimateb 0.059 0.149 0.025 0.053 0.299 0.417 0.002
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The models used in this study were originally devel-
oped to account for LD structure in human data. The 
LD structure observed from genome-wide loci in cattle 
differs greatly from that in humans, in that LD persists 
across much longer ranges and the LD scores are much 
higher in cattle than in humans, see [18] and Additional 
file  5: Figure S1; i.e. the LD score was in most cases 
higher than 1000 in cattle, while in humans it is lower 
than 200. Due to close family structures in cattle and the 
resulting LD structure, correlations between the GRM-
matrices based on different MAF classes may be higher 
in bovine than in human data. Figure 1a in Lee et al. [41] 
shows that the estimated variances were very similar 
for each human chromosome, regardless of whether all 
chromosomes were fitted simultaneously or separately. 
Conversely, Daetwyler et al. [42] showed that SNPs from 
a single chromosome can achieve up to 86% of the accu-
racy for genomic predictions using all (50 k) SNPs. Strong 
LD and resulting high correlations between effects is 
probably the main reason why the data did not contain 
enough information for the model to accurately partition 
variances by MAF class. Thus, when we partitioned the 
variants into LD groups, the SE for the estimates of DRP 
variance explained within each MAF class were large. 
We showed that the correlations between GRM that 
were built with common variants were high (more than 
0.6), while correlations between GRM that were built 
with rare variants and common variants were low (rang-
ing from 0.3 to 0.4) (Table 4). Therefore, for bovine data, 
due to the strong LD, the variance explained by a certain 
MAF class of common variants can also be explained by 
another class of common variants, but probably less by 
rare variants.

Proportion of DRP variance captured by pedigree and 50 k 
SNPs
We estimated the proportion of variance in DRP 
explained for 17 traits using different models and differ-
ent data sources (Table  3). Imputed sequence variants 
explained a higher proportion of the DRP variance than 
the 50  k SNPs for most traits. However, the increase in 
variance explained was small (Table 3).

For all traits, estimation of DRP variance based on ped-
igree data explained the largest contribution of the total 
variance of DRP. This result is in line with other studies 
that used 50 k SNPs to construct the GRM [7, 8, 11]. The 
DRP were on progeny test bulls with adjustment for non-
genetic effects with a pedigree-based model. Because the 
estimation and deregression process was based on a ped-
igree-based model, it is not surprising that the pedigree-
based model explained the largest proportion of variance 
in DRP. In fact, the REML-PED model is expected to 
yield EBV that are very similar to the EBV that were used 

to compute the DRP [43]. For most health-related traits, 
the proportion of DRP variance estimated from pedigree 
relationships was small because the reliabilities of EBV 
for these traits were low.

Conclusions
Our results show that the 50  k SNP chip can explain 
most of the genetic variance estimated by using pedigree 
relationships and even that estimated by using whole-
genome sequence. We observed that using high-den-
sity SNPs resulted in only a limited increase in the DRP 
variance explained. As a result, it is necessary to include 
pedigree information, i.e. polygenic effects, in genomic 
prediction in dairy cattle to capture variance that is not 
captured by genomic markers. Our study also showed the 
relative importance of rare and low-frequency genomic 
variants for 17 traits in dairy cattle. Although a human 
study showed that partitioning variants in different MAF 
and LD groups decreased the bias of heritability esti-
mates, many of our estimates for the bovine population 
had high SE. To obtain a reliable estimate of the explained 
DRP variance for different MAF classes, a larger sample 
size is needed.

Additional files

Additional file 1: Table S1. Number of variants and imputation 
accuracy for each MAF class and proportion of DRP variance explained 
and standard errors for seven MAF classes without partitioning variants 
into LD groups for 17 traits. The number of variants for each MAF class 
was presented as the number of variants ± standard error. The imputa-
tion accuracy was reported using INFO values from MINIMAC2 imputa-
tion. The imputation accuracies were presented as mean imputation 
accuracy ± standard deviation. The numbers were also presented as the 
proportion of explained DRP variance ± standard error. For each column 
of the table, the imputed sequence variants were classified into seven 
classes based on their MAF (0.001–0.01; 0.01–0.05; 0.05–0.1; 0.1–0.2; 
0.2–0.3; 0.3–0.4 and 0.4–0.5). “-” means that there is no result for this case. 
Estimates that are larger than one time the standard error are in boldface.

Additional file 2: Table S2. Number of variants in different MAF classes, 
imputation accuracy for different MAF classes and proportion of DRP 
variance explained and standard errors for seven MAF by four LD classes 
for 17 traits. The numbers were presented as the proportion of explained 
DRP variance ± standard error. The traits where the model did not con-
verge were not presented in this table. For each column of the table, the 
imputed sequence variants were classified into 7 classes based on their 
MAF (0.001–0.01; 0.01–0.05; 0.05–0.1; 0.1–0.2; 0.2–0.3; 0.3–0.4 and 0.4–0.5). 
For each row of the table, the variants within each of the 7 MAF classes 
were stratified into 4 equally sized LD groups based on increasing mean 
LD scores, resulting in 28 groups in total. Estimates that are larger than 
one time the standard error are in boldface.

Additional file 3: Table S3. Estimates of residual and total variance of 
DRP using different models and different information sources to construct 
the GRM. The total explained DRP variance for PROT in PED-DMU is scaled 
to 100.0 and used as a reference to scale other numbers across models 
and traits. There are two rows for each trait. The relative residual variance 
is presented on the first row and total variance of DRP is shown on the 
second row. “GREML-MS” is the relative residual variance and DRP variance 
calculated using the GREML-MS method with partitioning of imputed 
sequence variants into MAF groups. “REML-GRM” is the relative residual 
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