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Abstract 

Background:  In statistical genetics, an important task involves building predictive models of the genotype–phe‑
notype relationship to attribute a proportion of the total phenotypic variance to the variation in genotypes. Many 
models have been proposed to incorporate additive genetic effects into prediction or association models. Currently, 
there is a scarcity of models that can adequately account for gene by gene or other forms of genetic interactions, and 
there is an increased interest in using marker annotations in genome-wide prediction and association analyses. In this 
paper, we discuss a hybrid modeling method which combines parametric mixed modeling and non-parametric rule 
ensembles.

Results:  This approach gives us a flexible class of models that can be used to capture additive, locally epistatic 
genetic effects, gene-by-background interactions and allows us to incorporate one or more annotations into the 
genomic selection or association models. We use benchmark datasets that cover a range of organisms and traits in 
addition to simulated datasets to illustrate the strengths of this approach.

Conclusions:  In this paper, we describe a new strategy for incorporating genetic interactions into genomic predic‑
tion and association models. This strategy results in accurate models, with sometimes significantly higher accuracies 
than that of a standard additive model.
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provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The genetic basis and evolutionary causes of quantitative 
variation were first proposed at the end of the nineteenth 
century [1, 2]. The statistical tools developed (correlation 
and regression) were the foundation of biometry science. 
Considerable efforts were made to identify the genetic 
architecture of traits by mapping quantitative trait loci 
(QTL) in humans, animals and plants [3–5]. Quantitative 
genetic theory focuses on finding the underlying genetic 
variation in genes by applying the classical infinitesimal 
(polygenic) model [2, 6].

In the infinitesimal model, the genetic values of individ-
uals are assumed to be generated by an infinite number 
of unlinked and non-epistatic genes, each with an inde-
pendent infinitesimal effect. In this model, quantitative 

genetics focuses on the additive effects of individual 
alleles. The rate of change of a trait and the genotypic var-
iance depend primarily on additive effects, hence interac-
tion terms are often neglected. However, while for many 
QTL, thousands of studies have been carried out, few 
examples that have successfully exploited mapped QTL 
have been reported in the literature [7]. Indeed, although 
genome-wide association studies (GWAS) have discov-
ered hundreds of single nucleotide polymorphism (SNPs) 
significantly associated with complex traits  [8–12], they 
have explained only a small proportion of the estimated 
genetic variation, a term coined “missing heritabil-
ity” [13]. Using SNP data to detect loci with a large effect 
by associating common phenotypes with common geno-
types, provides a way to capture the infinitesimal effects. 
In addition, the genome-wide predictive models, which 
are mainly used in genomic selection of animals or plants 
showed that the results from models that assume additive 
infinitesimal effects can be accurate and informative [14]. 
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The infinitesimal model has very powerful simplifying 
statistical properties and avoids the need to specify indi-
vidual gene effects  [15]. Association studies that involve 
complex interactions between loci are complicated by 
the large number of effects that need to be tested simul-
taneously. Most GWAS studies and prediction mod-
els focus on estimating the effects of each marker and 
lower level interactions [16]. For a dataset of m markers, 
a genome-wide analysis with two loci will involve evalu-
ating a number of possibilities of the order of m2 and m 
can easily exceed millions. Because of the consequent 
multiple testing burden, the methods used to identify 
and model epistasis lack statistical power, and they are 
computationally exhaustive or even unfeasible. Several 
factors make it difficult to estimate the true numbers 
and the effects of loci that influence a QTL. The detec-
tion of epistasis is a key factor for explaining the “miss-
ing heritability” [17]. The form and strength of epistasis 
that we expect for QTL depend crucially on the specific 
details of gene action. Gene interactions are impor-
tant because (1) they cause the additive effects of alleles 
to change as the genetic composition of the population 
changes [18] and (2) they might also slow down selection 
response, because alleles might only become favorable as 
the genetic background changes during selection [19]. A 
common approach to identify interactions is to test SNPs 
with the most significant additive effects. This approach 
can be problematic since the absence of additive effects 
might be generated by interacting loci. In this article, we 
propose a new hybrid (machine learning + mixed mod-
els) approach that (1) results in a flexible class of mod-
els that can be used to capture additive, locally epistatic 
genetic effects, and gene × background interactions, and 
(2) allows to incorporate one or more annotations into 
the genomic prediction and association models. Thus, 

the main aim of this study was to measure and incorpo-
rate additive and local epistatic genetic contributions to 
complex traits.

Methods
Materials
The genetic material used in this study to compare our 
novel prediction and association models to the stand-
ard linear genomic BLUP (GBLUP) model consists of 
four different datasets on maize, rice, wheat and mouse 
(Table 1). The maize dataset which was used in previous 
studies  [22, 23] was downloaded from panzea.org. The 
rice dataset can be downloaded from www.ricediver-
sity.org and was used in [24–26]. The wheat dataset was 
downloaded from the triticale toolbox dataset www.triti-
caletoolbox.org and the mouse dataset, published in [27], 
was accessed from the “synbreeddata” package [28] avail-
able in R [29]. To determine if the locally epistatic rules 
(LER) model can be used to locate interacting loci and 
to compare its results to those from a standard addi-
tive mixed modeling approach, we devised the following 
experiment. We simulated 1000 independent SNPs that 
were coded 0, 1 and 2 for 2000 individuals. Five genetic 
effects gi, i = 1, . . . , 5 at five loci were generated accord-
ing to the formulas in Table 2. Each effect was standard-
ized to have a variance of 1 across the genotypes and the 
total genotypic value of a genotype was calculated as the 
sum of these effects. Each of these quantitative trait loci 
involved three closely located SNPs. Effect g1 was com-
pletely additive, while the other effects contained SNP 
by SNP interactions, SNP by background interactions or 
both. The formula for each of these effects are in Table 2. 
The individuals were evenly assigned to one of the two 
sexes at random, which in turn was reflected in the 
genetic values as a fixed difference of 5 units. The final 

Table 1  Summary of the features of the datasets and the hyper-parameter settings for the results presented in Fig. 5

Trait Names: GDD_DTA growing degree days to silk, GDD_DTA growing degree days to anthesis, GDD_ASI growing degree days to anthesis-silking interval, DTS days to 
silking, DTA days to anthesis, ASI anthesis silking interval days, PH plant height, EH ear height, PH-EH PH minus EH, EHdivPH EH divided by PH, PHdivDTR PH divided by 
days to anthesis FLW flag leaf width, LG lodging, GRL grain length, GRW grain weight, 1000GW thousand grain weight, YLD yield, FD flowering day, PMD physiological 
maturity day, WGP whole grain protein, HD heading date Julian, WAX waxiness

Dataset Number 
of individuals

Number 
of SNPs

Traits Mean 
depth

Nrules Nsplits Proprow Propcol

Rice 299 73K PH, FLW, LG, GRL, GRW, 1000GW, 
YLD

4 500 5 .3 .1

Mouse 1940 12K Body weight, growth slope 2000 10 .1 .05

Maize 4676 125K GDD_DTS 2 1000 10 .1 .05

GDD_DTA, GDD_ASI, DTS 2 200 40 (using hotspots) .1 .05

DTA, ASI, PH, EH

PH.EH, EHdivPH, PHdivDTR

Wheat 337 3355 FD, PMD, PH, YLD, WGP 1 500 2 .3 .1

HD, WAX

http://www.ricediversity.org
http://www.ricediversity.org
http://www.triticaletoolbox.org
http://www.triticaletoolbox.org
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phenotypes for the individuals were obtained by adding 
independent and identically distributed, zero centered 
normal random variables to genetic values to obtain a 
broad-sense heritability of 2/3. In this simulation study, 
we have partitioned the genome into 10 segments for the 
LER model. The whole experiment was replicated 100 
times to obtain the results in Table 3.  

Methods
In statistical genetics, an important task involves building 
predictive and association models of the genotype–phe-
notype relationship to attribute a proportion of the total 
phenotypic variance to the variation in genotypes. There 
are numerous statistical models used in genomic predic-
tion and association (see Fig. 1). An evaluation of these 
methods for predicting quantitative traits is in [30]. Many 
of the models used for genomic prediction and associa-
tion are additive. These include ridge regression-best lin-
ear unbiased prediction (rr-BLUP)  [31, 32], Lasso [33], 
Bayesian–Lasso [34], Bayesian ridge regression, Bayesian 
alphabet  [35, 36]), GBLUP. Some methods for capturing 
genome-wide epistasis include the reproducing kernel 
Hilbert spaces regression (RKHS) approach [37, 38] and 
related support vector machine regression or partition-
ing based on random forest [39]. These models can be 
used to predict genetic values but do not provide satis-
factory information about the genetic architecture of 
traits. An alternative approach when studying epistasis 
is to consider only local epistasis [40], i.e., only epistatic 
interactions between closely located loci. It is reasonable 
to assume that only the epistatic effects that arise from 
alleles in gametic disequilibrium, between closely located 
loci can contribute to long-term response since recom-
bination disrupts allelic combinations that have specific 
epistatic effects. In a recent article  [40], we proposed a 
modeling approach that uses RKHS-based approaches 

to extract locally epistatic effects, which we referred to 
as the locally epistatic kernels (LEK) model. It was shown 
in [40] that LEK models could be used to improve pre-
diction accuracies and provide useful information about 
genetic architecture.

Importance sampling learning ensembles and rule 
ensembles
The LER models introduced here uses the impor-
tance sampling learning ensembles (ISLE)  [41] based 
rule extraction procedures for genomic prediction and 
GWAS. We described and illustrated the use of ISLE-
based approaches with genomic data in [42]. Never-
theless, for completeness, we include a description of 
ISLE-based ensemble model generation procedure in 
this section. Given a learning task and a relevant dataset, 
we can generate an ensemble of models from a predeter-
mined model family; an ensemble of models is a single 
model that combines this ensemble of models. The main 
discovery is that ensemble models are much more accu-
rate than the individual models that make them up when 
the individual members of the ensemble are accurate 
(low bias) and diverse (high variance). Ensemble models 
are shown to perform extremely well in a variety of sce-
narios and to have desirable statistical properties. Mem-
bers of the ensemble are generated by fitting models from 
the chosen family to perturbed data. For instance, bag-
ging [43] bootstraps the training dataset and produces a 
model for each bootstrap sample. Random forest [39, 44] 
creates models by randomly selecting a subset of obser-
vations and / or explanatory variables while generating 
each model. Boosting is a bias-reduction technique, Ada-
Boost iteratively builds models by varying case weights 
and using the weighted sum of the estimates of the 
sequence of models. There have been attempts to unify 
these ensemble learning methods. One such framework 

Table 2  Definition of five genetic effects used in simulations to determine if the LER model could locate interacting loci

Five genetic effects gi , i = 1, . . . , 5 at five loci were generated according to the formulas below. Each effect was standardized to have a variance of 1 over the simulated 
genotypes and the total genotypic value of an genotype was calculated as the sum of these effects. The individuals were evenly assigned to one of the two sexes 
at random, which in turn was reflected in the genetic values as a fixed difference of 5 units. The final phenotypes for the individuals were obtained by adding 
independent and identically distributed, zero centered normal random variables to genetic values to obtain a broad-sense heritability of 2/3

Effect

g1 = (.6 ∗ x8 + .5 ∗ x11 − .4 ∗ x14)

if (pc1 < 0)
[

g2 = .6 ∗ x208 − .5 ∗ x211 − .4 ∗ x214
]

else 
[

g2 = −(.6 ∗ x208 + .5 ∗ x211 + .4 ∗ x214)
]

g3 = (.6 ∗ x408 + .5 ∗ x411 − .4 ∗ x414)
2

if (pc1 < 0)
[

g4 = ((.6 ∗ x608 + .5 ∗ x611 − .4 ∗ x614)
2)
]

else 
[

g4 = (−(.6 ∗ x608 − .5 ∗ x611 + .4 ∗ x614)
2)
]

if (pc1 < 0)
[

g5 = ((.6 ∗ x808 + .5 ∗ x811 − .4 ∗ x814 + .5 ∗ pc2)
2)
]

else 
[

g5 = ((−.6 ∗ x808 − .5 ∗ x811 − 4 ∗ x814 + .5 ∗ pc2)
2)
]
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is the ISLE. Let us assume that we want to generate an 
ensemble of models for predicting the continuous out-
come variable y from vector p of input variables x from 
a model family F = {f (x, θ) : θ ∈ ⊖} indexed by the 
parameter θ . The final ensemble model produced by the 
ISLE framework has an additive form:

where {f (x, θ j)}Mj=1 are base learners selected from F . 
A two-step approach is used to produce F(x). The first 
step involves sampling the space of possible models to 
obtain {̂θ j}Mj=1. The second step involves combining the 
base learners by choosing weights {wj}

M
j=0 in Eq. (1). The 

pseudo code to produce M models {f (x,̂θ j)}Mj=1 under the 
ISLE framework is given in Algorithm 1: 

Algorithm 1: ISLE(M, ν, η)

F0(x) = 0.
for j=1 to M

do















(cj ,θj) = argmin
(c,θ)

i∈Sj(η) L(yi, Fj−1(xi) + cf(xi,θ))

Tj(x) = f(x,θj)
Fj(x) = Fj−1(x) + νcjTj(x)

return ({Tj(x)}Mj=1 and FM(x).)

Here, L(.,  .) is a loss function; Sj(η) is a subset of the 
indices {1, 2, . . . , n} chosen by a sampling scheme η, and 
0 ≤ ν ≤ 1 is a memory parameter. The classic ensemble 
methods of bagging, random forest, AdaBoost, and gra-
dient boosting are special cases of the ISLE ensemble 
model generation procedure [45]. In bagging and random 
forests, the weights in Eq.  (1) are set to predetermined 
values, i.e. w0 = 0 and wj =

1
M for j = 1, 2, . . . ,M. Boost-

ing calculates these weights in a sequential fashion at 
each step by having positive memory ν, estimating cj and 
takes FM(x) as the final prediction model. Friedman and 
Popescu  [41] recommend learning the weights {wj}

M
j=0 

using Lasso  [33]. Let T =
(

Tj(xi)
)n

i=1

M

j=1
 be the n×M 

matrix of predictions for the n observations by the M 
models in an ensemble. The weights (w0,w = {wm}

M
m=0) 

are obtained from:

(1)F(x) = w0 +

M
∑

j=1

wjf (x, θ j)

� > 0 is the shrinkage operator, larger values of � decrease 
the number of models included in the final prediction 
model. The final ensemble model is given by:

The ISLE approach produces a generalized addi-
tive model (GAM) [46]. A few other post-processing 
approaches such as partial least squares regression, mul-
tivariate kernel smoothing, and weighting, as well as the 
use of rules in semi-supervised and unsupervised learn-
ing, are described in [42]. There is no restriction on the 
choice of the family of base learners, F , in the ISLE pro-
cedure. The most popular choice for the base learners is 
the class of regression and classification trees. Tree-based 
methods have the advantage of being virtually assump-
tion free, they are simple to fit and interpret. They can 
capture interactions and handle missing values by using 
surrogate splits. In addition, trees can naturally handle 
all types of input variables, i.e., numeric, binary, categori-
cal. They are invariant under monotone transformations 
and scaling of the variables. Trees have a high variance 
on these data due to the correlation in the predictors. An 
ensemble of tree models succeeds in smoothing out this 
variance and hence reduces test error.

A tree with K terminal nodes defines a K partition of 
the input space where the membership to a specific node, 
say node k, can be determined by applying the conjunc-
tive rule rk(x) =

∏p
l=1 I(xl ∈ slk), where I(.) is the indica-

tor function, x = (x1, x2, . . . , xp) are the input variables. 
The regions slk are intervals for continuous variables 
and a subset of the possible values for a categorical vari-
ables. The easiest way to create an ensemble of rules is to 
extract it from an ensemble of decision trees. In a tree, 
each path from the root node to a leaf defines a rule. 
An example of a regression tree and the corresponding 

(2)

ŵ = argmin
w

(y − w01n − Tw)′(y − w01n − Tw)

+ �

M
∑

m=1

|wm|.

(3)F̂(x) = ŵ0 +

M
∑

m=1

ŵmTm(x).

Table 3  Number of  times the true loci are recovered by  standard GWAS and  LER over  100 repetitions of  the simulated 
association experiment described in Table 2

Model/marker x8 x11 x14 x208 x211 x214 x408 x411 x414 x608 x611 x614 x808 x811 x814

GWAS 73 77 75 9 71 71 83 63 0 26 65 29 74 77 34

LER 93 97 100 100 100 100 100 100 20 100 97 68 100 99 57
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rules extracted from this tree are displayed in Fig. 2. The 
complexity of trees or rules (the degree of interactions 
between the input variables) in the ensemble increases as 
the number of nodes increases from the root to the final 
node (depth). Individual trees can be pruned using a cost 
complexity criterion. For example, a popular cost com-
plexity criterion  [48] that balances the residual sum of 
squares and the complexity of the tree can be written as:

where T is a regression tree, cp ≥ 0 the complexity 
parameter/regularization parameter, |nodes(̂T )| denotes 
the number of nodes of tree ŷ, and RSS(T) is the residual 
sum of squares of the tree. In addition, the parameters 
minbucket, minsplit, and maxdepth constrain the solu-
tion to a minimum number of observations in each ter-
minal node, a minimum number of observations in each 
internal node, and a maximum tree-depth. There are 
numerous options for building tree models: these include 
iterative dichotomiser 3 (ID3) [49], C4.5  [50], classifica-
tion and regression trees (CART) [48], etc. In this paper, 
the model f (X) in Eq.  (6) at each iteration of the EM 
algorithm was extracted by the CART approach using 
the R package rpart  [51]. Suppose an ensemble of tree 
models was generated by the ISLE algorithm in Algo-
rithm  1 and let R = (rk(xi))

n
i=1

K
k=1 be the n× K  matrix 

of rules derived from this ensemble of trees. The rulefit 
algorithm of Friedman and Popescu [52] uses the weights 
(w0,w = {wk}

K
k=0) that are estimated from:

in the final prediction model:

Locally epistatic models via rules (LER)
When applying the ISLE approach to genomic data spe-
cial considerations need to be taken into account because 
of the dependencies among features such as the arrange-
ment (localization, spacing and number) of SNPs on 
chromosomes, the linkage between SNPs, or annotations 
that put certain SNPs in the same groups. Joint consid-
eration of linkage and epistasis is a necessary step for the 
models that incorporate the interactions for more than 
one locus. Complex systems that use evolutionary mech-
anisms such as selection proportional to fitness, recombi-
nation and mutation tend to generate short adapted and 
specialized structures the number of which will increase 

CCC(T ) := RSS(T )+ cp|nodes(ŷ)|

(4)

ŵ = argmin
w

(y − w01n − Rw)′(y − w01n − Rw)

+ �

K
∑

k=1

|wk |,

(5)F̂(x) = ŵ0 +

K
∑

k=1

ŵkrk(x).

exponentially in successive generations. For instance, the 
scheme theorem of Holland [53] can be stated as:

where N(H,  t) is the frequency of a haplotype (schema) 
H at time t, and c the relative fitness of H compared 
to all other haplotypes in the population. It can be 
argued that Pr(H is lost due to recombination) is an 
increasing function of the linkage length of H and 
Pr(H is lost to mutation) is an increasing function of the 
order of H, i.e., number of loci in H that affect its fitness. 
The epistatic effects involving unlinked loci have a high 
probability of being lost due to recombination and will 
not contribute to the subsequent response. This argu-
ment forms the basis of the “building blocks” hypothesis 
in the evolutionary theory. Because of these considera-
tions that are unique to genomic data, we propose a mod-
ification of the ISLE algorithm so that the interactions 
among genes are restricted to local genomic regions. 
Locally epistatic rule-based model fitting starts with a 
definition of genomic regions; suppose we defined k such 
regions. Region definition is followed by the extraction 
of local rules from each genomic region j = 1, 2, . . . , k . 
using the ISLE algorithm. The rules are extracted from 
trees that predict the estimated genetic value from SNPs 
in the region. Since the rules are independently gener-
ated for each region, this step can be computationally 
accomplished in parallel without loading all the genetic 
data to computer memory. The values of the rules from 
all regions are calculated for the n training individuals, 
they are standardized with respect to their sample stand-
ard deviation and combined in a matrix n× r matrix R. 
The model behind the proposed mixed effects regression 
tree method is:

g ∼ N (0, σ 2
g G), e ∼ N (0, σ 2Im), where all quantities 

are defined as in a classical linear mixed effects model 
except that a more general and unspecified fixed part, 
f (X), which describes the vector obtained by applying 
the function f to each row of X, now replaces the usual 
linear part Xβ which will be estimated with a single 
tree. The random part, Zg, is still assumed linear with a 
covariance structure given by σ 2

g G, where G is an addi-
tive genetic similarity matrix. Given M, the marker allele 
frequency centered incidence matrix, the matrix G can be 
calculated as G = MM′/k where k is the sum of the vari-
ances of the SNPs [54]. The ML-based EM-algorithm to 
fit this model is described in  [55] and [56]. As with the 
mixed model association methods, the aim of including 
a random term that accounts for the genetic structural 

N (H , t + 1) = N (H , t) ∗ (1+ c)

∗ (1− Pr(H is lost due to recombination))

∗ (1− Pr(H is lost to mutation)),

(6)y = f (X)+ Zg + e,
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effects is to correct for confounding between the famil-
ial effects and the effects of the loci. The second step in 
locally epistatic rule based model fitting is the post-pro-
cessing step where we obtain a final prediction model 
using the extracted rules as input variables. The mixed 
models (MM) methodology has a special place in quan-
titative genetics because it provides a formal way of par-
titioning the variability observed in traits into heritable 
and environmental components, it is also useful to con-
trol for population structure and relatedness for GWAS. 
In a mixed model, genetic information in the form of a 
pedigree or SNP data can be used in the form of an addi-
tive genetic similarity matrix that describes the similarity 
based on additive genetic effects (GBLUP). For the n× 1 
response vector y, the GBLUP model can be expressed as:

where X is the n× p design matrix for the fixed effects, 
β is a p× 1 vector of fixed effects, Z is the n× q design 
matrix for the random effects; the vectors of random 
effects g and e are assumed to be independent multivari-
ate normal (MVN) random variables with means 0 and 
corresponding covariances σ 2

g G and σ 2
e In where G is the 

q × q additive genetic similarity matrix. It is known that 
model in Eq. (7) is equivalent to a MM in which the addi-
tive marker effects are estimated via the following model 
(rr-BLUP):

where X is the n× p design matrix for the fixed effects, β 
is a p× 1 vector of fixed effect coefficients, Z is the n× q 
design matrix for the random effects M is q ×m marker 
allele frequency centered incidence matrix; u and e are 
assumed to be independent MVN random variables with 
means 0 and corresponding covariances σ 2

u Im and σ 2
e In. 

The conversion between the predicted genotypic values 
̂g  in Eq.  (7) and the predictions for marker effects û in 
Eq. (8) are given by:

In this article, we use the rr-BLUP model for post-pro-
cessing the rules:

where Z is a n× q design matrix for the random effects, 
R is a q × r design matrix for the centered and scaled 
rules, and (α′, e′)′ follows a MVN distribution with mean 
0 and covariance ,

Note that each rule is a function of the SNPs. Using 
estimated coefficients, α̂, we calculate the estimated 

(7)y = Xβ + Zg + e,

(8)y = Xβ + ZMu + e,

(9)û = M′Z′(ZMM′Z′)−1
̂g .

(10)y = Xβ + ZRα + e,

(

σ 2
α Ir 0

0 σ 2
e In

)

.

genotypic value for an individual with SNPs m as R̂(m)α̂ 
where R(m) = (R1(m),R2(m), . . . ,Rr(m)).

Importance and interaction measures
In addition to having a good prediction performance, a 
good model should also provide a description of the rela-
tionship between the input variables and the response. 
The rules and the estimated coefficients of the LER model 
can be used extract several importance and interaction 
measures. Let I(mℓ ∈ Rj) denote the indicator function 
for the inclusion of SNP Mℓ in rule Rj .

• • Since R has standardized columns, |α̂| can be used as 
importance scores for the rules in the model.

• • A measure of importance for a SNP ℓ is obtained by 
Ij =

∑r
j=1 |α̂j|I(mℓ ∈ Rj).

• • A measure of the interaction strength 
between two SNPs ℓ and ℓ′ is obtained by: 
Iℓℓ′ =

∑r
j=1 |α̂j|I(mℓ ∈ Rj)I(mℓ′ ∈ Rj).

• • A measure of the interaction strength 
between SNPs ℓ1, ℓ2, . . . , ℓl is given by 
Iℓ1ℓ2...,ℓl =

∑r
j=1 |α̂j|

∏l
k=ℓ1

I(mℓk ∈ Rj).

• • Importance of a region: Sum of the rule or marker 
importances within a region.

The variable importance and interaction measures are in 
line with the stability selection methods  [57, 58]. With 
stability selection, the data are perturbed (for example by 
subsampling) many times and the structures or variables 
that occur in a large fraction of the resulting selection 
sets are deemed important.

“Tuning” the LER algorithm
While fitting the model in Eq.  (1), we need to decide on 
the values of a number of arguments (hyper-parameters) 
to control the fitting behavior. Hyper-parameter settings 
can have a strong impact on the prediction accuracy of 
the trained model. Optimal hyper-parameter settings 
often differ for different datasets. Therefore, they should 
be tuned for each dataset. Since the model training pro-
cess does not set the hyper-parameters, a meta process 
for tuning the hyper-parameters is needed. Conceptu-
ally, hyper-parameter tuning is an optimization task, just 
like model training. The hyper-parameters in LER models 
may be selected by comparing the cross-validated accu-
racies within the training dataset for several reasonable 
choices. For each proposed hyperparameter setting, the 
inner model training process comes up with a model for 
the dataset and outputs evaluation results on hold-out 
or cross-validation datasets. After evaluating a number 
of hyperparameter settings by a method like grid or ran-
dom search, the hyperparameter tuner settings that yield 
the best performing model are used. The choice of the 
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hyper-parameter for the LER models should also reflect 
the available resources and the needs. For instance, the 
number of regions that we can define depends on the 
number of SNPs and on the resolution that the dataset 
allows, and a more detailed analysis might only be suitable 
when the number of SNPs and the number of genotypes in 
the training dataset are large. The LER methodology pro-
vides the user with a range of models with different levels 
of detail, sparsity, and interactions. The depth of a rule is 
a hyper-parameter of the LER models since it controls the 
degree of interaction. A term involving the interaction of 
a set of variables can only enter the model if there is a rule 
that splits the input space based on those variables. One 
way to control the amount of interactions is to grow the 
trees to a certain depth. We can call this parameter the 
“maxdepth” parameter. In this article, we allowed different 
rules to enter the model by setting the “maxdepth” of each 
tree independently to a random variable generated from 
a truncated Poisson distribution that turned the param-
eter into a continuous one which controls the “mean 
depth” of rules. This allows a diverse set of rules with 
different depths. The “mean depth” parameter controls 
the distribution of the complexity of the rules that com-
prise the ensemble. A choice can be based on the a-priori 

suspicions about the nature of the target. We also note 
that the number of rules in a tree is increased by the order 
of the square of the “mean depth” parameter. The effect 
of increasing this parameter is a decrease of the “mean 
depth” of the trees and “mean depth” and the number of 
rules extracted from each tree. The trees and the associ-
ated rules can be pruned during extraction with heuristics 
such as complexity cost pruning, or reduced error prun-
ing [59]. The hyper-parameters “proprow” and “propcol” 
control the number of sampled rows and columns from 
the full data for training an individual tree. Precision of 
the resulting trees and rules increases whereas their accu-
racy decreases as either of these parameters decrease. 
Improving the prediction accuracy of a tree and the preci-
sion of its splits is a balancing act; in general, we should 
aim at having enough examples and a manageable num-
ber of SNPs for each run of the tree extraction. “nrules” 
is a related hyper-parameter that controls the number of 
rules to be extracted from each genomic region. In order 
to use all of the training data and to have reliable impor-
tance statistics, each genotype and each marker should be 
sampled several times during the extraction of rules. The 
detailed steps taken during the model fitting process are 
provided in an algorithmic form in Algorithm 2:

Algorithm 2: LER(y,Z,M, Regions, proprow, propcol,meandepth,

nrules, cp)

1- Extract locally epistatic rules.






























































































for each region in Regions

while the number of rules extracted from the region is less than nrules :










































































1- Sample the proprow proportion of individuals and
propcol proportion of SNPs from the region at random.
2- Obtain the parts of data corresponding to this sample →
ys,Ms,Zs.

3- Use meandepth parameter to randomly generate a value for
tree parameter maxdepth.

4- Use the data from sampled individuals in model in Eq. (6) as
ys = f(Ms) + Zsb+ es,b ∼ N(0, σ2

gG),es ∼ N(0, σ2Im),
to extract a tree and record the rules with tree parameters
cp and maxdepth.

2- Post-process locally epistatic rules.










1- Calculate the rule matrix for corresponding to M → R.

2- Scale R by dividing each column of R with its standard deviation.
3- Use R in model in Eq. (10) to obtain blups for rule effects.→ α

Estimate genomic value for individuals with marker m using R(m) α.
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For the maize dataset, we used two settings to split 
the SNPs into contiguous and non-intersecting regions. 
In the first setting, each chromosome was split into 10 
segments by dividing the chromosome into blocks with 
approximately the same number of SNPs. In the second 
setting, we used maize recombination hot-spots [60] 
to split each maize chromosome into 40 segments. The 
rules were extracted using the SNP in each region along 
with the first three principal components (PC) of the 
genome-wide SNPs. The rice, wheat, and mouse datasets 
were treated similarly. The details of the settings of the 
LER algorithm for each dataset are in Table 1. To show 
that the model is robust over reasonable choices of the 
hyper-parameter values, we included the results for sev-
eral hyper-parameter settings in Additional file 1. Addi-
tional file  2 provides sample code for replicating the 
simulated experiment.

Results
 Figure 3 shows the accuracies obtained with the LER and 
GBLUP models for each of the 30 replicates for each trait 
in all datasets. The red colored data points show the cases 
for which the LER models performed better than the 
GBLUP models. The number of times that each model 
performed better than the other is shown on the top left 

side for each dataset. The performance for each trait can 
be evaluated also from the same figure using the leg-
ends. In general, the LER models performed better than 
GBLUP for all datasets and particularly well for traits 
with a complex genetic architecture, i.e., generated by a 
large number of genes with small effects, e.g. in the maize 
dataset, for growing degree days to anthesis (GDD_DTA) 
and to silking (GDD_DTA), anthesis-silking interval and 
plant height, yield components and in the mouse data-
set for body weight. The results in Fig.  3 correspond to 
the hyper-parameter settings provided in Table  1. In 
Additional file  1: Figures S1 and S2, we provided the 
accuracies obtained for several other hyper-parameters 
settings. These results show that the hyper-parameter 
settings have a strong influence on the performance of 
LER models. Nevertheless, the gains in accuracies across 
the traits mentioned above are persistent for a wide range 
of hyper-parameter values. Figures  4 and 5 and Table  4 
show the results from the simulation experiment that was 
described in the Methods section and in Table 4. In Fig. 4, 
we present one example of the association results for the 
ordinary GWAS approach using a mixed model and the 
importance scores obtained from the LER model. In this 
figure, the vertical blue lines show the simulated QTL. 
A comparison indicates that the LER model can identify 

Fig. 1  Many of the models used in genomic prediction and association analyses are additive: These include ridge regression-best linear unbiased 
prediction (rr-BLUP) [31, 32], Lasso [33], Bayesian–Lasso [34], Bayesian ridge regression, Bayesian alphabet [35, 36], GBLUP and EMMA [47]. Several sci‑
entists have also developed methods to use genome-wide epistatic effects: RKHS [37, 38]), RF [39], SVM. The dendrogram on the left was obtained 
based on a table of the properties of different models, this table included variables such as “additive-epistatic”, “global-local”, “marker-kernel based”; it 
should not be taken as a formal clustering of models. The colors attached to the groups in the dendrogram are matched with different parts of the 
genome to illustrate the focus of each of these groups. Locally epistatic kernels (LEK) and locally epistatic rules (LER) models that use local epistasis
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QTL that are missed in the additive GWAS (Fig. 4). Fig-
ure  5 also displays one example of the importance and 
interaction statistics for the first three PC and 27 SNPs 
that are deemed important by the importance statistic. 
The main effects of the SNPs are shown on the diagonal 
and the off-diagonal shows two-way interactions. The 
darker the colors, the more important are the effects. 
According to Table  3, this figure shows that the LER 
model captured the simulated additive and interaction 
effects. For example, ×8, ×11 and ×14 SNPs have addi-
tive simulated effects (Table 3) and they do not interact. 
The second genetic effects 208, 211 and 214 interact with 
the background (PC1) but have additive effects. In both 
cases, the LER model captured the simulated effects. In 
addition, for 100 independent replications of the same 
simulation experiment, Table  3 provides the counts of 
the number of times each of the 15 SNPs that generate 
a genetic value appears in the top 20 SNPs selected by 
LER versus by additive GWAS. The results also showed 
that LER is superior in identifying QTL, especially when 
interaction effects are involved (Additional file 2).  

Discussion
This paper is an extension of a previous paper [40], in 
which we had defined a RKHS approach to capture 
epistasis between closely-linked markers (local epistasis) 
and we weighted the local estimates using an elastic net 
algorithm. Here, we propose a different approach that 

uses ensemble rules with the aim of capturing more com-
plex interactions between predefined subsets of SNPs. 
First, the procedure extracts the locally epistatic effects 
using an ISLE ensemble rule and, then they are included 
into a standard random regression BLUP approach. The 
procedure is applied to simulated data and to four dif-
ferent datasets with satisfactory results when compared 
with GWAS or GBLUP. The focus of this article is on 
building locally epistatic models using rule ensembles. 
However, LER model building is a general methodology 
that includes three stages:

1.	 Divide the genome into regions.
2.	 Extract locally epistatic effects: Use the training data 

to obtain a model to estimate the locally epistatic 
effects.

3.	 Process locally epistatic effects by combining them 
using an additive model.

At each of these model building stages, the researcher 
needs to make a number of decisions. For example, in 
all of our implementations of the LER models, we have 
used non-overlapping contiguous regions. Neverthe-
less, the regions used in locally epistatic models can be 
overlapping or hierarchical. If some SNPs are associ-
ated with each other in terms of linkage or function, as 
for example through a known biochemical pathway, it 
might be useful to combine them together. For instance, 
the whole genome can be divided physically into chro-
mosomes, chromosome arms or linkage groups. Further 
divisions could be based on recombination hot-spots or 
just merely based on local proximity. We can also group 
SNPs based on their effects on intermediate traits such 
as lipids, metabolites, or gene expression. With the devel-
opment of next-generation sequencing and genotyp-
ing approaches, large haplotype datasets are becoming 
available in many species. These haplotype frameworks 
provide substantial statistical power in association stud-
ies of common genetic variation across each region. The 
locally epistatic framework can be used to take advantage 
of annotations of the variants relative to the genes they 
are in or their predicted impact on protein function. It 
is possible to build LER models where each SNP defines 
a region by its neighborhood. This definition would 
give overlapping regions. We can supplement the rules 
with the SNP scores, and then the model fitting proce-
dure will provide the appropriate coefficients for the 
rules and the linear terms. After extracting rules from a 
region, a variable selection procedure can be applied to 
pick the most relevant rules from that region. A regres-
sion of the response variable on the set of rules from a 
region using the elastic-net loss function allows us to 
control the number of rules selected as relevant for that 

Fig. 2  An example of a tree to rules. At each interme‑
diate node, an observation goes to the left branch if 
and only if the condition shown there is satisfied. A 
simple regression tree which can be represented as 
y = 20I(M1 < 0)(M2 < 1)+ 15I(M1 < 0)I(M2 ≥ 1)+ 10I(M1 ≥ 0). 
Each leaf node defines a rule which can be expressed as a product of 
indicator functions of half spaces. Each rule specifies a ‘simple’ rectan‑
gular region in the input space
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Fig. 3  Accuracy obtained with the LER and GBLUP models (measured as the correlation between the estimated genetic values and the response 
variable) for each of the 30 replicates for each trait in all datasets. The red colored data points below the y = x show the instances where the LER 
models performed better than the GBLUP models. Black colored data points show the instances where the GBLUP models performed better than 
the LER models. The number of times that each model performed better than the other is shown on the top left side for each dataset. GDD_DTA: 
growing degree days to silk, GDD_DTA growing degree days to anthesis, GDD_ASI growing degree days to anthesis-silking interval, DTS days to silk‑
ing, DTA days to anthesis, ASI anthesis silking interval days, PH plant height, EH ear height, PH-EH PH minus EH, EHdivPH EH divided by PH, PHdivDTR 
PH divided by days to anthesis FLW flag leaf width, LG lodging, GRL grain length, GRW grain weight, 1000GW thousand grain weight, YLD yield, FD 
flowering day, PMD physiological maturity day, WGP whole grain protein, HD heading date Julian, WAX waxiness
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Fig. 4  Importance scores from the LER model using the trait values and the genotypes generated as described in Table 3 based on a standard addi‑
tive GWAS mixed model. The green lines highlight the SNPs that were used to calculate the genetic values. The importance scores and the results 
from the standard GWAS were similar. More SNPs were identified correctly as important by the LER approach

Fig. 5  Additive and two-way interaction importance measures for the first three principal components and the 27 most important SNPs for one 
simulation as described in Table 3. The main effects of the SNPs are displayed on the diagonal and the off-diagonal shows two way interactions. The 
darker cells indicate more important SNPs, or interactions
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region. In particular, the elastic-net algorithm uses a loss 
function that is a weighted version of lasso and ridge-
regression penalties. If all the weight is put on the ridge-
regression penalty, no selection will be applied to the 
input variables. On the other extreme, if all the weight is 
put on the lasso penalty this will give maximal sparsity. 
We have treated this parameter as a hyper-parameter. 
The remaining parameters of the elastic-net regression 
were selected using cross-validation. In some cases, a 
very large rule ensemble is required to obtain a competi-
tive discrimination between signal and background and 
to obtain reliable importance statistics. When the num-
ber of rules extracted from the data is too large to han-
dle then the relationship in Eq. (9) can be used to obtain 
the rule effects. If environmental covariates are observed 
along with the trait values then it is possible to include 
these variables with the SNPs in each region while 
extracting the rules. This will allow environmental main 
effects + gene-by-environment interaction terms to enter 
the model. Variables that measure background genetic 
variability related to the structure of the population can 
be incorporated into the model in the same way. In the 
examples below, we used the first three principal compo-
nents of the marker matrix along with the marker matrix 
to account for the genome-wide structural effects and the 
gene interactions. As mentioned previously, the best set-
tings for the model, as determined by the best generaliza-
tion performance, can be estimated via cross-validation 
or other model selection criteria for each model fitting 
instance. These settings, in turn, might be indicative of 
the trait architecture. For example, increasing the “mean 
depth” parameter in the wheat dataset to allow higher 
order interactions deteriorated the model performance 
and this can be taken as an indication that for this data-
set genetic effects are additive or interactions are of low 
order. Whereas, for the rice dataset, the best settings for 
the model have relatively high “mean depths”, possibly 
indicating that in addition to additive effects, there are 
high levels of gene-by-gene, and gene-by-background 
interactions in this dataset. We also presented accuracy 
results for some other settings of the hyper-parameters of 

the LER algorithm in Additional file 1. The results of the 
simulated association experiment show that the impor-
tance and the interaction scores can be used to identify 
interesting loci. The comparisons with the standard addi-
tive mixed model GWAS showed that the LER methodol-
ogy was superior: it detected loci that were not detected 
by the mixed model and at the same time provided a 
measure of the interactions between different types of 
input variables. We were able to recover most gene-by-
gene and gene-by-background interactions with the LER 
model. We also described how this methodology can be 
used to study other forms of interaction. Finally, we high-
lighted some other strengths that are specific to the LER 
models:

• • The method can incorporate SNP annotations if they 
are used to partition predictors into “regions”.

• • Importance scores for regions, SNPs, and rules are 
available as a model output.

• • The need to impute the SNP data is reduced: the 
model is robust to missing observations in the data-
set.

• • Marker-by-marker interactions and even higher 
order interactions can be captured and interaction 
statistics are also available as a model output.

• • The model can be used to capture gene-by-genetic 
background or gene-by-environment interactions.

Conclusions
In this paper, we analyzed four real datasets over many 
traits, and also provided results from a simulation study. 
For most traits, accuracy gains using the LER model were 
consistent regardless of the hyper-parameter values, e.g. 
several traits for the rice dataset, body weight for the 
mouse dataset, and days to anthesis for the maize data-
set. We hypothesize that the LER model outperforms 
the additive model when the trait architecture involves 
local epistasis and gene–background interactions. For 
instance, the rice dataset has more family structure 
than the wheat dataset and it is reasonable to expect 
more gene-by-genetic background interactions in the 

Table 4  A scenario which shows an interaction pattern between  two markers generated by  a simple rule 
“I(m1 < 2) ∗ I(m2 > 1) → – else +”

The standard multiplicative formulation (m1×m2) cannot adequately represent this interaction and other terms would be needed in the model (additive, 
additive × additive, additive × dominance, dominance × dominance, see factorial model in [59, 60])

Genotype–phenotype Allele coding and m1*m2

m1/m2 BB Bb bb m1/m2 0 1 2

AA + + + 0 0 0 0

Aa – + + 1 0 1 2

aa – + + 2 0 2 4
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former case. This could explain the differences in accu-
racy results between the additive GBLUP model and the 
LER model. We describe a new strategy for incorporating 
genetic interactions into genomic prediction and asso-
ciation models. This strategy results in accurate models, 
sometimes doubling the accuracies that can be obtained 
by a standard additive model.
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