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Abstract 

Background:  Genomic prediction of purebred animals for crossbred performance can be based on a model that 
estimates effects of single nucleotide polymorphisms (SNPs) in purebreds on crossbred performance. For crossbred 
performance, SNP effects might be breed-specific due to differences between breeds in allele frequencies and link-
age disequilibrium patterns between SNPs and quantitative trait loci. Accurately tracing the breed-of-origin of alleles 
(BOA) in three-way crosses is possible with a recently developed procedure called BOA. A model that accounts for 
breed-specific SNP effects (BOA model), has never been tested empirically on a three-way crossbreeding scheme. 
Therefore, the objectives of this study were to evaluate the estimates of variance components and the predictive 
accuracy of the BOA model compared to models in which SNP effects for crossbred performance were assumed to be 
the same across breeds, using either breed-specific allele frequencies (GA model) or allele frequencies averaged across 
breeds (GB model). In this study, we used data from purebred and three-way crossbred pigs on average daily gain 
(ADG), back fat thickness (BF), and loin depth (LD).

Results:  Estimates of variance components for crossbred performance from the BOA model were mostly similar to 
estimates from models GA and GB. Heritabilities for crossbred performance ranged from 0.24 to 0.46 between traits. 
Genetic correlations between purebred and crossbred performance (rpc) across breeds ranged from 0.30 to 0.62 for 
ADG and from 0.53 to 0.74 for BF and LD. For ADG, prediction accuracies of the BOA model were higher than those 
of the GA and GB models, with significantly higher accuracies only for one maternal breed. For BF and LD, prediction 
accuracies of models GA and GB were higher than those of the BOA model, with no significant differences. Across all 
traits, models GA and GB yielded similar predictions.

Conclusions:  The BOA model yielded a higher prediction accuracy for ADG in one maternal breed, which had the 
lowest rpc (0.30). Using the BOA model was especially relevant for traits with a low rpc. In all other cases, the use of 
crossbred information in models GA and GB, does not jeopardize predictions and these models are more easily imple-
mented than the BOA model.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic selection (GS) is more accurate than pedigree-
based selection, and thus was developed for purebred 
(PB) populations of many farm species [1–4]. However, 
many production systems use crossbreeding schemes 
to produce crossbred (CB) individuals for commercial 

production. Crossbreeding in plants is common practice 
in many crops, such as maize. Crossbreeding in animals is 
common practice for pigs and poultry, and, in cattle, the 
use of crosses or composite breeds contributes largely to 
the beef and dairy industry. If selection is based on the 
performance measured on PB individuals, the rate of 
genetic change observed in CB individuals may be reduced 
because of differences in additive variance between PB 
and CB individuals, and because the genetic correlation 
between performance in PB and CB individuals (rpc) is 
lower than 1 [5, 6]. With rpc values of 0.7 or lower, using 
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only PB performance was predicted to yield consider-
ably less genetic progress in CB performance compared 
to using performance of both PB and CB [7, 8]. In pigs, 
rpc lower than 0.7 were reported for daily gain, daily feed 
intake, feed conversion ratio and residual feed intake [9–
11], and also in poultry for egg number [12], and in cat-
tle for weight-related traits [13]. In maize, the correlation 
between PB and CB performance for grain yield (GY) is 
lower than that for grain dry matter content (GDMC), and 
it was observed that models that do not include CB infor-
mation failed to predict the performance of CB for GY but 
for GDMC yielded a high prediction accuracy [14].

With GS, training with CB information is facilitated 
because GS eliminates the disadvantages of having to 
record pedigree data on CB individuals [7]. Moreover, 
GS using CB information could benefit from models that 
estimate the effects on CB performance of markers that 
segregate within the parental breeds, as suggested by 
Dekkers [7], Ibáñez-Escriche et  al. [15], Kinghorn et  al. 
[16] and Christensen et al. [17, 18] in the context of ani-
mal breeding, and by Schrag et al. [14] in the context of 
hybrid performance in maize.

A commonly used GS model, known as genomic best 
linear unbiased prediction (GBLUP) [19], replaces the 
pedigree-based relationship matrix by a genomic rela-
tionship matrix. The values in the genomic relationship 
matrix are a function of allele content and allele frequen-
cies [20]. Consequently, the genomic relationship matrix 
is built under the assumption that all individuals belong 
to the same population, with the same average allele con-
tents. Moreover, GBLUP implicitly assumes a single value 
for the linkage disequilibrium between a single nucleo-
tide polymorphism (SNP) and a quantitative trait locus 
(QTL). When individuals originate from different popu-
lations, as in the crossbreeding context, these assump-
tions are violated because allele frequencies and the 
linkage disequilibrium patterns across the genome differ 
between breeds [21–23]. Models that account for breed-
specific allele frequencies were tested with simulated 
and real data and showed no improvement in prediction 
accuracies [24–26]. Models that, in addition to including 
breed-specific allele frequencies, also account for breed-
specific SNP effects did outperform models in which SNP 
effects were assumed to be the same across breeds. How-
ever, these results were only observed in simulation stud-
ies under some conditions (i.e., low SNP density, large 
training data size, and low breed relatedness) and where 
breed-of-origin of alleles was assumed to be known with-
out error [15, 27]. With real data from a two-way cross-
breeding scheme, Xiang et  al. [28] and Lopes et  al. [29] 
reached different conclusions. When using a model that 
accounted for breed-specific SNP effects compared to a 
model in which SNP effects were assumed to be the same 

across breeds, Xiang et  al. [28] found improved predic-
tion accuracies and reduced bias of prediction, whereas, 
Lopes et  al. [29] found similar prediction accuracies 
between the two models. The benefit of a two-way CB 
is that tracing the breed-of-origin of alleles is relatively 
straightforward. However, many crossbreeding schemes 
are based on a three-way cross, for which tracing the 
breed-of-origin of alleles is considerably more compli-
cated [30]. Recently we have developed a procedure that 
enables breed-of-origin assignment (BOA) of alleles in 
three-way CB animals [31]. BOA allows empirical testing 
of the model that accounts for breed-specific SNP effects 
in real data. Therefore, the objectives of this study were 
to evaluate the estimates of variance components and the 
accuracy of a model that accounts for breed-specific SNP 
effects using information from both PB and three-way 
CB pigs for average daily gain (ADG), back fat thickness 
(BF), and loin depth (LD).

Methods
Data
The pig data consisted of three PB populations: Synthetic 
boar (S), Landrace (LR), and Large White (LW), and a 
three-way CB population: S (LR × LW) or S (LW × LR), 
produced by crossing the above-mentioned PB popu-
lations. The numbers of available genotypes and phe-
notypes per trait and per population are in Table  1. All 
pigs were genotyped using one of the three following 
SNP panels: Illumina PorcineSNP60.v2 BeadChip (60 K.
v2), Illumina PorcineSNP60 BeadChip (60  K), or Illu-
mina PorcineSNP10 BeadChip (10  K). Pigs genotyped 
with the 60 K or 10 K chips were imputed to the 60 K.
v2 panel using FImpute Version 2.2 software [32]. SNP 
quality control and imputation were applied on the same 
dataset in a previous study [31], in which more details are 
provided. The final SNP set for subsequent analyses con-
sisted of 52,164 SNPs. Phenotypes for ADG (g/day), BF 
(mm), and LD (mm), were measured for most of the PB 
and CB pigs. ADG for PB was calculated as the difference 
of on-test body weight measured on average at 60  days 

Table 1  Number of  genotypes and  phenotypes available 
for each trait and population

S Synthetic boar, LR Landrace, LW Large White, CB three-way crossbred pigs

ADG average daily gain, BF back fat thickness, LD loin depth

Population Genotypes ADG BF LD

S 2733 2575 2616 2595

LR 4148 2333 3605 2386

LW 7103 5294 6769 5469

CB 1706 1675 1676 1681

Total 15,690 11,877 14,666 12,131
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of age and off-test body weight measured on average at 
173  days of age. ADG for CB was calculated as the dif-
ference of on-test body weight measured on average at 
70 days of age and body weight at the end of the finish-
ing period, which was on average 120 kg. BF and LD for 
PB were measured on average at 173  days of age using 
an ultrasound instrument, while BF and LD for CB were 
measured on the carcass after slaughter using a probe, 
named “capteur gras maigre” (CGM; Sydel, France). For 
all phenotyped pigs, four generations of pedigree infor-
mation were included.

Analyses
GBLUP model with breed‑specific partial relationship 
matrices (BOA model)
To account for the breed-specific effect of SNPs, the fol-
lowing 4-trait animal model with three breed-specific 
partial relationship matrices (G(S), G(LR) and G(LW) was 
fitted (BOA model):

where yS, yLR, yLW, and yCB are the vectors of the phe-
notypes for S, LR, LW, and CB pigs, respectively; bS, bLR, 
bLW, and bCB represent the vectors of fixed effects (listed 
in Table 2) and XS, XLR, XLW, and XCB are the respective 
incidence matrices relating pig records to fixed effects; 
uS, uLR, uLW, and uCB represent the vectors of random 
common litter effects, and WS, WLR, WLW, and WCB are 
the respective incidence matrices relating pig records to 
litter effects; aS, aLR, and aLW, are the vectors of additive 
genetic effects in PB, g(S)CB, g(LR)CB , and g(LW)

CB  are the vectors 
of the additive genetic effect of PB gametes in CB, and ZS, 
ZLR, ZLW, and ZCB are the respective incidence matrices. 
Because each model was run for each trait and only pigs 
with phenotypes were included, Z incidence matrices 
relating pig records to additive genetic effects were iden-
tity matrices when variance components were estimated. 
Finally, eS, eLR, eLW, and eCB represent the vectors of 
random residual effects. The variance–covariance of the 
common litter effect and residual effect were:

yS = XSbS +WSuS + ZSaS + eS,

yLR = XLRbLR +WLRuLR + ZLRaLR + eLR ,

yLW = XLWbLW +WLWuLW + ZLWaLW + eLW ,

yCB = XCBbCB +WCBuCB + ZCBg
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The variance–covariance of additive genetic effect for 
breed S origin was:

where S pigs have additive effects (i.e. breeding values), aS 
for PB performance and a(S)CB for CB performance. The CB 
pigs have additive effects from the breed S gametes, g(S)CB 
for CB performance and gS for PB performance. This last 
effect, gS, is an artificial random vector that is added to be 
able to define the variance–covariance of additive genetic 
effects with the above Kronecker product, but does not 
have practical relevance. The matrix G(S) is a breed-spe-
cific partial relationships matrix for breed S which con-
tains four blocks, one for within S pigs (GS,S), two for S 
with CB pigs (G(S)

S,CB and G(S)
CB,S), and one for within CB 

pigs (G(S)
CB,CB).

The variance–covariance structures for the origin of 
breeds LR and LW are defined similarly, and the three 
variance–covariance structures are assumed independ-
ent, i.e. no covariances are considered between S, LR, and 
LW effects [18]. There are six genetic variance compo-
nents, two for each breed-of-origin, and three covariance 
components, one for each breed-of-origin. To construct 
the three breed-specific partial relationship matri-
ces, G(S) , G(LR), and G(LW), we used the breed-of-origin 
of phased alleles in CB pigs. Then, the breed-specific 
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Table 2  Fixed effects used in  the GBLUP models for  aver-
age daily gain (ADG), back fat thickness (BF), and  loin 
depth (LD), for purebred (PB) (i.e. S, LR, LW) and three-way 
crossbred (CB) pigs

ba, bb, bc, are regression coefficients for birth weight, off-test BW, and hot carcass 
weight, respectively

Trait Population Fixed effects

ADG PB farm_breed_sex + ba × birth weight

CB trial + farm_sex + ba × birth weight

BF, LD PB farm_breed_sex+ bb × off_test BW

CB trial + farm_sex+ bc × hot carcass weight
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partial relationship submatrices are defined as, e.g. breed 
S origin:

where MS is a matrix containing breed-specific allele 
content for breed S pigs (coded as 0, 1, or 2), MCB is a 
matrix containing breed-specific allele content for CB 
pigs (coded as 0, or 1), alleles that were not assigned a 
breed-of-origin were set to missing, pS is the vector of 
breed S specific frequencies of the counted allele (psj ). 
psj was calculated across S and CB pigs by counting the 
occurrences of alleles originating from the S breed and 
coded as 1, across the S breed and in CB, divided by the 
total number of S alleles in the S breed and CB on locus 
j. DS is diagonal with DS

jj =
1

2pSj

(

1−pSj

). N  is the number of 
SNPs.

The breed-specific partial relationship submatrices 
G(LR) and G(LW) are defined similarly to G(S). However, 
the entries of the MCB matrix containing the breed-spe-
cific allele content for CB pigs are set to a missing value if 
the origin of the allele corresponds to the other maternal 
line, and effectively does not contribute to the breed-spe-
cific partial relationship matrix.

Assigning breed‑of‑origin to alleles in crossbreds
To infer the breed-of-origin of the alleles in CB pigs, we 
used the BOA approach that was developed by Vanden-
plas et al. [31]. It consists of three steps: (1) phasing the 
haplotypes of both PB and CB pigs with AlphaPhase1.1 
software [33], (2) determining the unique haplotypes 
among the PB, and (3) assigning the breed-of-origin 
for each allele carried on the haplotypes of CB. This 
approach was applied to the same dataset in a previous 
study [31]. On average, 95.2% of the alleles of the three-
way CB pigs were assigned a breed-of-origin. These 
alleles with their assigned breed-of-origin were used to 
build the breed-specific partial relationship matrices. 
Alleles that were not assigned a breed-of-origin were set 
to missing, and effectively did not contribute to any of the 
breed-specific partial relationship matrices.

GBLUP model with the genomic relationship matrix
For comparison to the BOA model, the following 4-trait 
animal model was fitted (G model):
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yS = XSbS +WSuS + ZSaS + eS,

where vectors and matrices are defined as in the BOA 
model, with the only difference being that the additive 
genetic effect in CB pigs was defined only by one vector, 
aCB. Therefore, the variance–covariance matrix of genetic 
effects was:

This model was implemented using two different 
genomic relationship matrices (G) as explained in the 
next sections.

Genomic relationship matrix using allele frequencies 
across all genotyped pigs (GA matrix)
The GA matrix was constructed using the second method 
in VanRaden [20]:

where M is a matrix containing SNP genotypes for each 
pig (coded as 0, 1, or 2), p is the vector of the frequencies 
of the counted allele (pj), calculated across the genotyped 
population, D is diagonal with Djj =

1
pj(1−pj)

, and N  is the 
number of SNPs.

Genomic relationship matrix using breed‑specific allele 
frequencies (GB matrix)
To account for population structure, we also used a 
genomic relationship matrix based on genotypes cen-
tered and scaled by breed-specific allele frequencies (GB):

where each pB is the vector of the frequencies of the 
counted allele (pBj). pBj was obtained by summing the 
contribution of each pure breed j and the weighted con-
tribution of the CB. The weight was 0.5 for S, and 0.25 for 
LR and LW. DB is diagonal with DB

jj =
1

p(1−pBj)
.

Estimation of variance components and BLUP
Implementation of the aforementioned GBLUP models 
required estimates for all variance components involved. 
Variance components were estimated for each of the 
three models using the ASReml software [34]. Instead 
of one 4-trait multivariate model, three bivariate models 
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were fitted to overcome workspace memory limitation 
of the software. Each analysis included PB of one of the 
three breeds and all CB. As a consequence, genetic co-
variances between breeds were not estimated. For the 
BOA model, these genetic co-variances are not consid-
ered and thus are effectively equal to 0. For the other 
two models, we also assumed that these co-variances 
were not significant, and therefore, we set them to 0 in 
the subsequent BLUP analyses. Variance components 
of the bivariate models were combined to obtain the 
full variance–covariance matrices for the 4-trait model. 
The variance–covariance matrices were combined by 
averaging the three CB variance components estimated 
in each of the bivariate models. If necessary, the com-
bined variance–covariance matrices were bended to 
make them positive definite [35]. Bending changed the 
variance–covariance components on average by 7.5% 
(0.3 to 18.5%). BLUP for the three models were obtained 
using the MiXBLUP software [36].

Cross‑validation
The accuracy of EBV of PB pigs for CB performance from 
the three models was evaluated as the average accuracy 
obtained from fourfold cross-validation. Because of dif-
ferent degrees of relationship between PB and CB, gen-
otyped S, LR, or LW pigs were first divided into four 
mutually exclusive clusters, using the K-means clustering 
method applied to a dissimilarity matrix computed from 
elements of the GA matrix [37]. Then, each CB pig was 
assigned to the PB cluster with the closest relationship 
based on the GA matrix. For the maternal breed LW, the 
CB pigs were not very evenly distributed across the clus-
ters, with one cluster including most of the CB. There-
fore, for this breed, the cluster with the largest number 
of CB pigs was randomly split into four groups and each 
of those groups was joined with one of the other clusters.

In each training analysis, the data excluded PB and CB 
pigs from one fold to train on the remaining three folds 
to predict EBV for CB performance of the excluded PB 
pigs (validation set). This resulted in every PB pig hav-
ing EBV for CB performance that were obtained with-
out using performance of the most closely-related CB 
pigs for training. Thus, the information coming from the 
most closely-related CB pigs could be used for validation. 
The number of pigs in the validation and training sets for 
each of the folds of the cross-validation and for each trait 
are in Tables 3, 4 and 5 for S, LR, and LW, respectively.

Validation set
The PB pigs cannot have an own performance for CB 
performance, and also in our data, they do not have 

Table 3  Cross-validation strategy for  crossbred perfor-
mance of Synthetic boar (S)

Numbers of individuals for Synthetic boar (S), three-way crossbred (CB) and 
extra three-way crossbred pigs (CB-extra) in the training and validation sets per 
trait, i.e. average daily gain (ADG), back fat thickness (BF), and loin depth (LD)

* Three-way crossbred pigs with only phenotypic information, and no 
genotyping

Fold Training Validation

S CB S CB CB-extra*

ADG

1 2115 1535 460 140 199

2 2119 1341 456 334 268

3 1895 605 680 1070 297

4 1596 1544 979 131 145

BF

1 2132 1536 484 140 188

2 2144 1344 472 332 246

3 1932 604 684 1072 289

4 1640 1544 976 132 145

LD

1 2128 1541 467 140 200

2 2132 1348 463 333 272

3 1921 605 674 1076 299

4 1604 1549 991 132 145

Table 4  Cross-validation strategy for  crossbred perfor-
mance of Landrace (LR)

Numbers of individuals for Landrace (LR), three-way crossbred (CB), and extra 
three-way crossbred pigs (CB-extra) in the training and validation sets per trait, 
i.e. average daily gain (ADG), back fat thickness (BF), and loin depth (LD)

* Three-way crossbred pigs with only phenotypic information, no genotyped

Groups Training Validation

LR CB LR CB CB-extra*

ADG

1 1584 1564 748 111 456

2 1825 1523 507 152 465

3 1762 1531 570 144 456

4 1825 407 507 1268 471

BF

1 2829 1565 775 111 463

2 2492 1523 1112 153 472

3 3002 1532 602 144 463

4 2489 408 1115 1268 478

LD

1 1631 1570 754 111 463

2 1891 1528 494 153 472

3 1823 1537 562 144 463

4 1810 408 575 1273 478
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large offspring groups, which would allow to compute 
a phenotype as average offspring performance. There-
fore, we calculated deregressed proofs (DRP) for PB 
pigs within the validation sets to validate the predic-
tions of our models. For this, first we obtained EBV 
from the G model with a pedigree-based relationship 
matrix. This resulted in an EBV for CB performance 
for each PB pig. The EBV were estimated based on 
performance of the CB pigs assigned to each of the 
validation folds (Tables 3, 4, and 5 for S, LR, and LW, 
respectively). Phenotype information was also avail-
able for an additional 501 CB pigs (CB-extra) that were 
not genotyped. These records were used in each of 
the four validation folds (Tables 3, 4, 5 for S, LR, and 
LW, respectively). Within each validation fold, the 
EBV of PB pigs for CB performance were then der-
egressed according to Calus et  al. [38]. The deregres-
sion involved removal of all effects of relatives in the 
same validation set, and correction for regression to 
the mean, to obtain a more accurate estimate of the 
expected phenotype. In addition, a weighting factor 
(w ) was estimated for each DRP value based on the 
reliability of the calculated DRP. These w are the effec-
tive record contributions [39], and reflect the amount 
of information in the DRP contributed by the animal 
itself, correcting for any information of the relatives 
that contributed to its EBV before deregression.

Predictive ability
Accuracies of the BOA and G models were calculated as 
the weighted correlation between the DRP and the EBV 
of PB pigs for CB performance, where the weighting fac-
tor w was used to account for differences in the amount 
of available information on relatives to estimate DRP. 
The standard error (SE) of the correlations were approxi-
mated as (1− r2)/

√
N, were r is the accuracy of the 

model, and N is the number of validation animals [40].

Results
Genotyped population and relationship matrices
The three breeds, S, LR, and LW, were clearly different 
populations as shown in Fig.  1 based on the first two 
principal components of the GA matrix. The CB popula-
tion appeared intermediate among the PB populations. 
The divergence among the three populations estimated 
with Weir and Cockerham’s FST [41], were equal to 0.17 
between S and LR, 0.12 between S and LW, and 0.14 
between LW and LR, which indicated that they are dis-
tantly-related breeds.

The relationships between breeds, calculated with the 
GA matrix were mainly negative (Table  6), with average 
relationships between breeds ranging from −  0.13 to 
− 0.07. When using the GB matrix, the average relation-
ships between all breeds are zero by definition. When 
using breed-specific partial relationship matrices (G(S), 
G(LR) and G(LW)), only the relationships based on com-
mon alleles originating from the same breed were consid-
ered and, consequently no relationships were estimated 

Table 5  Cross-validation strategy for  crossbred perfor-
mance of Large White (LW)

Numbers of individuals for Large White (LW), three-way crossbred (CB), and extra 
three-way crossbred pigs (CB-extra) in the training and validation sets per trait, 
i.e. average daily gain (ADG), back fat thickness (BF), and loin depth (LD)

* Three-way crossbred pigs with only phenotypic information, no genotyped

Groups Training Validation

LR CB LR CB CB-extra*

ADG

1 3628 1193 1666 482 468

2 3612 1269 1682 406 468

3 4008 1111 1286 564 468

4 4634 1452 660 223 468

BF

1 4870 1191 1899 485 475

2 4954 1271 1815 405 475

3 4381 1113 2388 563 475

4 6102 1453 667 223 475

LD

1 3759 1196 1710 485 475

2 3678 1275 1791 406 475

3 4162 1114 1307 567 475

4 4808 1458 661 223 475

Fig. 1  The two first principal components (PC) from the genomic 
relationship matrix between the different populations. Synthetic boar 
(S), Landrace (LR), Large White (LW), and three-way crossbred (CB) 
pigs. Each circle (o) represents a pig
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between breeds. For CB pigs, the diagonal elements of 
the GA and GB matrices had an average of 0.96 and 0.94, 
respectively. For the G(S), G(LR) and G(LW) matrices, as 
they are partial relationship matrices, the diagonal ele-
ments for CB pigs had averages of 0.49, 0.32, and 0.30 
for G(S), G(LR) and G(LW), respectively. These averages are 
close to the expected values, i.e. 0.50 for the S breed and 
0.25 for the LR and LW breeds.

Variance components, heritabilities, and genetic 
correlations
Estimated variance components for ADG, BF, and LD 
using the BOA model with the G(S), G(LR) and G(LW) 
matrices, the G model with the GA matrix (GA model), 
and the G model with GB matrix (GB model) are in 
Table  7. The standard errors of the estimated variance 
components in Table 7 are provided in Additional file 1: 
Table S1. Regardless of the model and trait, the PB addi-
tive genetic variance estimated for the maternal breeds, 
i.e. LR and LW, were very similar. For the maternal 
breeds, CB additive genetic variance was larger than PB 
additive genetic variance for all traits. For the paternal 
breed, the opposite was observed, i.e. CB additive genetic 
variance was smaller than PB additive genetic vari-
ance, for all traits except BF. Estimates of CB heritability 
tended to be higher than estimates of PB heritability for 
all traits except LD.

A comparison between models showed that PB and CB 
additive genetic variances for the maternal breeds were 
similar between the GA and GB models. For the paternal 
breed S, compared to the GB model, the GA model esti-
mated a larger PB additive genetic variance, and smaller 
CB additive genetic variance. Estimated PB additive 
genetic variances with the BOA model were similar to 

those obtained with the GA or GB models and the esti-
mated CB additive genetic variances with the BOA 
model, on average across the three breeds, were larger 
than those obtained with the GA or GB models. The esti-
mates of PB and CB heritability were similar across mod-
els, while estimates obtained with the BOA model tended 
to be slightly lower and those with the GB model tended 
to be slightly higher than with the GA model. The genetic 
correlations for traits between PB and CB pigs estimated 
with the BOA model were generally similar to those of 
the GA and GB models, except for the genetic correlation 
between LR and CB pigs for ADG that was much higher 
than that estimated with the GA and GB models. The 
genetic correlations between PB and CB pigs estimated 
with the GA or GB models were similar. In general, the SE 
of PB additive genetic variances and heritabilities were 
similar across models, although the SE of the three CB 
additive genetic variances estimated with the BOA model 
were much larger than the SE of the single CB additive 
genetic variance estimated with the GA or GB models. 
The SE of the estimated genetic correlations were rela-
tively large, ranging from 0.10 to 0.29, across all models 
and traits.

For the BOA model, the CB variance for litter effect 
was about three times larger than that obtained with the 
GA or GB models. Estimates of the CB residual variance 
were also slightly larger when using the BOA model com-
pared to the GA and GB models. Estimates of PB variance 
for litter and residual effects by the GA and GB models 
were similar among breeds. Estimates of CB variance for 
litter and residual effects by the GA and GB models were 
similar among the maternal breeds, while for breed S, 
the CB variance for litter and residual effects was lower 
with the GA model than with the GB model. In summary, 

Table 6  Descriptive statistics for relationship between populations based on different genomic relationship matrices

a  G(S) = partial relationship matrix for breed Synthetic boar (S); G(LR) = partial relationship matrix for breed Landrace (LR); G(LW) = partial relationship matrix for breed 
Large White (LW); GA = genomic relationship matrix by allele frequencies obtained across the genotyped population; GB = genomic relationship matrix by breed-
specific allele frequencies

Relationship between Matrixa Mean Median Min Max SD

S-LR GA − 0.13 − 0.13 − 0.22 0.00 0.02

GB 0.00 0.00 − 0.09 0.09 0.02

S-LW GA − 0.07 − 0.07 − 0.18 0.12 0.02

GB 0.00 0.00 − 0.11 0.11 0.02

LR-LW GA − 0.13 − 0.13 − 0.23 0.16 0.02

GB 0.00 0.00 − 0.13 0.23 0.02

CB (diagonal) G
(S) 0.49 0.49 0.40 0.80 0.04

G
(LR) 0.23 0.23 0.02 0.40 0.04

G
(LW) 0.23 0.23 0.07 0.39 0.04

GA 0.96 0.95 0.88 1.07 0.03

GB 0.94 0.93 0.86 1.08 0.03
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estimated variance components were mostly similar 
across models, apart from the CB litter variance that was 
considerably larger with the BOA model compared to the 
other two models.

Predicting breeding values of PB pigs for CB performance 
with different models
For each breed S, LR, and LW, four validation groups 
were formed to perform the 4-fold cross-validation. 

Figure  2 represents the first two principal components 
from the GA matrix and shows that the grouping for the 
cross-validation was done correctly. The first two princi-
pal components explained 6.3% of the variability among S 
pigs, 8.8% among LR pigs and 4.65% among LW pigs.

Accuracies of the three models for the estimated breed-
ing values of S pigs for CB performance are in Table  8. 
For ADG, the BOA model yielded slightly better accu-
racies than the GA and GB models. The opposite was 

Table 7  Additive genetic variance (σ 2
a), litter variance (σ 2

u), residual variance (σ 2
e), and heritabilities for each breed for PB 

and  CB performance, and  genetic correlation between  purebred and  CB pigs (rPC), estimated for  each trait using the 
BOAa, GA

b, and GB
c models

S Synthetic boar, LR Landrace, LW Large White, CB three-way crossbred pigs

ADG average daily gain, BF back fat thickness, LD loin depth
a  BOA model, model with breed-specific relationship matrices
b  GA model, model with genomic relationship matrix by allele frequencies obtained across the genotyped population
c  GB model, model with genomic relationship matrix by breed-specific allele frequencies

* Average from the three bivariate models

** (0.5σ2aS + 0.25σ2aLR + 0.25σ2aLW)/(0.5σ2aS + 0.25σ2aLR + 0.25σ2aLW + σ2uCB* + σ2eCB*)

Model Breed σ
2
aPB

σ
2
uPB

σ
2
ePB

h
2
PB

σ
2
aCB

σ
2
uCB * σ

2
eCB * h

2
CB

rpc

ADG

BOA S 2699 2925 6124 0.23 2316 853 4192 0.34** 0.50

LR 2165 2291 3778 0.26 3566 0.62

LW 2123 1595 4602 0.26 2258 0.57

GA S 3386 2850 6068 0.28 2053* 258 3576 0.35 0.52

LR 2461 2282 3718 0.29 0.31

LW 2336 1563 4595 0.28 0.61

GB S 2775 2846 6082 0.24 2261* 262 3592 0.37 0.52

LR 2248 2287 3703 0.27 0.30

LW 2154 1640 4568 0.26 0.59

BF

BOA S 0.82 0.55 1.27 0.31 1.90 0.88 3.96 0.38** 0.74

LR 1.09 0.60 1.73 0.32 3.74 0.67

LW 1.33 0.86 1.67 0.34 4.16 0.58

GA S 1.18 0.55 1.26 0.40 2.18* 0.33 3.32 0.37 0.73

LR 1.38 0.59 1.71 0.38 0.72

LW 1.57 0.85 1.64 0.39 0.65

GB S 0.98 0.54 1.26 0.35 2.40* 0.34 3.34 0.39 0.69

LR 1.26 0.59 1.70 0.35 0.70

LW 1.44 0.85 1.64 0.37 0.62

LD

BOA S 10.59 6.00 8.43 0.42 11.59 3.20 31.45 0.24** 0.53

LR 5.72 3.00 6.65 0.37 7.23 0.58

LW 6.04 3.55 6.93 0.37 12.86 0.53

GA S 12.78 5.93 8.41 0.47 9.05* 0.11 28.89 0.24 0.57

LR 6.58 2.98 6.60 0.41 0.57

LW 6.82 3.56 6.89 0.40 0.68

GB S 10.58 5.87 8.33 0.43 10.00* 0.05 28.89 0.26 0.55

LR 5.82 2.97 6.57 0.38 0.56

LW 6.09 3.55 6.86 0.37 0.62
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observed for BF and LD, where the GA and GB models 
yielded slightly better accuracies than the BOA model. 
Accuracies of the three models for the estimated breed-
ing values of LR pigs for CB performance are in Table 9. 
For ADG, the BOA model yielded higher accuracies than 
the GA and GB models. For BF and LD, there was no dif-
ference in accuracies between the three models. Accura-
cies of the three models for the estimated breeding values 
of LW pigs for CB performance are in Table 10. The trait 
ADG is not included, because the reliabilities of the EBV 
of LW pigs within the validation groups for CB perfor-
mance for this trait were too low to be used for proper 
validation. Similar to the results for the LR breed, there 
was no difference in accuracies between the three mod-
els for the traits BF and LD. In general, accuracies from 
models GA and GB were similar.

Discussion
Properties of the relationship matrices
Genomic relationships within and across populations are 
defined differently depending on how the genetic covari-
ance between individuals is calculated. Using across-
breed allele frequencies when the correlations of allele 
frequencies between breeds differ from 1, could lead 
to genomic relationships between animals of different 
breeds that are on average negative [26], as observed for 
the GA matrix. This was not the case for the GB matrix, in 
which the genomic relationships between animals of dif-
ferent breeds was on average 0, as expected for distantly-
related breeds.

Diagonal elements (D) from a pedigree-based relation-
ship matrix have a value of 1 when there is no inbreeding. 
Because a genomic relationship matrix is built to resem-
ble a pedigree-based relationship matrix and the current 
genotyped population is considered the base population 

Fig. 2  The two first principal components (PC) from the genomic relationship matrix between the four validation groups of Synthetic boar (S) pigs 
(a), Landrace (LR) pigs (b) and Large White (LW) pigs (c). Each circle (o) represents a pig

Table 8  Accuracies* of BOAa, GA
b, and GB

c models calculated 
for  each of  the four folds of  cross-validation for  estimat-
ing breeding values of  the paternal breed Synthetic boar 
pigs for crossbred performance for each trait, and average 
weighting factor (w) of  the calculated DRP per  validation 
fold

ADG average daily gain, BF back fat thickness, LD loin depth

* Accuracies measured as weighted correlation between DRP and EBV of S pigs 
for crossbred performance. Approximate standard errors SE, computed as  
(1−r2)/N √ (1−r2)/N, were equal to 0.023 to 0.024 for the mean accuracies across 
the folds, for all combinations of traits and methods.
a  BOA model, model with breed-specific relationship matrices
b  GA model, model with genomic relationship matrix by allele frequencies 
obtained across the genotyped population
c  GB model, model with genomic relationship matrix by breed-specific allele 
frequencies

Folds w BOA GA GB

ADG

1 0.49 0.055 0.055 0.057

2 0.12 0.128 0.111 0.094

3 0.21 0.170 0.156 0.152

4 0.07 0.063 0.084 0.082

Mean 0.104 0.102 0.096

BF

1 0.31 0.168 0.168 0.162

2 0.39 0.201 0.157 0.159

3 0.52 0.191 0.294 0.280

4 0.25 0.150 0.179 0.177

Mean 0.178 0.199 0.195

LD

1 0.55 0.204 0.234 0.236

2 0.67 0.212 0.209 0.207

3 0.88 0.127 0.140 0.134

4 0.45 0.088 0.135 0.142

Mean 0.158 0.179 0.180
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[20], the average D from a genomic relationship matrix 
is expected to be 1, as we observed for the GA and GB 
matrices. To calculate the partial relationship matrices, 
G(S), G(LR) and G(LW), the D for CB pigs were expected to 
be 0.5 for G(S), and 0.25 for G(LR) and G(LW), expressing 
the proportion of the genome in CB pigs contributed by 
each breed S, LR, and LW, respectively. Using all 52,164 
SNPs, Fig. 3 shows how the diagonal elements among CB 
pigs from the G(LR), and G(LW) matrices increased as the 
percentage of alleles of CB pigs assigned to the respective 
maternal breed as breed-of-origin increased.

Variance components across models
Estimating variance components for the 4-trait multivari-
ate models was not possible due to workspace memory 
limitation when trying to run the full BOA model with the 
three partial relationship matrices or the G models with 
the relationship matrices containing the four populations. 

Therefore, for the G models, the construction of a full 
variance–covariance matrix based on sub-models was 
required, in this case three bivariate models. This proce-
dure of constructing a full variance–covariance matrix is 
often used in genetic evaluation [35]. The combined vari-
ance–covariance matrices in the GA and GB models for BF 
were considerably bended (variance components changed 
up to 10.9%) and this may have affected the results. The 
combined variance–covariance matrix in the GA model 
for LD was also bended, but, in this case, the compo-
nents changed only up to 2.5%. For ADG, no bending of 
the variance–covariance matrix was required for any of 
the models. An advantage of the BOA model, since vari-
ance–covariance matrices are by breed, is that it allows the 
estimates of the CB additive genetic variance contributed 
by the different parental breeds to differ. With the GA and 
GB models, these differences cannot be observed because 
there is only one estimate for CB additive genetic vari-
ance across the three breeds. A disadvantage of the BOA 
model is that estimates must be based on half the informa-
tion (for the paternal breed) or on a quarter of the infor-
mation (for the maternal breeds) compared to estimates 
from the GA or GB models. Therefore, the SE of CB addi-
tive genetic variances estimated with the BOA model were 

Table 9  Accuracies* of  BOAa, GA
b, and GB

c models calcu-
lated for each of the four folds of cross-validation for esti-
mating breeding values of  the maternal breed Landrace 
pigs for crossbred performance for each trait, and weight-
ing factor (w) of the calculated DRP

ADG average daily gain, BF back fat thickness, LD loin depth

* Accuracies measured as weighted correlation between DRP and EBV of LR pigs 
for crossbred performance. Approximate standard errors SE, computed as  
(1−r2)/N √ (1−r2)/N, were equal to 0.023 to 0.024 for the mean accuracies across 
the folds, for all combinations of traits and methods.
a  BOA model, model with breed-specific relationship matrices
b  GA model, model with genomic relationship matrix by allele frequencies 
obtained across the genotyped population
c  GB model, model with genomic relationship matrix by breed-specific allele 
frequencies

Folds w BOA GA GB

ADG

1 0.20 0.133 0.106 0.099

2 0.23 0.190 0.095 0.111

3 0.21 0.159 0.106 0.106

4 0.22 0.094 0.007 0.014

Mean 0.144 0.079 0.083

BF

1 0.09 0.185 0.169 0.171

2 0.07 0.186 0.210 0.199

3 0.10 0.223 0.216 0.215

4 0.09 0.144 0.149 0.141

Mean 0.184 0.186 0.181

LD

1 0.43 0.224 0.206 0.203

2 0.47 0.085 0.107 0.107

3 0.45 0.239 0.232 0.228

4 0.47 0.170 0.208 0.207

Mean 0.179 0.188 0.186

Table 10  Accuracies* of  BOAa, GA
b, and  GB

c models calcu-
lated for each of the four folds of cross-validation for esti-
mating breeding values of the maternal breed Large White 
pigs for crossbred performance for each trait, and weight-
ing factor (w) of the calculated DRP

ADG average daily gain, BF back fat thickness, LD loin depth

* Accuracies measured as weighted correlation between DRP and EBV of LR pigs 
for crossbred performance. Approximate standard errors SE, computed as  
(1−r2)/N √ (1−r2)/N, were equal to 0.023 to 0.024 for the mean accuracies across 
the folds, for all combinations of traits and methods.
a  BOA model, model with breed-specific relationship matrices
b  GA model, model with genomic relationship matrix by allele frequencies 
obtained across the genotyped population
c  GB model, model with genomic relationship matrix by breed-specific allele 
frequencies

Folds w BOA GA GB

BF

1 0.21 0.217 0.221 0.216

2 0.13 0.095 0.094 0.089

3 0.28 0.190 0.175 0.170

4 0.23 0.219 0.242 0.243

Mean 0.180 0.183 0.180

LD

1 0.62 0.235 0.234 0.232

2 0.38 0.103 0.126 0.126

3 0.74 0.226 0.229 0.228

4 0.64 0.297 0.318 0.318

Mean 0.215 0.227 0.226
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much larger than the SE of CB additive genetic variances 
estimated with the GA and GB models. With the BOA 
model, we could observe that estimates of CB additive 
genetic variance differed between the three breeds for all 
traits. This means that rpc should also be interpreted sepa-
rately by breed. The estimates of rpc differed slightly across 
models. In theory, the CB additive variance components 
estimated with the BOA model comprises the variation 
observed in CB pigs due only to the alleles coming from 
the analyzed breed. Therefore, differences in rpc estimated 
with the GA or GB model rather than the BOA model were 
expected. For instance, for ADG, the rpc estimated with the 
BOA model for S and LW were slightly smaller than those 
estimated with the GA and GB models. However, the rpc 
estimated with the BOA model for LR was twice as high 
compared to that of the other two models. One explana-
tion is that a large part of the CB additive variance can 
come mainly from variation observed among the alleles 
originating from a specific breed and this is not captured 
when all alleles are assumed to have the same origin.

In the literature, rpc for production traits have been 
calculated from pedigree information only [6, 42] and 
vary greatly, but on average they are higher than our 
estimates, probably because the breeds were different 
or the estimates were an average across different breeds. 
In general, the investigated traits showed a moderate rpc 
indicating that using CB information together with PB 
information in the reference population might be benefi-
cial for selection of PB pigs for CB performance. Using 

CB information is expected to be most important for 
combinations of trait and breed for which rpc is low, for 
instance for ADG in breed LR.

From the estimates of the BOA model, we observed 
that CB litter effect and residual variance were much 
larger than those obtained with the GA or GB models. 
Because the genotypes of only one breed at a time were 
used in the bivariate BOA model, the litter and residual 
effect variance in the BOA model likely absorbed the 
variance coming from the genetic relationships from the 
breeds that were absent in the model. To investigate the 
impact of these possibly inflated litter and residual vari-
ances, we tried to correct this by setting the CB litter 
effect and residual variance of the BOA model equal to 
the average estimates from the GA and GB models. Using 
these new variance estimates did not affect the accuracies 
of the BOA model compared to the GA and GB models 
(results not shown).

Predictive ability across models
The three breeds used in this study are distantly related 
and correlations between breed-specific allele frequen-
cies were low: 0.31 for breeds S and LR, 0.54 for breeds S 
and LW, and 0.39 for breeds LR and LW. However, taking 
population structure into account by accounting for dif-
ferent allele frequencies in the three different breeds (GB 
model) did not improve the accuracy for predicting EBV 
compared with using allele frequencies obtained across 
genotyped populations (GA model). In a study with CB 

Fig. 3  Relation between percentage of assigned alleles to a breed-of-origin and diagonal elements of partial relationship matrices. a Observed 
percentage of assigned alleles of crossbred pigs to Landrace (LR) as breed-of-origin on the y-axis compared to the diagonal elements of the G(LR) 
partial relationship matrix for the same crossbred pigs on the x-axis. b Observed percentage of assigned alleles of crossbred pigs to Large White 
(LW) as breed-of-origin on the y-axis compared to the diagonal elements of the G(LW) partial relationship matrix for the same crossbred pigs on the 
x-axis
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sheep, Moghaddar et al. [25] reported limited impact on 
prediction accuracy when adjusting for breed-specific 
allele frequency, also when differences in allele frequen-
cies between breeds were large. Makgahlela et  al. [24] 
and Lourenco et  al. [26] also observed no advantage of 
using breed-specific allele frequencies for constructing 
the relationship matrix, even when this led to observ-
able changes in the coefficients of the relationship matrix. 
Although correlations between breed-specific allele fre-
quencies were low, correlations between these breed-
specific allele frequencies and the across-breed frequency 
were relatively high, simply because the breed-specific 
allele frequencies are included in the across-breed allele 
frequency. In our study, the correlations between the 
breed-specific allele frequencies and the across-breed 
frequency were equal to 0.74, 0.68, and 0.89, for breeds S, 
LR, and LW, respectively. The correlation between breed 
LW allele frequency and the across-breed frequency 
was higher than the others, because the LW breed has 
the largest number of pigs (Table  1), therefore, it has a 
larger contribution to the across-breed allele frequencies 
across breeds. The correlation between crossbred allele 
frequency and the across-breed frequency was equal to 
0.93. Therefore, using breed-specific or across-breed fre-
quencies in the calculation of the relationship coefficient 
between a PB and CB pig will have little effect on pre-
dicted EBV of PB for CB performance.

In the GA and GB models, genetic co-variances between 
breeds were assumed to be zero. To test if this was a cor-
rect assumption, covariances between PB lines were also 
estimated by fitting three additional bivariate models 
(one for each pair of PB) for the trait ADG using the GA 
model. Variance components of the six bivariate models 
were combined to obtain the full variance–covariance 
matrices for the 4-trait model. This combination was 
performed by averaging the three variance components 
estimated for each population, i.e. S, LR, LW and CB. 
In this case, it was not necessary to bend the combined 
variance–covariance matrix to make it positive defi-
nite. The genetic correlations between PB performance 
for ADG were 0.13 (±  0.24) between S and LR, 0.39 
(±  0.14) between S and LW, and 0.36 (±  0.16) between 
LR and LW. These estimates were in line with estimated 
values of 0.23 and 0.30 between a Danish Landrace and 
Danish Yorkshire population [43]. Moreover, for breeds 
S and LR, the value of zero was within one SD. Accura-
cies of the GA model taking into account the covariance 
between PB for estimating breeding values of S pigs for 
CB performance, were similar to prediction accuracy of 
the GA model assuming the covariances between PB to 
be zero (Table  11). This was expected because relation-
ships between pigs from different breeds were low and 
showed very little variation (Table 6). Therefore, the GA 

model assuming the covariances between PB to be zero 
are not expected to affect accuracies, even when genetic 
correlations between PB are moderate.

The BOA model assumes that relationships between PB 
are zero, and thus also effectively assumes that the covar-
iances between PB are zero. A study from Xiang et  al. 
[43] compares the BOA approach in a single-step model 
against a single-step model with metafounders, where 
the last model defines relationships between the pedigree 
base populations across breeds but also takes genomic 
relationships across breeds into account. Taken together 
their conclusions that both models perform similarly 
and our findings, these results suggest that considering 
genomic relationships and covariances between PB lines 
has limited relevance in models for predicting crossbred 
performance for pig crossbreeding programs.

Compared to the GA and GB models, taking population 
structure into account by using breed-specific partial rela-
tionships as in the BOA model, including breed-specific 
allele frequencies, had some impact on the accuracy of 
EBV. The BOA model had a positive impact for traits with 
a low rpc as for ADG in breed LR (0.30). BF and LD showed 
higher rpc (0.55 to 0.73), and accuracies of the BOA model 
for these traits was similar to those of the GA or GB mod-
els. Comparing PB lines, somewhat higher accuracies 
could have been expected for the S line, because the sire 
line contributes 50% of the genome of the CB, while the 
dam lines contribute only 25%. Thus, the sire line will have 
a larger variance in genomic relationships with the CB pigs 
used for training, which is expected to yield higher accura-
cies [15]. Nevertheless, in our study, accuracies were very 
comparable across the sire and dam lines. The BOA model 
was previously tested on simulated data [15, 27], and on 
real data but for a two-breed cross scheme [28, 29]. These 
studies also compared the BOA model to models similar 

Table 11  Accuracies* of  the GA
a model assuming zero 

covariance between  purebreds and  with covariances cal-
culated between  purebreds (GA−covariancePB), for  each 
of  the four folds of  cross-validation for  estimating breed-
ing values of  the paternal breed Synthetic boar pigs 
for crossbred performance for average daily gain (ADG)

* Accuracies measured as weighted correlation between DRP and EBV of S pigs 
for crossbred performance
a  GA model, model with genomic relationship matrix by allele frequencies 
obtained across the genotyped population. Results are the same as in Table 8

Folds GA
a GA−covariancePB

1 0.055 0.054

2 0.111 0.110

3 0.156 0.171

4 0.084 0.085

Mean 0.102 0.105
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to GA and GB. Ibánez-Escriche et al. [15] used a simulated 
population of two-way and three-way CB, for a trait with a 
heritability of 0.3. They observed that the prediction accu-
racy of EBV of PB pigs for CB performance with the GA 
model was often equal or higher compared to that with 
the BOA model. The superiority of the BOA model was 
only observed when PB populations were distant or unre-
lated, and SNP density was low. Similarly, Esfandyari et al. 
[27] tested the BOA model with a simulated two-way CB 
population for a trait with a heritability of 0.3 and a rpc of 
0.78. They observed a higher response to selection in CB 
animals when the BOA model was used compared to the 
GA model, but, again, only when PB populations were dis-
tantly related. Vandenplas et al. [44] predicted the average 
reliability of EBV for CB performance obtained from the 
GB and BOA models using simulated PB and two-way CB 
data and different heritabilities (0.20, 0.40, and 0.95), rpc 
(0.30 and 0.70), and population relatedness. In their study, 
average reliabilities of the BOA model were always lower 
than those of the GB model. The difference in reliabili-
ties between the BOA and GB models also increased with 
increasing heritability, rpc and with the population related-
ness. Using real data of two-way CB, Xiang et al. [28] and 
Lopes et al. [29] tested the BOA approach. Xiang et al. [28] 
used a single-step model with a trait that had a CB herit-
ability of 0.10 and rpc of 0.59 and 0.73 between each breed. 
They obtained up to 13% higher accuracy for EBV of PB 
pigs for CB performance considering breed-specific SNP 
effects. Lopes et al. [29] tested the BOA approach with two 
traits that had a CB heritability of 0.14 and 0.37, respec-
tively and rpc higher than 0.88. They obtained similar pre-
diction accuracies with the BOA approach than with a 
model that did not account for breed-specific SNP effects 
in CB animals. The results from these studies indicate that 
breeding values are better estimated with the BOA model 
for traits with a low heritability and low rpc. In our study, 
CB and PB heritabilities were higher than 0.22, which may 
have limited the positive impact of the BOA model. There-
fore, already considering distantly-related breeds, the BOA 
model seems to outperform the GA and GB models for pre-
dicting breeding values of PB animals for CB performance, 
only when the rpc and heritabilities of the analysed trait are 
low.

Conclusions
A positive impact of the BOA model was observed for 
ADG in breed LR, which showed a low rpc (0.30). Results 
from the literature and from our study suggest that, in 
cases where traits have a combination of low rpc and low 
heritabilities, and breeds are distantly related, the use 
of the BOA model is justified. In other cases, using CB 
information in a model that does not account for breed-
specific SNP effects in CB animals, such as the GA and GB 

models, does not seem to jeopardize predictions and may 
be preferred because it can be more easily implemented 
than the BOA model.
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