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Estimated allele substitution effects 
underlying genomic evaluation models depend 
on the scaling of allele counts
Aniek C. Bouwman1*  , Ben J. Hayes2,3 and Mario P. L. Calus1

Abstract 

Background:  Genomic evaluation is used to predict direct genomic values (DGV) for selection candidates in breed-
ing programs, but also to estimate allele substitution effects (ASE) of single nucleotide polymorphisms (SNPs). Scaling 
of allele counts influences the estimated ASE, because scaling of allele counts results in less shrinkage towards the 
mean for low minor allele frequency (MAF) variants. Scaling may become relevant for estimating ASE as more low 
MAF variants will be used in genomic evaluations. We show the impact of scaling on estimates of ASE using real data 
and a theoretical framework, and in terms of power, model fit and predictive performance.

Results:  In a dairy cattle dataset with 630 K SNP genotypes, the correlation between DGV for stature from a random 
regression model using centered allele counts (RRc) and centered and scaled allele counts (RRcs) was 0.9988, whereas 
the overall correlation between ASE using RRc and RRcs was 0.27. The main difference in ASE between both methods 
was found for SNPs with a MAF lower than 0.01. Both the ratio (ASE from RRcs/ASE from RRc) and the regression coef-
ficient (regression of ASE from RRcs on ASE from RRc) were much higher than 1 for low MAF SNPs. Derived equations 
showed that scenarios with a high heritability, a large number of individuals and a small number of variants have 
lower ratios between ASE from RRc and RRcs. We also investigated the optimal scaling parameter [from − 1 (RRcs) to 
0 (RRc) in steps of 0.1] in the bovine stature dataset. We found that the log-likelihood was maximized with a scaling 
parameter of − 0.8, while the mean squared error of prediction was minimized with a scaling parameter of − 1, i.e., 
RRcs.

Conclusions:  Large differences in estimated ASE were observed for low MAF SNPs when allele counts were scaled or 
not scaled because there is less shrinkage towards the mean for scaled allele counts. We derived a theoretical frame-
work that shows that the difference in ASE due to shrinkage is heavily influenced by the power of the data. Increasing 
the power results in smaller differences in ASE whether allele counts are scaled or not.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic evaluation is used to predict direct genomic val-
ues (DGV) for selection candidates in breeding programs. 
In addition to the DGV, allele substitution effects (ASE) 
are or can be computed using genomic evaluation models. 
An ASE represents the effect that the presence of a copy of 
that allele has on the phenotype. This also applies for the 
estimation of such effects in genomic evaluation. The loci 

used do not have to be the causal variants; if they are in 
linkage disequilibrium (LD) with the causal loci, they can 
pick up the correlated part of the ASE of the causal loci. 
The estimated ASE from genomic evaluations can be used 
for various additional purposes such as rapid computa-
tion of DGV for newly genotyped individuals by multiply-
ing their allele counts with the ASE [1], in genome-wide 
association studies (GWAS) to get insight on the genetic 
architecture of a trait [2, 3], and to estimate DGV based 
on small genomic regions, so-called ‘local DGV’ for quan-
titative trait loci mapping [4, 5].

Several genomic evaluation models estimate ASE first 
to predict the DGV, e.g., Bayesian stochastic search 
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variable selection, SNP-best linear unbiased prediction 
(BLUP) or ridge regression [6, 7]. Other methods such as 
genomic (G)BLUP, genomic restricted maximum likeli-
hood estimation (GREML), and one-step methods, use a 
genomic relationship matrix (GRM) that is constructed 
from the SNP genotypes [8–10]. The DGV are then pre-
dicted as a result of solving the mixed model equations, 
and ASE are not explicitly computed. However, with a 
GBLUP or GREML approach, it is straightforward to 
back-solve the ASE from DGV based on the genotypes of 
the animals [11].

All genomic evaluation models require genotypes that 
are either used directly or to construct a GRM. There are 
different genotype coding methods for the three possible 
genotypes: homozygous allele 1 (e.g., AA), heterozygous 
(e.g., AB) and homozygous allele 2 (e.g., BB). Often the 
genotypes are represented as the number of copies of one 
allele (e.g., counting the B allele in the above example: 0, 
1, 2), which means that, in genomic evaluation models, 
the ASE is estimated for the allele that is being counted. 
These allele counts can be centered resulting in a mean 
of 0, or both centered and scaled resulting in a mean of 
0 and a standard deviation of 1. Using centering only in 
genomic evaluation gives ASE directly, however, using 
centered and scaled allele counts results in estimated 
effects for the scaled genotypes, instead of for 0, 1, 2 
genotypes, and an additional transformation is needed 
to obtain the actual ASE. Stranden and Christensen [12] 
showed that differences in genotype coding gave correla-
tions between ASE close to 1 (higher than 0.9998) and 
the same DGV as long as the estimated general mean 
was included in the DGV. However, they looked at cen-
tering and did not include scaling in the genotype cod-
ing methods studied. As indicated by de los Campos et al. 
[13], centering only influences the intercept, but scaling 
results in less shrinkage towards the mean for low minor 
allele frequency (MAF) variants compared with variants 
with intermediate MAF.

In the past, low MAF variants were often ignored by 
applying a MAF cut-off of 1 to 5%, or a minimum number 
of copies of the minor allele present in the population, 
because such variants were considered unreliable [14]. 
Moreover, SNP genotyping platforms in livestock species 
have been developed such that mainly common SNPs 
are on the SNP-panel of commercial genotyping chips. 
However, with the recent rise in available whole-genome 
sequence data, the use of rare variants in genomic evalu-
ation and GWAS is increasing.

Goddard [15] indicated that optimal long-term 
genomic selection is achieved by putting more empha-
sis on SNPs with a low frequency of the favorable allele, 
such that all SNPs will be fixed at the same moment 

in time. Jannink [16] also showed that putting more 
weight on favorable alleles with a low frequency benefits 
long-term selection since the final gain from weighted 
genomic selection is higher. In conservation genetics, it 
might be desirable to put more emphasis on rare alleles 
to preserve the alleles that are at high risk of disappear-
ing in a few generations. Eynard et  al. [17] showed that 
relationships between individuals based on variants with 
a MAF between 1 and 5% are significantly different from 
relationships based on more common variants, and con-
cluded that for conservation of rare alleles the relation-
ships should be estimated using scaled allele counts.

Given that the use of low MAF variants in genomic 
evaluation is likely to increase, scaling may become a 
more important consideration for the estimation of ASE. 
This paper shows the impact of scaling the centered allele 
counts on the estimation of ASE. An SNP-BLUP model 
was applied to dairy cattle data to estimate DGV and 
ASE, using different scaling parameters. We present a 
theoretical framework to show the origin of the differ-
ence in ASE, resulting from scaling, and the impact of the 
power of the data on this difference. In addition, the best-
fitting scaling parameter and that with the best predictive 
performance were investigated.

Methods
Data
Daughter yield deviations (DYD) for stature from 5554 
Holstein bulls were available from CRV (Cooperative 
Cattle Improvement Organization, Arnhem, The Neth-
erlands), as well as the number of daughters used to 
estimate the DYD (on average 549 daughters). The bulls 
were genotyped with the Illumina BovineHD Bead chip 
(734,403 SNPs; Illumina Inc., San Diego, CA, USA), 
or genotyped with a 50  K SNP panel and imputed to 
high-density (HD). SNPs with less than five copies of 
the minor allele segregating in the population were dis-
carded. In addition, each possible SNP genotype had to 
occur at least once (i.e., at least one heterozygote and one 
homozygote carrying the minor allele), resulting in a final 
set of 627,440 SNPs. MAF ranged from 0.00045 (i.e., five 
alleles present in the population) to 0.5 with an average 
of 0.22; the frequency distribution of MAF is shown in 
Fig. 1.

Genomic evaluation
To show the impact of scaling on ASE, the effects were 
estimated with a random regression model (SNP-BLUP) 
using two different genotype coding methods: centered 
allele counts (RRc) and centered and scaled allele counts 
(RRcs). The SNP-BLUP model is a random regression 
model, which estimates the regression coefficients with 
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BLUP, assuming a normal distribution. The following 
SNP-BLUP models were solved using ASReml software 
[18]:

Centered (RRc):

where y is a vector with phenotypes, here stature DYD; 
µ is the intercept; Z is a n× N  design matrix containing 
centered allele counts for all individuals, where n is the 
number of animals and N  the number of SNP; bRRc is a 
vector of random unknown SNP effects, the SNP effects 
were assumed to be identically and independently distrib-
uted with a mean 0 and variance σ 2

g , i.e., b ∼ N
(

0, Iσ 2
g

)

; 
and e is a vector of residual errors. The model assumed 
that e ∼ N

(

0,Dσ 2
e

)

, where D is a diagonal matrix with 
elements computed as 1

wti
, with weight wti being the num-

ber of daughters of individual i on which the DYD of i 
was based, and σ 2

e  is the residual variance. Elements of Z 
are computed as zij = xij − 2pj, where xij is an element of 
the X matrix containing the SNP genotype for individual 
i at locus j coded as 0, 1, or 2; and pj is the frequency of 
the allele whose homozygous genotype is coded as 2 at 
locus j. Note that 2pj is the mean allele count of the SNP 
used for the centering, and that the estimated SNP effects 
b̂RRc are the estimated ASE, i.e., α̂RRc = b̂RRc.

Centered and scaled (RRcs):

For centered and scaled allele counts, the Z matrix 
was replaced by a W matrix, which contained elements 

computed as wij = (xij−2pj)√
2pj(1−pj)

. Note that 2pj is the mean 

allele count of the SNP used for the centering, and that 
√

2pj
(

1− pj
)

 is the standard deviation used for the scal-

ing. Since W contains scaled allele counts, the estimated 

y = 1µ+ ZbRRc + e,

y = 1µ+WbRRcs + e.

SNP effects are not ASE, i.e., they are not equal to half 
the difference of the value between the two homozygotes 
[19]. The ASE can be obtained as:

where U is an N × N  diagonal matrix, with diagonal val-
ues of 1√

2pj(1−pj)
.

In the above paragraphs, we describe SNP-BLUP 
models but for convenience, we applied GREML mod-
els with back-solving to obtain the results (see “Appen-
dix”). These two SNP-BLUP models are equivalent to 
GREML models with a centered GRM following Van-
Raden’s [10] method (1), and a centered and scaled GRM 
following VanRaden’s [10] method (2). In the case of 
GREML, the DGV must be back-solved to obtain the 
estimated regression coefficients for the SNP and, for the 
scaled GRM, the transformation to ASE is needed (see 
“Appendix”).

Relationship between ASE from unscaled and scaled allele 
counts
First, we empirically evaluated the relationship between 
ASE from RRc and RRcs. For variants with the same 
MAF, the correlation, mean ratio and the regression coef-
ficient were calculated between the ASE obtained with 
RRc and RRcs. The mean ratio was calculated by dividing 
the ASE estimated with RRcs by the ASE estimated with 
RRc for each SNP and averaged over all SNPs with the 
same MAF. Regression coefficients were obtained per set 
of SNPs with the same MAF by regressing the ASE from 
RRcs on the ASE from RRc. The number of SNPs per 
MAF ranged from 14 to 1796 with an average of 94 SNPs.

Second, we theoretically evaluated the expected rela-
tionship between ASE from RRc and RRcs. We consid-
ered expressions for estimating the ASE directly for a 
single locus, and ignored possible covariances between 
estimated ASE of different loci, which may for instance 
arise due to LD between the loci. For RRc, the equivalent 
ridge regression BLUP model can be specified as in e.g., 
[15, 20]:

where �RRc = σ 2
e

σ 2
αRRc

, with σ 2
αRRc

 as SNP variance, i.e., 

σ 2
αRRc

= σ 2
a

∑

j 2pj(1−pj)
, with σ 2

a  as total additive genetic 

variance. Ignoring off-diagonal elements in Z′D−1
Z, and 

using vector z.j that is column j in matrix Z, we get:

α̂RRcs = Ub̂RRcs,

(

Z′D−1Z+ �RRc

)

b̂RRc = Z′D−1y,

b̂RRc,j = α̂RRc,j =
z
′
.jD

−1y

z
′
.jD

−1z.j + �RRc

.

Fig. 1  Histogram of minor allele frequencies (MAF) of single-nucleo-
tide polymorphisms
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Similarly, we can derive for RRcs:

where vector w.j is column j in matrix W and 

�RRcs = σ 2
e

σ 2
αRRcs

, with σ 2
αRRcs

 as SNP variance, i.e., σ 2
αRRcs

= σ 2
a
N  , 

and:

Thus, the ratio between both ASE, is equal to:

Assuming that there is no relationship between the geno-
types of the individuals and the information content of their 
phenotypes, e.g., the number of daughters in our study as 
represented in D−1, and that the genotypes are in Hardy–
Weinberg equilibrium, z′.jD

−1z.j ≈
∑

i #dtrsi2pj
(

1− pj
)

 , 
where #dtrsi is the number of daughters in our case. The 
latter term could be replaced in other cases for instance by 
the (effective) number of own records, or if the individuals 
involved have only one own observation, then this term can 
simply be replaced by n (number of individuals). In the lat-
ter situation, we get:

The value of the term 
∑

j 2pj
(

1− pj
)

 can be obtained as:

and

b̂RRcs,j = α̂RRcs,j

√

2pj
(

1− pj
)

=
w

′
.jD

−1y

w
′
.jD

−1w.j + �RRcs

,

α̂RRcs,j =
b̂RRcs,j

√

2pj
(

1− pj
)

=
w

′
.jD

−1y
(

w
′
.jD

−1w.j + �RRcs

)√

2pj
(

1− pj
)

=
z
′
.jD

−1y

z
′
.jD

−1z.j + �RRcs

[

2pj
(

1− pj
)] .

α̂RRcs,j =

(

z
′
.jD

−1z.j + �RRc

)

(

z
′
.jD

−1z.j + �RRcs

[

2pj
(

1− pj
)]

) α̂RRc,j ,

α̂RRcs,j =

(

σ 2
a

σ 2
e
z
′
.jD

−1z.j +
∑N

k=1 2pk(1− pk)
)

(

σ 2
a

σ 2
e
z
′
.jD

−1z.j + 2pj
(

1− pj
)

N
) α̂RRc,j .

α̂RRcs,j =

(

h2

1−h2
n2pj

(

1− pj
)

+
∑N

k=1 2pk(1− pk)
)

(

h2

1−h2
n2pj

(

1− pj
)

+ 2pj
(

1− pj
)

N
) α̂RRc,j

=

(

h2

1−h2
n+

∑N
k=1 2pk (1−pk )

2pj(1−pj)

)

(

h2

1−h2
n+ N

) α̂RRc,j .

∑

j

2pj
(

1− pj
)

= N · E[2p.(1− p.)]

where φ(p) is the probability density function of the dis-
tribution of the allele frequencies, which is required. Here, 
we consider two distributions, i.e., the uniform distribu-
tion, which generally applies for commonly used 50 K SNP 
chips [21, 22] and the U-shaped distribution, which applies 
to whole-genome sequence data [21, 23, 24].

For the uniform distribution, incrementing p by steps 
of 1

2n, we obtain:

since the derivative is obtained as 
F(2p(1− p)) = p2 − 2

3
p3.

Thus, when the allele frequencies are uniformly 
distributed:

For the U-shaped distribution, the probability density 
function, is φ(p) ≈ Cp4Nev−1(1− p)4Neu−1e4Nesp(1−p) 
[25], where v and u are assumed to be equal and rep-
resent forward and backward mutation rates (here 
assumed to be 1× 10−8), Ne is the effective population 
size (here assumed to be 65), s is the selection coef-
ficient and C is a constant that scales the sum of all 
probabilities to 1. Assuming s = 0 for simplification, 
the term e4Nesp(1−p) drops from the equation, such that 
φ(p) ≈ Cp4Nev−1(1− p)4Nev−1. In this case,

Thus, we get:

E[2p.(1− p.)] =
2n−1
2n
∑

p= 1
2n

2p(1− p)φ(p),

E[2p.(1− p.)] =
2n−1
2n
∑

p= 1
2n

2p(1− p)φ(p)

≈
1

∫

0

2p(1− p)
1

1− 0
dp = F(1)− F(0) = 1

3
,

α̂RRcs,j =

(

h2

1−h2
n+

1
3
N

2pj(1−pj)

)

(

h2

1−h2
n+ N

) α̂RRc,j .

C =







2n−1
2n
�

p= 1
2n

p4Nev−1(1− p)4Nev−1







−1

.

E[2p.(1− p.)] =
2n−1
2n
∑

p= 1
2n

2p(1− p)Cp4Nev−1(1− p)4Nev−1

= 2C

2n−1
2n
∑

p= 1
2n

p4Nev(1− p)4Nev .
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Substituting this in the earlier formula, we get for the 
U-shaped distribution:

This expression is rather tedious. Here, we assumed 
that v = 1× 10−8, and the effective population size 
Ne = 65 [26] resulting in 4Nev = 2.6× 10−6 ≈ 0. Hence, 
in our case, and in other datasets where Ne is small such 
that 4Nev ≈ 0, and considering that n is not extremely 
large, C can be approximated as:

where γ is the Euler–Mascheroni constant [27] (see 
“Appendix” for a derivation).

Thus, for situations where 4Nev ≈ 0, and n is not 
extremely large, we get:

Given the value of 4Nev used here, 
∑

2n−1
2n

p= 1
2n

p4Nev(1− p)4Nev ≈ 2n− 1, such that:

Substituting this in the earlier formula, we get for the 
U-shaped distribution:

The above formulae show that under the assumption 
that the ASE are not affected by LD with other SNPs, 
the ratio between E

(

α̂RRc,j

)

 and E(α̂RRcs,j) is the result of 
shrinkage, i.e., when the amount of information used 
becomes (very) large (i.e., many individuals), α̂RRc,j and 
α̂RRcs,j will be the same.

α̂RRcs,j =







h2

1−h2
n+

2NC
�

2n−1
2n

p= 1
2n

p4Nev(1−p)4Nev

2pj(1−pj)







�

h2

1−h2
n+ N

� α̂RRc,j .

C∗ =







2n−1
2n
�

p= 1
2n

p4Nev−1(1− p)4Nev−1







−1

≈ 1

4n

�

ln (2n− 1)+ 1

4n− 2
+ γ

�−1

,

E[2p.(1− p.)] =
∑

2n−1
2n

p= 1
2n

2p(1− p)C∗p4Nev−1(1− p)4Nev−1

= 2C∗∑
2n−1
2n

p= 1
2n

p4Nev(1− p)4Nev .

E[2p.(1− p.)] ≈ 2C∗(2n− 1).

α̂RRcs,j =

(

h2

1−h2
n+ NC∗(2n−1)

pj(1−pj)

)

(

h2

1−h2
n+ N

) α̂RRc,j .

Optimal scaling parameter
To determine the optimal scaling parameter, both 
the fit of the model to the data and the predictive per-
formance of the model were evaluated with different 
scaling parameters. Adopting the notation by Speed 
et  al. [28], allele counts from matrix X were recoded 
resulting in matrix V with elements computed as 
vij =

(

xij − 2pj
)

×
(

2pj
(

1− pj
))γ /2. Hence the SNP-

BLUP model became y = 1µ+ Vbγ + e. Different scal-
ing parameters were tested by varying γ from −  1 [i.e., 
scaling by the standard deviation (RRcs)] to 0 [i.e., no 
scaling (RRc)] in steps of 0.1 for elements of the matrix V.

The model fit was evaluated by comparing the log-like-
lihoods from the SNP-BLUP models using the complete 
stature dataset.

The mean squared error of prediction (MSEP) was 
evaluated by running the SNP-BLUP model with the dif-
ferent scaling parameters (γ) using the stature dataset, 
which was split in a training (3414 older bulls) and vali-
dation set (2140 young bulls). The MSEP for the valida-
tion animals was calculated as 

∑

i

(

wti×(DGVi+µ−DYDi)
2
)

∑

i wti
, 

with wti being the number of daughters of bull i included 
in the DYDi, which was used as the actual phenotype for 
stature for validation bull i, DGVi + µ being the DGV of 
bull i plus the general mean which together result in the 
predicted phenotype (i.e., ŷ) for the validation bull i. The 
model with the lowest MSEP was considered to be the 
most appropriate for genomic prediction, and thus also 
for estimating ASE.

Results
Using a reference dataset of 5554 bulls with HD geno-
types (627,440 SNPs coded as 0, 1, 2) and stature pheno-
types, we compared the ASE from a SNP-BLUP model 
using two commonly used genotype coding methods. 
The first method proposed (RRc) centers the 0, 1, 2 coded 
genotypes; the second method proposed (RRcs) centers 
and scales the 0, 1, 2 coded genotypes.

Comparison of ASE from unscaled and scaled allele counts
The correlation between DGV using RRc and RRcs was 
equal to 0.9988 (regression coefficient (regression of 
RRcs on RRc) = 1.0011; σ 2

DGV : RRc = 1.64,RRcs = 1.68 ), 
whereas the correlation between ASE using RRc and 
RRcs was equal to 0.27. The main difference in ASE 
between the two methods was found for SNPs with a 
MAF lower than 0.01, as shown in Fig. 2. Figure 3 shows 
that although the overall correlation is low, there is a rela-
tionship between the ASE from RRc and RRcs. Please 
note the differences between the x-axis and y-axis in the 
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different plots. As the MAF increases, the ASE from RRc 
and RRcs become more similar, and Fig. 3 shows that ASE 
from SNPs with a higher MAF are located closer to the 
diagonal. With lower MAF, the ASE from RRcs become 
larger than ASE from RRc, and Fig.  3 shows that ASE 
from SNPs with a lower MAF have much steeper regres-
sion coefficients. Although ASE seem to correlate poorly 
between RRc and RRcs, the correlation between ASE of 

variants with the exact same MAF was high, i.e., rang-
ing from 0.770 to 0.996, with an average correlation of 
0.98 (Fig. 4a). However, on the one hand, both the mean 
ratio (ASE from RRcs divided by ASE from RRc, averaged 
per MAF; Fig. 4b) and the regression coefficient (regres-
sion of ASE from RRcs on ASE from RRc; Fig. 4c) were 
much higher than 1 for low MAF variants. On the other 
hand, the mean ratio and regression coefficients were 
often lower than 1 for SNPs with a MAF higher than 0.25 
(results not shown) because the total variance explained 
by all SNPs together remains the same. The differences 
in ASE between RRc and RRcs, and hence the observed 
mean ratios and regression coefficients, are due to the 
difference in shrinkage towards the mean. For RRc, the 
ASE of variants with a low MAF are heavily shrunk back 
towards the mean; this shrinkage is much less strong in 
RRcs due to the scaling of the allele counts, which con-
siders the allele frequencies.

Figure 4b shows the ratio between ASE based on RRc 
and RRcs in the real data for stature. The red dashed line 
in Fig. 4b indicates the ratio based on the derived equa-
tion for the uniform distribution of allele frequencies 
using the heritability, number of individuals and SNP as 
well as the frequencies of the real data, and this shows 
that the equation accurately fits the general trend of those 
mean ratios estimated from the real data. The regression 

Fig. 2  Allele substitution effects plotted against minor allele fre-
quency (MAF)

Fig. 3  Allele substitution effects based on unscaled (RRc) and scaled (RRcs) allele counts categorized in minor allele frequency (MAF) classes
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coefficients in Fig. 4c also fit well with the ratios from the 
equation for the uniform distribution of allele frequen-
cies, although the maximum regression coefficient (282) 
was lower than the maximum from the equation for the 
uniform distribution (360). Figure  5 shows the ratio as 
derived for different simulated scenarios for both the 
uniform and U-shaped distributions. Allele frequencies 
lower than 0.01 have high ratios for both allele frequency 
distributions (Fig.  5). Scenarios with a large number of 
individuals (100 K), a small number of SNPs (50 K) and 
a high heritability (0.8) have ratios closer to 1 at the 
extremely low MAF compared with the other scenarios 
(Fig. 5). The ratio of estimated ASE for the low MAF vari-
ants from the U-shaped distribution was substantially 
lower than that for the uniform distribution of allele 
frequencies.

For the uniform distribution, SNPs with an intermedi-
ate MAF of ~ 0.2 showed ratios around 1, and SNPs with 
a MAF of 0.5 had ratios below 1 with a minimum of 0.67 
(h2 =  0.2, 1000 individuals, and 15 ×  106 SNPs), and a 
maximum of 0.96 (h2 = 0.8, 100,000 individuals, and 50 K 
SNPs). For the U-shaped distribution, ratios were around 
1 for SNPs with a MAF of 0.065 for scenarios with 1000 
individuals, and for SNPs with a MAF of 0.04 for sce-
narios with 100,000 individuals. At a MAF of 0.5, the 
U-shaped distribution reached ratios between 0.24 and 
0.30 for scenarios with 1000 individuals, and between 
0.16 (h2 = 0.2, 15 × 106 SNPs) and 0.91 (h2 = 0.8, 50 K 
SNPs) for scenarios with 100,000 individuals.

Optimal scaling parameter
We have shown, empirically and theoretically, that the 
scaling of allele counts influences the ASE of variants 
with a low MAF. Here, we attempted to determine which 
scaling parameter gave the best fit of the model to the 
data and which had the best predictive performance.

The optimal scaling parameter was determined by 
comparing the maximum likelihood for SNP-BLUP 

Fig. 4  Correlation (a), mean ratio (b), and regression coefficient (c) 
between allele substitution effects based on unscaled (RRc) and 
scaled (RRcs) allele counts per minor allele frequency (MAF). For all 
SNPs with the same MAF the correlation between allele substitution 
effects (ASE) from RRc and RRcs are plotted in a. The red dashed line 
in a is a smoothed LOESS. The mean of the ratios between ASE from 
RRc and RRcs (ASERRcs/ASERRc) for SNPs with the same MAF are plotted 
in b. The red dashed line in b indicates the ratio between ASE based 
on RRc and RRcs using the derived equation for uniformly distributed 
MAF, given the MAF of the SNPs in the real data. For all SNPs with the 
same MAF, the regression coefficient for the regression of ASE from 
RRcs on ASE from RRc are plotted in c

▸
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models for which the scaling parameter γ varied from 
− 1 (i.e., RRcs) to 0 (i.e., RRc) in steps of 0.1. The model 
with a scaling parameter of γ = −0.8 retained the high-
est log-likelihood (Fig. 6a), and was therefore the optimal 
scaling parameter for this dataset.

The optimal scaling parameter for predictive perfor-
mance was determined by comparing the MSEP of the 
SNP-BLUP models for which scaling parameters varied 
from −  1 (i.e., RRcs) to 0 (i.e., RRc) in steps of 0.1. The 
stature dataset was split into a training set of 3414 older 
bulls and a validation set of 2140 young bulls for which 
the MSEP was assessed. The model with a scaling param-
eter of γ = −1 (i.e., RRcs) retained the lowest MSEP 
(Fig.  6b), and therefore had the best predictive perfor-
mance for this dataset.

Discussion
The ASE indicates the effect of the variant on the phe-
notype under investigation. When searching for vari-
ants that cause variation in the phenotype, most of 
those detected are either common variants (MAF > 5%) 
or variants that explain a large proportion of the vari-
ance in the trait, e.g., Mendelian traits [29, 30]. The 
most difficult causal variants to detect are those with 
a low MAF (0.5%  <  MAF  <  5%) and low to moderate 
effect, as well as those that are rare (MAF < 0.5%) [29, 
30]. If the power of the study design is sufficient and the 
ASE moderate, genomic prediction models using such 
low MAF variants might explain part of the so-called 
missing heritability [29]. With whole-genome sequence 
data, low MAF variants and even rare variants can be 

Fig. 5  Theoretical ratio (ASERRcs/ASERRc) between allele substitution effects (ASE) based on unscaled (RRc) and scaled (RRcs) allele counts. Ratio 
for different allele frequencies (p) based on derivations for a uniform (left) and U-shaped (right) distribution of allele frequency for marker sets. 
Scenarios based on the number of individuals, i.e., 1000 (1 K; black) and 100,000 (100 K; gray); and number of SNPs, i.e., 50,000 (50 K; square), 800,000 
(800 K; dot), 15,000,000 (15 M; triangle). Here, only allele frequencies lower than 0.01 are shown for heritabilities (h2) of 0.2 (first row) and 0.8 (second 
row)



Page 9 of 13Bouwman et al. Genet Sel Evol  (2017) 49:79 

identified and used in genomic prediction. However, 
in this study, we demonstrated that different geno-
type coding methods result in different estimated ASE, 
especially for low MAF variants. Due to the increased 
interest in low MAF variants with the advent of using 
whole-genome sequence data in genomic prediction, it 
will become increasingly important to determine how 
genotypes are coded prior to estimating the ASE. Here, 
we showed that scaling of allele counts (0, 1, 2 geno-
types) influences the estimation of ASE of low MAF var-
iants due to more (unscaled) or less (scaled) shrinkage 
towards the mean of the ASE. In addition, our results 
show that centered and scaled allele counts (e.g., RRcs) 
put more weight on low MAF variants, which suggests 
that scaling is more preferable for long-term genomic 
selection than no scaling (e.g., RRc) [15, 16]. Although 
these results were expected based on the underlying 
model assumptions, our aim was to visualize the dif-
ferences in ASE between scaling and no scaling, to pro-
vide a theoretical framework, and create awareness of 
the implications for future studies, in animal and plant 
breeding, and even in genomic prediction of disease risk 
in humans. Our empirical results closely resemble the 
expectation based on the presented theoretical frame-
work. In practice, accurately estimating the ASE of low 
MAF variants remains difficult and requires powerful 
study designs.

Scaling
Although in this study we presented SNP-BLUP (or ridge 
regression BLUP) models, equivalent models that do 
not explicitly estimate ASE, i.e., GREML or GBLUP, will 
similarly result in different estimates of the ASE when 
the allele counts used in the construction of a GRM are 
scaled or not. The same applies to other regression-based 
models that include parameters that accommodate for 
differential shrinkage across loci, e.g., Bayesian variable 
selection models such as BayesC and BayesR. For those 
models, the difference in ASE when scaling is used or not 
may be smaller than for GBLUP and SNP-BLUP, because 
these differential shrinkage models have additional 
parameters to modify shrinkage per locus.

Optimal scaling depends on the true relationship 
between the ASE size and MAF in the data analyzed [31]. 
Causal alleles with a larger effect tend to have a lower 
MAF [32], hence for models with scaled allele counts that 
give low MAF variants a larger ASE (i.e., RRcs) may rep-
resent more closely the truth. Speed et  al. [31] showed 
that scaling by the square root of the variance (i.e., RRcs; 
γ = −1) gave stable results in estimating the heritabil-
ity (based on SNPs), regardless of the simulated genetic 
structure of the trait. In our study, we showed that a scal-
ing parameter of γ = −0.8, gave the best fit of the model 
to the data, whereas a scaling parameter of γ = −1 (i.e., 
RRcs) gave the best predictive performance in terms of 
MSEP (Fig. 6), which suggests that RRcs gave better ASE 
estimates than RRc for our dataset. In a recent paper, 
Speed et al. [28] re-evaluated the scaling parameters for 
scenarios that include low MAF variants. They recom-
mended a scaling parameter of γ = −0.25 when low 
MAF variants are included, while the estimated heritabil-
ities (based on SNPs) were hardly influenced by the scal-
ing parameter when analyzing only common SNPs. In 
their analysis, they used a model with two GRM, one for 
SNPs with a MAF lower than 0.1 and one for SNPs with a 
MAF higher than 0.1, versus a model with one GRM con-
taining all SNPs. The scaling parameter that fitted equally 
well, based on the REML likelihood in both models, was 
recommended. In our study, the optimal scaling param-
eter for this dataset was tested with the aim of maximiz-
ing model fit and minimizing the MSEP for the validation 
data. In our case, differences in log-likelihood and MSEP 
among the scaling parameters applied were rather small. 
The optimal scaling parameter may also depend on the 
characteristics of the data, such as the MAF spectrum. 
Here, the genotypes were from the BovineHD SNP chip 
with 630,000 SNPs, which contained a fair number of 
SNPs with a MAF lower than 1% (5% of the SNPs) and 
even rare SNPs with a MAF lower than 0.5% (3.7% of the 
SNPs) (Fig. 1); future studies focusing on whole-genome 
sequence variants might contain even more low MAF 
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variants, which might result in a different optimal scaling 
parameter.

Allele frequency distribution
The derived equations for the ratios of ASE from a uni-
form and U-shaped allele frequency distribution show 
the implications of (more/less) shrinkage towards the 
mean for different scenarios. The heritability, number 
of individuals, and the number of variants all have an 
impact on the ratio. For both allele frequency distribu-
tions, with a small number of individuals (i.e., 1000) there 
seems to be little impact of heritability and number of 
variants on the difference in shrinkage between scaling 
and no scaling. However, when the number of individuals 
is large (i.e., 100,000), it is clear that heritability and num-
ber of variants have an impact.

For variants with a low MAF, the ASE obtained with 
RRcs and RRc are more similar when the number of vari-
ants is small and especially when the number of individu-
als is large and the heritability is high. These results can 
be interpreted as follows. Differences in genotype coding 
effectively reflect a difference in prior belief of the impact 
of rare versus more common variants. RRcs assumes that 
rare variants are more important than common ones, and 
therefore, in many cases, the shrinkage of effects of low 
MAF variants is much lower for RRcs than for RRc. The 
data can override this prior information, if the dataset is 
sufficiently large. All possible aspects of the dataset that 
increase power, i.e., more animals, higher heritability and 
fewer variants, all reduced the ratios between both ASE, 
showing that shrinkage due to the prior assumptions 
of the models was reduced. In other words, the prior 
assumptions made when choosing the genotype cod-
ing become less important when the power of the data 
increases. However, when increasing power by increasing 
the population size, even more rare variants will appear 
with an even lower MAF than what was considered 
as rare beforehand. This is because rare variants were 
defined in terms of MAF instead of number of alleles 
observed. For those ‘newly’ discovered rare variants, the 
ratio between RRcs and RRc will be high again and the 
power will be too low to estimate their effects very accu-
rately, hence power should be analyzed to determine the 
MAF at which the ASE can be estimated accurately given 
the data.

Remarkably, in all scenarios, the U-shaped allele fre-
quency distribution showed lower ratios for low MAF 
variants compared to the uniform allele frequency distri-
bution. This is probably because a U-shaped distribution 
has more low MAF variants, and also since the total vari-
ance remains the same, there is less room for the model 
to allocate an extremely high ASE for all those low MAF 
alleles.

The distribution of the allele frequencies for the real 
data with HD genotypes was not uniform, but more like 
the U-shape distribution (Fig.  6). This more U-shaped 
distribution for the HD genotypes is not only true for this 
dataset. This is due to the chip design, which allowed for 
more low MAF variants to be included compared to the 
BovineSNP50 chip. However, the ratios in ASE between 
RRcs and RRc for real data on stature in cattle were better 
aligned with the derived ratios for a uniform distribution. 
The most logical explanation is that the U-shaped distri-
bution that we assumed resembles that of whole-genome 
sequence data, where the number of low MAF variants is 
relatively much larger than for the high-density chip data 
that we used. Effectively, the allele frequency distribution 
in our chip data may be closer to the uniform distribution 
than the considered U-shaped distribution. Theoretically, 
it should be possible to use the formula that was used for 
the U-shaped distribution to represent any other possible 
allele frequency distribution, by tuning its parameters. 
This would provide a more general applicable theoreti-
cal framework to predict the impact of different geno-
type coding on the shrinkage of estimated effects, if those 
parameters can be computed or derived empirically.

To derive the ratio of ASE from RRcs and RRc for both 
allele frequency distributions, we made several assump-
tions. One of these assumptions was that there are no 
covariances between the estimated ASE of different loci, 
however, covariances may, for instance, arise due to LD 
between the loci. Especially for the U-shape distribution, 
which represents whole-genome sequence data, high LD 
between variants is expected. In that case, the assump-
tion “ignoring off-diagonal elements in Z′R−1

Z” (which is 
the same as ignoring LD between loci) is likely to be vio-
lated when allele coding is not independent of the MAF 
(e.g., minor allele counted). Nevertheless, the theoreti-
cal ratios based on the uniform distribution fitted nicely 
with the actual ratios from the real stature data example 
and did not seem to be hampered by the presence of LD 
(Fig. 4b).

Conclusions
The results of our study show that DGV are not influenced 
by scaling of centered allele counts, while the estimates 
of ASE are. Large differences in ASE between scaled and 
unscaled allele counts were observed for variants with a 
low MAF, mainly due to less shrinkage towards the mean 
for scaled allele counts. We derived a theoretical frame-
work that shows that the difference in ASE due to (more/
less) shrinkage is heavily influenced by the power of the 
data. Increasing the power, by increasing the number of 
animals, increasing the heritability or decreasing the 
number of variants, resulted in smaller differences of the 
ASE between scaled and unscaled allele counts.
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Appendix
GREML
In this paper, we describe SNP-BLUP models, how-
ever GREML/GBLUP models are equivalent and were 
actually applied to the data. This appendix contains the 
methods for genomic evaluation followed by the back-
solving method to obtain allele substitution effects using 
GREML with a centered GRM according to Method (1) 
in VanRaden [1] (VR1; equivalent to RRc) and a cen-
tered and scaled GRM according to Method (2) in Van-
Raden [1] (VR2; equivalent to RRcs). We also provide the 
method to construct GRM with varying scaling factors 
for GREML (or GBLUP) models.

Genomic evaluation
To estimate DGV, GREML was performed using two 
GRM constructed in different ways to show the impact of 
scaling on ASE. The following mixed model equation was 
solved using GREML in ASReml software [2]:

yi = µ+ ui + ei,

where yi is the phenotypic record, here stature DYD, of 
individual i; µ is the mean; ui is the DGV of individual 
i , with u ∼ N

(

0,Gσ 2
a

)

, where G is the genomic relation-
ship matrix, and σ 2

a  the total additive genetic variance; 
and ei is the residual of individual i, with e ∼ N

(

0,Dσ 2
e

)

 , 
where D is a diagonal matrix with elements computed as 
1
wti

, with wti being the number of daughters of individual i 
on which the DYD of i was based as weight, and σ 2

e  is the 
residual variance.

The different GRM used were:
VR1 [Method (1) according to VanRaden [1]; equivalent 

to the SNP-BLUP model with centered allele counts (RRc)]:

where Z contains the centered allele counts of the SNP, with 
elements computed as xij − 2pj, where xij is an element of 
the X matrix containing the SNP genotype for individual i 
at locus j coded as 0, 1, or 2; and pj is the frequency of the 
allele for which the homozygous genotype is coded as 2 at 
locus j. Note that 2pj is the mean allele count of the SNP for 
the centering.

VR2 [Method (2) according to VanRaden [1]; equiva-
lent to the SNP-BLUP model with centered and scaled 
allele counts (RRcs)]:

where N  is the number of SNPs; and W contains the 
centered and scaled allele counts of the SNPs for all 
individuals at all loci, with elements computed as 

wij = (xij−2pj)√
2pj(1−pj)

 . Note that 
√

2pj
(

1− pj
)

 is the standard 

deviation used for the scaling.

Back‑solving
Considering VR1, the ASE (α̂VR1) were back-solved as 
coefficients of the regression of the DGV (ûVR1) on the 
allele counts. Considering that ûVR1 = Zα̂VR1 yields the 
following expression [3]:

where S =
∑

j 2pj
(

1− pj
)

.
For VR2, the following applies: ûVR2 = Wb̂VR2, where 

b̂VR2 are regression coefficients, that can be obtained 
with:

Note that the b̂VR2 values are not allele substitution 
effects, i.e., they are not equal to half the difference of the 

GVR1 =
ZZ′

2
∑

j pj
(

1− pj
) ,

GVR2 =
WW′

N
,

α̂VR1 = Z′(ZZ′)−1
û = S−1Z′G−1

VR1û,

b̂VR2 = W′(WW′)−1
û = N−1W

′
G−1
VR2û.
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value between the two homozygotes [4], because W′ con-
tains scaled allele counts. The allele substitution effects 
for VR2 (α̂VR2) can be obtained as:

where U is an N × N  diagonal matrix, with diagonal val-

ues of 1√
2pj(1−pj)

. Thus, following the above definition, 

DGV based on VR2 can be computed as ûVR2 = Zα̂VR2.
The back-solving procedure was verified, within each 

method, by recalculating the DGV as û = Zα̂, i.e., the 
back-solved ASE were multiplied with the 0, 1, 2 coded 
genotypes (i.e., allele counts) and the appropriate gen-
eral mean was added, and then compared to the origi-
nal DGV. This gave for both methods correlations and 
regression coefficients of exactly 1, which demonstrates 
that the back-solving procedures were correct.

Optimal scaling parameter
Adopting the notation of Speed et  al. [5], GRM were 
constructed using matrix V with elements com-
puted as vij =

(

xij − 2pj
)

×
(

2pj
(

1− pj
))γ /2, and 

G = VV′ × (
∑

j(2pj
(

1− pj
)

))(−1−γ ) by varying γ from 
−  1 (i.e., VR2) to 0 (i.e., VR1) in steps of 0.1. The fac-
tor used to compute G, i.e., (

∑

j(2pj
(

1− pj
)

))(−1−γ ), is 
derived as follows. With proper scaling of G, and assum-
ing that allele frequencies used are computed from the 
current population, the average inbreeding is expected to 
be zero, hence E(trace(G)) = n, where n is the number of 
individuals. Consider that the variance of column j in V 
is var

(

V.j

)

= var
(

X.j

)

×
(

2pj
(

1− pj
))γ = 2pj

(

1− pj
)

×  
(

2pj
(

1− pj
))γ =

(

2pj
(

1− pj
))(1+γ ) . Consequently, 

E
(

trace
(

VV′)) = E

(

∑

i

∑

j v
2
ij

)

= E

(

n
∑

j var
(

V.j

)

)

=  
n(
∑

j(2pj
(

1− pj
)

))(1+γ ) . To get E(trace(G)) = n, then 
requires to multiply VV′ by (

∑

j(2pj
(

1− pj
)

))(−1−γ ). For 
all scaling parameters, the diagonal elements of the GRM 
were on average 1, resulting in an average inbreeding 
coefficient of 0.

Derivation of C for the U‑shape distribution 
when 4Nev ≈ 0

For the U-shaped distribution, the probability density 
function, is φ(p) ≈ Cp4Nev−1(1− p)4Neu−1e4Nesp(1−p) 
[6], where v and u are assumed to be equal and represent 
forward and backward mutation rates, Ne is the effective 
population size, s is the selection coefficient and C is a con-
stant that scales the sum of all probabilities to 1. Assuming 
s = 0 for simplification, the term e4Nesp(1−p) drops from 
the equation, such that φ(p) ≈ Cp4Nev−1(1− p)4Nev−1. 
Let us consider here C−1 instead of C, for ease of notation. 

α̂VR2 = Ub̂VR2,

Furthermore, because the value of 4Nev used here is rather 
small (v = 1× 10−8,Ne = 65; 4Nev = 2.6× 10−6), we can 
assume that 4Nev − 1 ≈ −1. Thus, we obtain that:

Now, we rewrite the above, such that the summation 
is expressed in terms of the “Harmonic series” [7], for 
which it is known that:

where γ is the Euler–Mascheroni constant (being close to 
0.57721) [8].

With p = i
2n, we get:

We then note that this series is symmetric, e.g., both 
i = 1 and i = 2n− 1 result in 1

1− 1
2n

:

For this series, the ith element is equal to:

Such that:

The symmetry of the series implies that it is the sum of 
the harmonic series 

(

1
i

)

 and its reverse 
(

1
2n−i

)

, which are 
the same, such that:

Thus:

C−1 =
2n−1
2n
∑

p= 1
2n

(

p4Nev−1(1− p)4Nev−1
)

≈
2n−1
2n
∑

p= 1
2n

(

p−1(1− p)−1
)

=
2n−1
2n
∑

p= 1
2n

(

1

p− p2

)

.

k
∑

m=1

(

1

m

)

= ln (k)+ 1

2k
+ γ,

C−1 ≈
2n−1
2n
∑

p= 1
2n

(

1

p− p2

)

= 2n

2n−1
∑

i=1

(

1

i − i2

2n

)

.

2n−1
∑

i=1

(

1

i − i2

2n

)

= 1

1− 1
2n

+ 1

2− 4
2n

+ 1

3− 9
2n

+ · · · + 1

3− 9
2n

+ 1

2− 4
2n

+ 1

1− 1
2n

.

1

i − i2

2n

=
1− i

2n

i
(

1− i
2n

) +
i
2n

i
2n (2n− i)

= 1

i
+ 1

2n− i
.

2n−1
∑

i=1

(

1

i − i2

2n

)

=
2n−1
∑

i=1

(

1

i

)

+
2n−1
∑

i=1

(

1

2n− i

)

.

2n−1
∑

i=1

(

1

i − i2

2n

)

= 2

2n−1
∑

i=1

(

1

i

)

.
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and

which is denoted as C∗ in the paper, and holds when 
4Nev ≈ 0, and n is not extremely large. In other cases, 

C =
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