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Abstract 

Background:  Because of their high economic importance, growth traits in fish are under continuous improvement. 
For growth traits that are recorded at multiple time-points in life, the use of univariate and multivariate animal models 
is limited because of the variable and irregular timing of these measures. Thus, the univariate random regression 
model (RRM) was introduced for the genetic analysis of dynamic growth traits in fish breeding.

Methods:  We used a multivariate random regression model (MRRM) to analyze genetic changes in growth traits 
recorded at multiple time-point of genetically-improved farmed tilapia. Legendre polynomials of different orders 
were applied to characterize the influences of fixed and random effects on growth trajectories. The final MRRM was 
determined by optimizing the univariate RRM for the analyzed traits separately via penalizing adaptively the likelihood 
statistical criterion, which is superior to both the Akaike information criterion and the Bayesian information criterion.

Conclusions:  In the selected MRRM, the additive genetic effects were modeled by Legendre polynomials of three 
orders for body weight (BWE) and body length (BL) and of two orders for body depth (BD). By using the covariance 
functions of the MRRM, estimated heritabilities were between 0.086 and 0.628 for BWE, 0.155 and 0.556 for BL, and 
0.056 and 0.607 for BD. Only heritabilities for BD measured from 60 to 140 days of age were consistently higher than 
those estimated by the univariate RRM. All genetic correlations between growth time-points exceeded 0.5 for either 
single or pairwise time-points. Moreover, correlations between early and late growth time-points were lower. Thus, for 
phenotypes that are measured repeatedly in aquaculture, an MRRM can enhance the efficiency of the comprehensive 
selection for BWE and the main morphological traits.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
From an economical point of view, growth and devel-
opmental characters are the most important traits in 
farmed fish species, and persistent efforts are made 
to genetically improve these traits in fish breeding. 
Growth and developmental traits, such as body weight 
(BWE) and morphological traits, are measured at differ-
ent times. Faster BWE growth shortens time to market 

and selection on morphological traits allows fish shape 
and size to be standardized. Growth and developmental 
traits are dynamic quantitative traits because they vary 
spatially and temporally [1]. They are also called infinite-
dimensional traits, since they are expressed on a continu-
ous time and space scale [2]. In tilapia breeding, growth 
and developmental traits at a specific age (in day, week, 
or year), such as the time to market are the main targets 
of genetic improvement. As such, genetic analysis of the 
growth and developmental process can increase the effi-
ciency of selection compared to that of traits measured at 
specific ages [3].
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Considerable attention has been paid to the genetic 
analysis of BWE and morphological traits at a specific age 
in breeding tilapia. In earlier studies, growth traits at spe-
cific ages were considered as separate traits and analyzed 
by using univariate animal models [4–13]. Subsequently, 
multivariate animal models were applied to estimate both 
the heritabilities of growth traits at specific ages and the 
genetic correlations between traits measured at different 
specific ages [8, 11, 12, 14–22]. Although multivariate 
genetic analysis of growth traits has improved the accu-
racy of parameter estimation by using more records, at 
multiple ages, such an analysis is strongly limited by the 
variable and irregular timing of these measurements [23].

For growth and developmental traits that are recorded 
at multiple time-points during growth, the patterns of 
growth curves have been shown to be heritable [2, 3, 
24]. The genetic analysis of dynamic quantitative traits 
was initially conducted by first fitting individual growth 
curves and then analyzing their estimated parameters 
within the framework of a multivariate animal model. 
However, with such genetic analyses, it was not possi-
ble to determine whether some individuals had too few 
records to fit the growth curves. Since then, random 
regression models (RRM) [3, 25] were developed to dis-
sect dynamic phenotypes into different functions that 
describe the effects of various genetic and environmen-
tal factors. Only three papers on the application of RRM 
for the genetic analysis of growth curves have been pub-
lished, in rainbow trout [26] and tilapia [9, 27]. The use of 
RRM allows heritabilities of growth traits at any age to be 
estimated, as well as genetic correlations between pair-
wise traits measured at different ages. Moreover, multi-
ple trait RRM (MRRM) can estimate genetic correlations 
between pairs of traits measured at different ages and 
improve heritability estimates for each trait. This not only 
facilitates the genetic analysis of dynamic traits, but also 
improves the prediction of breeding values [3, 28].

The objective of this study was to construct and imple-
ment a MRRM to simultaneously model the genetic 
changes in growth traits and estimate the heritability 
of each growth trait, as well as the genetic correlations 
between pairs of growth traits measured at specific ages, 
such as the time to market for a population of genetically 
improved farmed tilapia in order to formulate a selection 
criterion for simultaneously selecting BWE and morpho-
logical traits. For this purpose, BWE, body length (BL), 
and body depth (BD) were measured six times on 1451 
fish from 45 mixed families of full and half-sibs.

Methods
Experimental population
The base population of 1800 one-month old tilapia fin-
gerlings (sex ratio of 1:1) was imported from WorldFish, 

Malaysia, in 2006, and was derived from 60 families with 
complete pedigree. The fish were systematically selected 
for seven generations at the experimental station of the 
Freshwater Fisheries Research Center in Wuxi, China. 
Based on breeding values for BWE at 120 days of age esti-
mated using an animal model, 40 broodstocks per family 
were chosen at each generation, with a sex ratio of 1:1. 
The selection intensity in males and females was  ~  5%. 
Broodstocks from different families were randomly 
mated with each other and 100  to  125 families were 
retained in each generation. There was one generation 
of selection per year. In the seventh generation, in 2014, 
120 males and 120 females from different families (one 
male and one female from each family) were selected as 
experimental parents. In May of that year, each male and 
two females ready to spawn were maintained in a 1-m3 
fiberglass tank for one week. Next, 120 females with 
fertilized eggs in their mouths were separately placed 
into multiple hapas (1 m ×  1 m ×  1 m) in a large con-
crete pond (50 m × 7 m × 1 m) for a one-week incuba-
tion period and were then isolated from their progenies. 
At 50 days of age, 50 families, each consisting of no less 
than 1000 surviving progenies above 30  g, were used 
to construct the experimental population. At the same 
time, 32 progenies that were randomly chosen from each 
family were tagged with passive integrated transponder 
tags, and 1600 tagged fish were mixed in a larger con-
crete pond (50 m × 20 m × 1.8 m). Because of this, we 
did not include any effect of the rearing facilities on the 
measurements in the statistical model. In the subse-
quent experiment, all fish were fed on a standard com-
mercial diet (crude protein: 28%, crude lipids: 4%, crude 
fiber: 15%, ash: 18%, total phosphorus: 1%, lysine: 1.2%) 
manufactured by the Feedstuff Incorporated company 
(Ningbo, China). Dissolved oxygen was maintained at 
8.23 to 8.67 mg/L by air pumps and the water tempera-
ture naturally fluctuated between 24.3 and 26.7 °C during 
the entire experiment.

The tagged fish were weighed on electronic scales to 
measure BWE, while BL and BD were measured with 
calipers. Before each measurement, the fish were anes-
thetized with clove oil at a density of 100 mg/L. The fish 
were measured once every 15  days during the experi-
ment, with the first recording at the time of tagging. A 
maximum of six records for each fish and each trait were 
available, since 4.6% of the individuals died before the 
end of the experiment. Although experimental fish were 
measured only six times, the traits were recorded on 20 
different days of age because of different spawning times. 
A total of 7560 records were extracted for BWE, BL and 
BD.

To edit the dataset, fish with missing phenotypic 
records for any trait and no information on the parents 
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were excluded and abnormal phenotypic values that were 
more than three standard from the phenotypic mean of 
the trait were removed. After editing, 1451 individuals 
with 7235 records remained, with each individual hav-
ing at least two records per trait. Table  1 presents the 
descriptive statistics for the dataset for BWE, BL, and BD 
for the 20 age groups.

Pedigree data were collected by tracing back three gen-
erations, thus including 1604 individuals from 77 sires 
and 88 dams. Although maternal effects on growth traits 
may be large in the early growth period for tilapia, they 
were not considered in the analyses, because observa-
tions from only a single generation and from such a small 
number of dams without records render the maternal 
effects unidentifiable.

Random regression model
In the same setting of cultivation programs, the two 
sexes and six test days were considered as fixed effects, 
while family, additive genetic, and permanent environ-
mental effects were considered as random effects. For 
the growth-related traits that were recorded at multiple 
time-points, the phenotype of the trait at t days of age 
was described by the following single-trait animal model:

(1)
yijkl(t) = µj + bk(t)+ fl(t)+ ai(t)+ pei(t)+ eijkl(t),

where yijkl(t) is an observation at t days of age, µj is the j
th test day effect, bk(t) is the kth sex effect, fl(t) is the lth 
family effect, ai(t) is the additive genetic effect for the ith 
individual, pei(t) is the permanent environmental effect 
for the ith individual, and eijkl(t) is the residual error fol-
lowing a normal distribution with expectation 0 and vari-
ance σ 2

e .
To analyze the growth curves of phenotypes that are 

measured repeatedly, Legendre polynomials are generally 
used to fit the changes in the fixed and random effects in 
Model (1) and are represented by:

where m is the order, βk is the kth regression coefficient, 
and ψk(t) is the kth covariate of the Legendre polynomial 
[2], defined by:

where τ = − 2× t−min(t)
max(t) − min(t)

.

By modeling changes with age in the effects of sex, fam-
ily, additive genetics, and permanent environment of the 
Legendre polynomials with orders m1, m2, m3, and m4, 
respectively, Model (1) becomes the following RRM:

where Lθη(t) = βθ
0 + βθ

1ψ1(t)+ βθ
2ψ2(t)+ · · · + βθ

ηψη(t), 
with θ ∈ [bfape] and η ∈ [m1m2m3m4].

In matrix notation, Model (2) can be written as:

where xηi = [1ψ1(ti) . . . ψη(ti)], and 
θ ∈ [b f a pe] = [βθ

0β
θ
1 . . . β

θ
η ]T.

The model satisfied the following:

where A is the numerator relationship matrix and F , G,  
and P are the family, additive genetic, and permanent 
environmental covariance matrices for the random 
regression coefficients of the Legendre polynomials, 
respectively.

To estimate the genetic correlations between growth 
traits measured at multiple time-points, the RRM for 
those traits must be solved simultaneously by a multi-
variate genetic analysis. The covariance matrices in the 
MRRM were estimated by using restricted maximum 

Lm(t) = β0 + β1ψ1(t)+ · · · + βkψk(t)+ · · · + βmψm(t),

ψk(t) =
1

2k

int(k/2)
∑

i=0

(−1)i(2k − 2i)!
i!(k − i)!(k − 2i)!

τ k−2i,

(2)
yijkl(t) = µj + Lbm1(t)+ L

f
m2(t)+ Lam3(t)+ L

pe
m4(t)+ eijkl(t),

(3)
yijkl = µj + x1ibl + x2ifk + x3iai + x4ipei + eijkl ,

E
(

yijk |µj ,bl , fk , ai,pei
)

= µj + xijbl + zik fk + ziai + zipei

Cov
(

yijk
)

= I⊗F+ A⊗G+ I⊗PE+ I⊗ σ 2
e ,

Table 1  Averages and  standard deviations (in paren-
theses) for  body weight (g), body length (mm) and  body 
depth (mm) at 20 days of age

Age Sample size BWE BL BD

52 473 36.3 (8.5) 88.19 (9.68) 31.74 (3.42)

59 354 49.94 (3.67) 99.28 (3.92) 36.62 (2.00)

65 304 62.47 (12.47) 107.13 (11.46) 41.30 (3.90)

68 469 82.99 (11.00) 116.86 (9.79) 43.71 (2.87)

72 320 95.98 (23.40) 125.40 (12.26) 48.25 (3.52)

75 352 106.19 (10.56) 129.58 (5.23) 49.32 (2.68)

81 302 124.03 (31.99) 133.49 (15.32) 53.66 (4.54)

85 470 138.50 (27.12) 139.96 (11.65) 56.56 (3.74)

88 319 153.00 (40.52) 141.67 (15.28) 60.09 (3.87)

92 352 173.97 (19.17) 149.15 (6.48) 62.43 (2.26)

98 303 200.39 (51.45) 159.64 (19.21) 63.70 (4.61)

102 469 221.12 (44.36) 161.13 (13.83) 64.04 (3.73)

105 319 243.64 (63.82) 164.32 (17.93) 66.17 (4.46)

109 354 275.08 (33.08) 172.25 (8.63) 67.19 (3.04)

115 304 313.77 (77.68) 180.04 (23.21) 69.58 (5.59)

121 473 384.56 (65.23) 185.63 (15.63) 70.32 (4.46)

122 320 391.92 (89.49) 187.85 (19.95) 71.87 (5.06)

128 354 427.41 (105.57) 190.47 (26.18) 72.09 (6.45)

134 304 480.17 (50.97) 194.43 (10.70) 73.15 (3.76)

141 320 538.13 (87.26) 197.54 (17.46) 74.97 (5.21)
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likelihood (REML), as implemented in DMU Version 
6 [29]. The starting values were set to 0 for each fixed 
effect, to the identity matrix for each random effect 
covariance matrix and to 1 for the residual variance. The 
convergence criterion for REML was set to 10−6.

After estimating the covariance matrices, heritabili-
ties for the traits at any age and the genetic correla-
tions between traits measured at different ages were 
estimated by the covariance functions [30]. The covari-
ances for a trait between the ith and jth days of age 
can be calculated as ziFzTj  for the family effect, wiAw

T
j  

for the additive genetic effect, and siPEsTj  for the per-
manent environmental effect. Therefore, genetic cor-
relations between the ith and jth days of age for a 

trait were estimated by 
wiAw

T
j

√

(wiAw
T
i )(wjAw

T
j )

, phenotypic 

correlations by Pij√
PiiPjj

 with phenotypic covariance 

Pij = ziFz
T
j + wiAw

T
j + siPEs

T
j + σ 2

e I(i = j), and herit-

ability at the ith day of age by wiAw
T
i

Pii
.

Choice of model
When choosing a model for a longitudinal analysis, Sto-
ica and Babu [31] observed that neither the Akaike infor-
mation criterion nor the Bayesian information criterion 
had optimum properties in terms of consistency and 
efficiency, and therefore the authors introduced a new 
criterion, i.e. penalizing adaptively the likelihood (PAL) 
[31], that overcomes these issues. More recently, Corrales 
et al. [32] applied PAL to the selection of the order of the 
Legendre polynomial in RRM. Consider a set of m com-
peting models M1, L,Mk−1,Mk , L,Mm that are ranked in 
ascending order by the number of parameters. The PAL 
criterion for selecting Model k is defined as:

where log (MLk) is the logarithm of the maximum likeli-
hood value of Model k; pk is the number of parameters of 
Model k; pm is the largest number of parameters of com-
peting models; and rk = 2 log

(

MLk−1

)

− 2 log (ML1) 
and ρk = 2 log (MLm)− 2log(MLk−1), with log (ML1), 
log

(

MLk−1

)

 and log (MLm) being the logarithms of the 
maximum likelihood values of Models 1, k−1, and m, 
respectively.

Results
Choice of MRRM
The best MRRM for BWE, BL, and BD was selected by 
separately optimizing the univariate RRM for growth 
traits. The Legendre polynomial for the effect of sex was 
generally modeled by the population’s growth curve, 

(4)PALk = − 2 log (MLk)+ pk log(pm)
log(rk + 1

log(ρk + 1)
,

chosen as the Legendre polynomial of three orders 
according to the highest goodness-of-fit for the three 
analyzed traits. The three random effects, i.e. family, 
additive genetic, and permanent environmental effects, 
was characterized by using Legendre polynomials of 
different orders that ranged from 0 to 3 [3]. The models 
were designated as LPm1m2m3, e.g., LP121 is a model 
with a Legendre polynomial of order 1 for the family 
effect, order 2 for the additive genetic effect, and order 
1 for the permanent environmental effect. A total of 64 
RRM for each analyzed trait were compared based on 
the PAL criterion to determine the best combination of 
orders of the Legendre polynomials for the three random 
effects.

When fitting RRM with constant permanent environ-
mental effects, the variance estimates of these effects 
were statistically inferred as not significant, using stu-
dent t statistics (estimate/standard error). In addition, 
RRM with dynamic permanent environmental effects 
converged poorly in DMU. Therefore, permanent envi-
ronmental effects were not considered in competing 
models. In the remainder, for the nine competing mod-
els, model LP00, which had constant family and addi-
tive effects, was taken as the reference, because the 
−2 log (ML) for the RRM with dynamic additive genetic 
and family effects was consistently lower than for model 
LP00. Based on Eq.  (4), Table 2 presents the calculated 
PAL values for the nine competing RRM. Among these, 
LP23 was chosen for BWE with Legendre polynomials of 
order 2 for the family effect and order 3 for the additive 
genetic effect, while LP13 and LP22 were selected for BL 
and BD, respectively.

Genetic parameters for growth traits
Based on the model choices as described above, the final 
MRRM was constructed to jointly analyze BWE, BL, 
and BD. Based on Model (2), the MRRM, in which Leg-
endre polynomials of different orders were nested, was 
expressed as:

where y1(t), y2(t), and y3(t) are the phenotypes of BWE, 
BL, and BD, respectively.

Covariance estimates
Estimates of the (co)variances (standard errors) of the 
random regression coefficients were for the family effects 
and the genetic additive effects as shown in Figs. 1 and 2, 
respectively.

(5)











y1(t) = µ1 + L
b1
3 (t)+ L

f1
2 (t)+ L

a1
3 (t)+ e1(t)

y2(t) = µ2 + L
b2
3 (t)+ L

f2
1 (t)+ L

a2
3 (t)+ e2(t)

y3(t) = µ3 + L
b3
3 (t)+ L

f 3
2 (t)+ L

a3
2 (t)+ e3(t)

,
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Table 2  Choice of RRM for BWE, BL and BD based on the PAL criterion

The italic values represent results of selected RRMs

Model Parameters BWE BL BD

− 2log(ML) PAL − 2log(ML) PAL − 2log(ML) PAL

LP00 3 59,206.2 36,641.6 28,386.1

LP11 11 47,172.4 47,172.4 30,293.0 30,293.0 23,486.4 23,486.4

LP12 16 45,006.1 45,035.6 29,667.0 29,700.4 22,765.9 22,797.9

LP13 22 44,259.8 44,309.2 29,583.0 29,650.3 22,726.0 22,798.5

LP21 16 46,821.6 46,884.8 30,162.3 30,260.6 23,263.7 23,334.8

LP22 22 44,991.3 45,032.6 29,657.8 29,705.3 22,745.5 22,792.1

LP23 29 44,228.7 44,294.0 29,580.0 29,670.8 22,706.3 22,812.4

LP31 22 46,752.8 46,877.5 30,149.3 30,311.3 23,256.0 24,142.4

LP32 29 44,827.3 44,882.0 29,642.1 29,704.9 22,736.9 22,798.5

LP33 37 44,215.4 44,301.9 29,574.4 29,695.9 22,705.9 22,850.5

Fig. 1  Estimates of the (co)variances (standard errors) of the random regression coefficients for family effects

Fig. 2  Estimates of the (co)variances (standard errors) of the random regression coefficients for additive genetic effects
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Estimates of the (co)variances (standard errors) of 
the random regression coefficients were for the random 
errors as follows:

For each estimated covariance matrix of the random 
regression coefficients (including β0), the diagonal block 
matrices are the covariance matrices for BWE, BL, and 
BD, respectively, while the off-diagonal blocks are the 
covariance matrices between the three growth traits. All 
covariances of the random regression coefficients were 
inferred as significantly different from 0. Estimates of the 
genetic correlations between most of the random regres-
sion coefficients for the additive genetic effects were 
positive, and the few negative genetic correlations were 
mainly between the intercept and the cubic regression 
coefficients or between the linear and cubic regression 
coefficients. In addition, estimates of genetic covari-
ances for the same order random regression coefficients 
between the pairwise growth traits were all positive and 
decreased with increasing order.

Heritability estimates
Table  3 lists the estimated ratios of family variances to 
phenotypic variances and heritabilities for selected days 

RE =





42.06(1.0) 6.2 5.8
6.2(0.3) 7.5(0.2) 1.2
5.8(0.2) 1.2(0.1) 3.7(0.1)



.

of age, using the univariate and multivariate RRM. The 
estimated ratios of family variances to phenotypic vari-
ances for BWE ranged from 0.259 and 0.365 and were 
consistently lower than these ratios for BL and BD for 
the period between 60 and 140  days of age. The esti-
mated heritability obtained with the MRRM ranged 

Table 3  Estimates of ratios of family to phenotypic variances (f2) and of heritabilities (h2) for BWE, BL and BD at selected 
days of age based on the univariate and multivariate RRM

Age Univariate Multivariate

BWE BL BD BWE BL BD

f2 h2 f2 h2 f2 h2 f2 h2 f2 h2 f2 h2

60 0.259 0.108 0.732 0.163 0.698 0.035 0.242 0.080 0.728 0.173 0.653 0.098

65 0.334 0.169 0.654 0.256 0.628 0.141 0.356 0.187 0.656 0.256 0.611 0.177

70 0.392 0.308 0.588 0.335 0.566 0.249 0.428 0.299 0.592 0.331 0.558 0.270

75 0.421 0.401 0.538 0.396 0.527 0.331 0.456 0.378 0.542 0.391 0.514 0.348

80 0.428 0.462 0.500 0.442 0.505 0.386 0.458 0.438 0.504 0.438 0.482 0.405

85 0.422 0.507 0.472 0.478 0.492 0.422 0.447 0.485 0.476 0.474 0.460 0.446

90 0.412 0.541 0.451 0.505 0.483 0.445 0.433 0.521 0.454 0.502 0.445 0.474

95 0.403 0.565 0.435 0.527 0.476 0.461 0.421 0.547 0.438 0.523 0.436 0.494

100 0.395 0.581 0.422 0.544 0.469 0.472 0.412 0.565 0.427 0.539 0.430 0.508

105 0.392 0.590 0.413 0.556 0.463 0.480 0.406 0.576 0.420 0.550 0.426 0.518

110 0.391 0.595 0.408 0.565 0.456 0.488 0.403 0.583 0.416 0.557 0.422 0.527

115 0.392 0.597 0.406 0.570 0.449 0.496 0.402 0.587 0.415 0.561 0.418 0.535

120 0.393 0.598 0.406 0.571 0.442 0.506 0.401 0.590 0.416 0.562 0.412 0.545

125 0.393 0.600 0.409 0.570 0.433 0.520 0.398 0.595 0.418 0.561 0.404 0.556

130 0.389 0.605 0.414 0.566 0.421 0.538 0.391 0.603 0.422 0.560 0.392 0.570

135 0.380 0.615 0.420 0.563 0.404 0.560 0.379 0.616 0.424 0.559 0.377 0.588

140 0.365 0.632 0.423 0.560 0.379 0.588 0.362 0.635 0.423 0.562 0.358 0.610

Growth day
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Fig. 3  Estimated heritabilities by age for the three growth traits. 
Square for BWE, diamond for BL, and triangle point-up for BD
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from 0.080 to 0.635 for BWE, from 0.173 to 0.562 for BL, 
and from 0.098 to 0.610 for BD for the period between 
60 and 140  days of age. Heritability estimates obtained 
from the MRRM were slightly lower than those obtained 
from univariate RRM for BWE and BL, but consistently 
higher for BD. Figure 3 shows that the heritabilities esti-
mated with the MRRM increased with age for all three 
growth traits. Heritabilities changed most rapidly for BD 
and most slowly for BL. Heritabilities for BL were con-
sistently higher than those for the other two traits from 
60 to 75 days of age and those for BWE were higher than 
those for the other two traits from 75 days of age onward. 
Considering 120 days of age as the time to market, herita-
bilities were above moderate and similar among the three 
growth traits.

Correlation estimates
Figure  4 presents a three-dimensional plot of estimates 
of genetic correlations between pairwise traits measured 
at different ages for each of the three growth traits from 
60 to 140 days of age. Patterns of the genetic correlations 
over time were similar for BWE, BL, and BD. Genetic 
correlation estimates between measurements at adjacent 
days of age were close to 1 but decreased monotonously 
as the lag between the days of age increased. In addition, 
genetic correlations between measurements at early days 
of age were lower than those at later days of age. The low-
est genetic correlations were 0.566 for BWE, 0.633 for 
BL, and 0.497 for BD between 60 and 140 days of age.

Table  4 includes family and phenotypic correlations 
between the pairwise selected growth days for BWE. 
Similar to the genetic correlations, phenotypic corre-
lations approached 0.8 for the period between 75 and 
120 days of age. In the earlier growth period, genetic cor-
relations were higher than the phenotypic correlations 
between the pairwise days of age. The minimum family 
correlations were found between growth traits at 60 and 
140  days of age, which were 0.573, 0.702, and 0.664 for 
BWE, BL, and BD, respectively. Family and phenotypic 
correlations for BL and BD were similar to those for BWE 
(see Additional file 1: Tables S1 and S2).

Patterns of the genetic correlations between the pair-
wise growth traits were similar to those between the 
pairwise days of age for the same trait, but they showed 
lower ridges, because the genetic correlation of the 
same trait on the same day is 1 (Fig.  5). Genetic corre-
lations between traits at the same age ranged from 0.89 
at 140  days of age to 0.95 at 60  days of age between 
BWE and BL, from 0.89 to 0.96 between BWE and BD, 
and from 0.85 to 0.95 between BL and BD. In contrast, 
genetic correlations between traits at different days of 
age were lowest between BWE at 140  days of age and 
BL at 60 days of age (0.50), between BWE at 140 days of 

age and BD at 60 days of age (0.47), and between BL at 
60 days of age and BD at 140 days of age (0.44). At har-
vest (120 days of age), genetic correlations were equal to 
0.92 between BWE and BL, 0.94 between BWE and BD, 
and 0.89 between BL and BD.

Family and phenotypic correlations between the pair-
wise growth traits exhibited similar patterns as the 
genetic correlations but different magnitudes at the same 
compared days of age (Fig.  6). Family correlations were 
consistently higher than genetic correlations between 
BWE and BD and between BL and BD. For the same day 
of age, most phenotypic correlations of pairwise growth 
traits were lower than the corresponding genetic and 
family correlations (see Additional file  1: Tables S3, S4 
and S5).

Discussion
In this study, we used an MRRM to estimate heritabilities 
of BWE, BL, and BD based on repeated measurements 
during growth period, as well as genetic correlations 
between pairwise growth traits at specific days of age. 
Legendre polynomials were chosen to characterize the 
influence of fixed and random effects, i.e. family, additive 
genetic, and permanent environmental effects, on growth 
curves. The best MRRM was established by separately 
optimizing univariate RRM for each growth trait, accord-
ing to the PAL. Based on the final MRRM, we found that 
heritabilities increased with age for all traits and that they 
were slightly lower than those obtained by using univari-
ate RRM. In addition, for each trait, genetic correlations 
between measurements decreased monotonously with 
increased lag in days of age. For measurements at the 
same days of age, estimates of heritabilities and genetic 
correlations were close to those previously reported for 
tilapia [4–6, 8, 10–16, 18, 20–22, 33, 34].

For the selected RRM, changes in the genetic effects 
with day of age were optimally modeled for all analyzed 
traits by using Legendre polynomials of three orders. In 
contrast, Rutten et al. [9] and Turra et al. [27] used poly-
nomials of two orders to fit the fixed and random effects, 
without selecting the orders of the polynomials for the 
different fixed and random effects. The non-signifi-
cant variance for the permanent environmental effects 
showed that they have no impact on growth traits. Ratios 
of family variance [9] and of permanent environmental 
variance [27] to phenotypic variance are largely under-
estimated in a population with multiple families, which 
may be caused by the collinearity between the family and 
permanent environmental effects in the RRM used.

Repeated measurements during growth are required 
to estimate changes in both the fixed and the random 
effects with age when applying the RRM to genetic anal-
ysis of growth traits. More longitudinal measurements 
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Fig. 4  Estimates of genetic correlations between traits measured at different days of age (ra) for the three growth traits
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per individual would help to model growth curves with 
a higher goodness-of-fit and to more robustly estimate 
genetic parameters for random regression. However, more 
longitudinal measurements not only increase the experi-
mental costs, but also affect fish growth, especially when 
all experimental individuals are measured together. In 
our experiment, the simultaneous measurement of 1600 
tilapia fish incurred high labor costs and a measuring fre-
quency of once every 15  days influenced fish growth to 
some extent. In future trials, the experimental population 
could be divided into several separately reared subpopula-
tions, and each subpopulation could be observed in turn 
over more growth time-points. The extension of such 
measurements to more families from multiple genera-
tions would also help to identify maternal effects on early 
growth in tilapia within the MRRM framework.

Conclusions
Using repeated records of growth duration from multiple 
families in one generation, first we introduced MRRM 
to genetically analyze growth curves of body weight 
and main morphological traits in genetically improved 
farmed tilapia. The optimal MRRM was chosen by com-
paring the univariate RRM for the analyzed traits sepa-
rately via PAL. By using the covariance functions of the 
MRRM, changes in heritabilities with days of age and 
genetic correlations between lags in days of age were esti-
mated, which could be used to carry out early selection 
for each trait analyzed. More importantly, for phenotypes 
that are measured repeatedly in aquaculture, an MRRM 
can enhance the efficiency of the comprehensive selec-
tion for BWE and the main morphological traits at a spe-
cific age.

Table 4  Estimates of phenotypic (lower triangle) and family (upper triangle) correlations for body weight between pair-
wise measurements at selected days of age

Age 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140

60 1.00 0.98 0.97 0.93 0.89 0.86 0.83 0.80 0.77 0.75 0.72 0.69 0.67 0.64 0.62 0.59 0.57

65 1.00 1.00 0.99 0.98 0.96 0.94 0.91 0.89 0.87 0.85 0.82 0.80 0.78 0.76 0.74 0.72 0.70

70 0.98 0.99 1.00 1.00 0.99 0.97 0.96 0.94 0.92 0.90 0.88 0.87 0.85 0.83 0.81 0.79 0.77

75 0.95 0.97 0.99 1.00 1.00 0.99 0.98 0.97 0.95 0.94 0.92 0.91 0.89 0.88 0.86 0.84 0.83

80 0.92 0.94 0.97 0.99 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.92 0.91 0.90 0.88 0.87

85 0.88 0.90 0.95 0.98 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.93 0.92 0.91 0.90

90 0.84 0.87 0.92 0.96 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92

95 0.81 0.84 0.90 0.94 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.97 0.96 0.95 0.94

100 0.79 0.82 0.87 0.92 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.96

105 0.76 0.79 0.85 0.90 0.94 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97

110 0.74 0.77 0.83 0.88 0.92 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98

115 0.72 0.75 0.80 0.85 0.89 0.92 0.94 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99

120 0.70 0.72 0.77 0.82 0.86 0.89 0.91 0.94 0.95 0.97 0.99 1.00 1.00 1.00 1.00 1.00 0.99

125 0.67 0.69 0.74 0.78 0.82 0.85 0.87 0.90 0.92 0.94 0.96 0.98 0.99 1.00 1.00 1.00 1.00

130 0.64 0.66 0.70 0.74 0.77 0.80 0.82 0.85 0.87 0.90 0.93 0.96 0.98 0.99 1.00 1.00 1.00

135 0.61 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.81 0.85 0.88 0.91 0.95 0.97 0.99 1.00 1.00

140 0.57 0.57 0.59 0.61 0.63 0.65 0.68 0.71 0.74 0.78 0.82 0.86 0.90 0.94 0.97 0.99 1.00
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Fig. 5  Estimates of genetic correlations (rg) between growth traits
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Fig. 6  Estimates of family correlations (rf ) between growth traits
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