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Abstract 

Background:  Genomic prediction and quantitative trait loci (QTL) mapping typically analyze one trait at a time but 
this may ignore the possibility that one polymorphism affects multiple traits. The aim of this study was to develop a 
multivariate Bayesian approach that could be used for simultaneously elucidating genetic architecture, QTL mapping, 
and genomic prediction. Our approach uses information from multiple traits to divide markers into ‘unassociated’ 
(no association with any trait) and ‘associated’ (associated with one or more traits). The effect of associated mark-
ers is estimated independently for each trait to avoid the assumption that QTL effects follow a multi-variate normal 
distribution.

Results:  Using simulated data, our multivariate method (BayesMV) detected a larger number of true QTL (with a 
posterior probability > 0.9) and increased the accuracy of genomic prediction compared to an equivalent univariate 
method (BayesR). With real data, accuracies of genomic prediction in validation sets for milk yield traits with high-den-
sity genotypes were approximately equal to those from equivalent single-trait methods. BayesMV tended to select a 
similar number of single nucleotide polymorphisms (SNPs) per trait for genomic prediction compared to BayesR (i.e. 
those with non-zero effects), but BayesR selected different sets of SNPs for each trait, whereas BayesMV selected a 
common set of SNPs across traits. Despite these two dramatically different estimates of genetic architecture (i.e. differ-
ent SNPs affecting each trait vs. pleiotropic SNPs), both models indicated that 3000 to 4000 SNPs are associated with 
a trait. The BayesMV approach may be advantageous when the aim is to develop a low-density SNP chip that works 
well for a number of traits. SNPs for milk yield traits identified by BayesMV and BayesR were also found to be associ-
ated with detailed milk composition.

Conclusions:  The BayesMV method simultaneously estimates the proportion of SNPs that are associated with a com-
bination of traits. When applied to milk production traits, most of the identified SNPs were associated with all three 
traits (milk, fat and protein yield). BayesMV aims at exploiting pleiotropic QTL and selects a small number of SNPs that 
could be used to predict multiple traits.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Understanding the genetics of quantitative or complex 
traits has been revolutionized by the availability of dense 
panels of single nucleotide polymorphisms (SNPs) that 
cover the genome. Data on SNP genotypes combined 
with phenotypic measurements have been used for three 
purposes: to study the genetic architecture of quan-
titative traits, to map regions of the genome that cause 

variation in these traits (quantitative trait loci or QTL) 
and to predict the genetic or breeding values of individu-
als for quantitative traits. Although different statistical 
methods are commonly used for these three purposes, 
we have argued that a non-linear Bayesian method that 
fits all SNPs simultaneously can be used for all three aims 
[1, 2]. For example, BayesR makes across-breed predic-
tions of breeding values and maps QTL more accurately 
than genomic best linear unbiased prediction (GBLUP) 
[1].

QTL often affect more than one trait [3, 4] but most 
methods that are applied to analyze SNP data use only 
one trait at a time. Multivariate analyses have been 
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found to increase power to detect and map QTL [5] and 
increase the accuracy of estimated breeding values (EBV) 
[6]. For instance, QTL mapping is frequently performed 
in genome-wide association studies (GWAS) by single-
SNP regression, in which the effect of one SNP at a time 
on the trait is tested. Multiple-trait versions of single-
SNP regression have been implemented in various stud-
ies e.g. [7–9]. Multi-trait EBV are frequently calculated 
from pedigree data or from SNP genotypes using BLUP, 
and sometimes have a higher accuracy compared to sin-
gle-trait EBV [10, 11]. In dairy cattle, multi-trait genomic 
prediction models using multi-breed populations (i.e. 
where a trait measured in different breeds is treated as 
multiple traits) have been attempted in several studies to 
account for between-breed differences in QTL effects but 
with limited success [12–16]. The focus of our paper is 
the development of a Bayesian multi-trait genomic pre-
diction method for multiple different traits.

Jia and Jannink [17] and Calus and Veerkamp [18] have 
described non-linear Bayesian methods for the analysis 
of high-density SNP data on multiple traits. However, 
these methods assume that the effects of a QTL on dif-
ferent traits are drawn from a multivariate normal distri-
bution with the same correlation for all QTL, which may 
be incorrect. For instance, an allele of the gene DGAT1 
(diacylglycerol O-acyltransferase 1) increases milk yield 
but decreases milk fat yield in spite of a positive over-
all genetic correlation between milk and fat yields [19]. 
Kemper et al. [1] reported numerous similar cases where 
the pattern of effects of QTL on traits varied, while the 
overall genetic correlation between milk traits was posi-
tive. Some QTL may also affect two traits although there 
is a weak genetic correlation between the traits. Thus, the 
assumption of multivariate normality may be too strong.

The aim of our study was to develop a multivariate 
version of BayesR that uses multiple trait data to decide 
which SNPs should be included in the model but allows 
flexibility in the estimation of the effect of the selected 
SNPs on each of the traits analyzed by estimating the 
effect of selected SNPs independently for each trait. The 

hypothesis under investigation is that multi-trait infor-
mation will improve accuracies of genomic prediction. 
We illustrate the method by applying it to simulated data 
for QTL mapping and genomic prediction, and to real 
data on milk, fat and protein yields from dairy cattle.

Methods
Real data
The available dairy cattle dataset had over 16,000 records 
on Holstein and Jersey cattle from a previous study [1]. 
The reference population consisted of up to 11,527 
Holstein and 4687 Jersey animals, while the validation 
dataset (used to evaluate the accuracy of genomic predic-
tions) consisted of phenotype records for up to 262 Hol-
stein bulls, 105 Jersey bulls, and 361 Australian Red (bull 
and cow) cattle (Table 1). Australian red cattle were never 
included in the reference population, so validation for 
these animals represents across-breed prediction. Aus-
tralian red cattle are more closely related to Holstein than 
to Jersey cattle, as detailed in “Appendix 1”.

Phenotypes are three yield traits (fat, milk and protein 
yield, i.e. FY, MY and PY, respectively) supplied as either 
daughter-trait deviations (for males) or trait-deviations 
(for females) from the Australian Dairy Herd Improve-
ment Scheme [1]. Heterogeneous error variances in 
the phenotypes were accounted for by using a weighted 
analysis, using the weighting procedure outlined by Gar-
rick et  al. [20] and described in detail for this dataset 
by Kemper et  al. [1]. Trait heritabilities and phenotypic 
and genetic correlations between traits were estimated 
using the relationship matrix constructed from pedigree 
data using ASReml [21]. All animals had real or imputed 
genotypes for 632,002 SNPs from the bovine HD array 
[1, 22]. Full details of the imputation and quality control 
procedures for genotypes are described in [22] but they 
include removal of SNPs with very poor imputation accu-
racy and SNPs with low minor allele frequency (less than 
10 copies in the dataset).

GWAS summary statistics (i.e. allele name, allele 
effect and standard deviation) were available from a 

Table 1  Number of records in the reference and validation datasets for Holstein, Jersey and Australian Red dairy cattle

Year-of-birth (YOB) for the animals included in the validation datasets is also provided

FY = fat yield (kg/lac), MY = milk yield (L/lac); PY = protein yield (kg/lac)

*Australian Red animals were only used for validation and never included in the reference population

Breed Traits Total records Reference Validation

Bulls Cows YOB Bulls Cows

Holstein FY, MY, PY 11,789 3049 8478 2005 262 –

Jersey FY, MY, PY 4793 770 3917 2005 105 –

Australian Red* FY, MY, PY 361 – – – 114 247
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previous study [23] which used a subset of Holstein 
cows (N =  444) from this dataset. These statistics were 
for detailed milk phenotypes and we used them to verify 
QTL that were identified using the Bayesian approaches.

Simulated data
Additive QTL were simulated on real dairy cattle geno-
types for a single chromosome to illustrate the impact of 
the multi-trait method on (1) the accuracy of genomic 
predictions, (2) the ability to elucidate genetic architec-
ture and (3) the power of QTL mapping. In the simula-
tion, genotypes consisted of 12,745 SNPs from Bos taurus 
autosome 29 (BTA29) for 3049 Holstein animals from the 
larger reference dataset described above. Simulations 
involved two traits with 10 QTL per trait, two scenarios 
with a different number of pleiotropic QTL and 20 repli-
cates for each scenario. In scenario 1, there were no plei-
otropic QTL (pQTL =  0) and 20 SNPs were randomly 
selected as QTL with effects on either trait 1 or trait 2, 
separately for each replicate. In scenario 2, all QTL had 
pleiotropic effects (pQTL =  1) and thus, 10 SNPs were 
randomly selected for each replicate to have effects on 
both traits. All SNPs chosen as QTL had a minor allele 
frequency higher than 0.01. Additive QTL effects 
explained 0.01 of the phenotypic variance ( σ 2

P ) and were 

calculated for each chosen SNP as 
√

0.01σ 2
P/2a(1− a) , 

where a is the allele frequency of the SNP, and were ran-
domly allocated to have either positive or negative effects 
on the trait. Thus, the heritability of the traits was 0.10. 
The error co-variance between traits was zero.

Statistical analysis
Construction of traits with independent errors
Method BayesMV (described later) requires uncorrelated 
residual errors. Thus, we used a principal component 
analysis to form linear combinations of the three milk 
yield traits to create new traits with zero error covari-
ance. A principal component decomposition was con-
ducted on the error correlation matrix (K, a t × t matrix 
where t  =  number of traits) from the pedigree-based 
multivariate analysis in ASReml [21] [see Additional 
file 1: Table S1]. Then K = BΛB′ , where Λ is a diagonal 
matrix of eigenvalues and B is a t × t matrix of eigenvec-
tors. The linear combinations ( LC ) of traits were con-
structed by LC = B′T−1y , where T is a diagonal matrix 
of error standard deviations and y is the vector of phe-
notypes. The genetic variance of the linear combinations 
is B′T−1GT−1B , where G is the genetic variance–covari-
ance matrix. Estimated breeding values for the original 
traits were constructed for an individual as TBLCGEBV , 
where LCGEBV is the vector of EBV for the linear combi-
nation traits.

Statistical model
The model fitted to the data for both BayesR and 
BayesMV had the general form y = Xb+ Za +Wv + e , 
where y is the vector of phenotypes (i.e. for the linear 
combination of traits), b is a vector of fixed effects, a is a 
vector of polygenic breeding values not explained by the 
SNPs [distributed as N

(

0,Aσ 2
a

)

 , where A is the numera-
tor relationship matrix (from pedigree) and σ 2

a  is the 
additive genetic variance not explained by the SNP], v 
is a vector of SNP effects assumed normally distributed 
[ N

(

0, σ 2
k

)

 , with k = 1, 2, 3 or 4 : σ 2
1 = 0 , σ 2

2 = 0.0001σ 2
a∗ , 

σ 2
3 = 0.001σ 2

a∗ and σ 2
4 = 0.01σ 2

a∗ , where σ 2
a∗ is the additive 

genetic variance estimated from pedigree], W is a matrix 
of standardized SNP genotypes (as defined in “Appen-
dix 2”), and e is a vector of residual errors [distributed as 
N (0,R) , where R is the error covariance matrix, R = Eσ 2

e  
and E−1 is a diagonal matrix of error weights]. We fitted 
both the univariate (BayesR) and multivariate (BayesMV) 
models to the linear combinations. A full description 
of the univariate BayesR used is in [1], while method 
BayesMV is described in the next section. BayesMV dif-
fers from BayesR in that a proportion of the SNPs ( p ) 
are defined as ‘unassociated’ and are assumed to have 
no effect on any trait. BayesR is equivalent to assuming 
that p = 0 , so all SNPs are associated and effects are esti-
mated separately for each trait.

BayesMV
In the BayesMV method, the traits are analyzed simul-
taneously. It is assumed that the residuals ( e ) and poly-
genic effects ( a ) are independent between traits and the 
only connection between traits is the model for the SNP 
effects ( v ). SNPs are either ‘associated’ with prior prob-
ability 1− p or ‘unassociated’ with prior probability p . If 
a SNP is unassociated, it has no effect on any trait. If a 
SNP is associated, the effects on each trait are assumed 
to be independent and drawn from a mixture of nor-
mal distributions, N

(

0, σ 2
k

)

 , with k = 1, 2, 3or 4 : σ 2
1 = 0 , 

σ 2
2 = 0.0001σ 2

a∗ , σ
2
3 = 0.001σ 2

a∗ and σ 2
4 = 0.01σ 2

a∗ , where 
σ 2
a∗ is the additive genetic variance estimated from pedi-

gree [22]. Thus, the probability that the effects of a SNP 
are drawn from each distribution depends on p (the 
probability that the SNP is unassociated) and qj,k (the 
mixing proportion of distribution k for trait j conditional 
on the SNP being associated). For example, consider two 
traits and distribution 1 for trait 1 and distribution 2 for 
trait 2. The probability that the effect of the SNP belongs 
to distributions k1 and k2 is equal to p+ (1− p)q1,k1q2,k2 
when k1 = k2 = 1 and equal to (1− p)q1,k1q2,k2 oth-
erwise. Full details of the model and the Gibbs sam-
pler used to implement the model are in “Appendix  2”. 
Reported effects are posterior means of samples from the 
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Gibbs sampler with at least 30,000 iterations, with 20,000 
iterations discarded as burn-in. Final results are the mean 
of five replicate chains.

Accuracy and bias of genomic predictions
The accuracy of the genomic predictions was assessed in 
the validation population of young Holstein (N =  262), 
Jersey (N  =  105) bulls, and Australian Red animals 
(N = 361) (Table 1). In simulations, accuracies were cal-
culated as r(TBV, GEBV), where TBV is the true breed-
ing value and GEBV is the breeding value predicted using 
SNP genotypes. In the real data, the accuracy of genomic 
predictions was the correlation of predicted breeding val-
ues with daughter-deviations (for bulls) or phenotypes 
(for cows) in the validation dataset, i.e. r

(

ŷ, y
)

 where y is 
a vector of phenotypes for the validation population and 
ŷ is a vector of GEBV for the corresponding animals in y . 
The bias of the predictions was assessed as the regression 
slope b

(

y, ŷ
)

 , where an unbiased (ideal) prediction has a 
regression slope of 1. Accuracy and bias for Australian 
Reds were computed as the average results for bulls and 
cows.

Association analyses
A multi-trait single-SNP regression association analy-
sis method [4] was used in the simulated data for QTL 
mapping for comparison to the Bayesian approaches. 
GWAS association summary statistics from a previ-
ous study [23] were used to verify QTL regions identi-
fied by using BayesMV and BayesR. This data consisted 
of the allele effect and standard deviation for concen-
tration of lactose, minerals (calcium, potassium, mag-
nesium, sodium, phosphorus, sulfate and zinc; mg/kg), 
and proteins (lactoperoxidase, lactoferrin, immunoglob-
ulinG, alpha-lactalbumin, beta-lactoglobulin, kappa-
casein, alpha-S1-casein and beta-casein; mg/g) in milk. 
Briefly, the analysis was for up to 444 cows for which trait 
records had been corrected for non-genetic effects, such 
as herd-year-season and stage of lactation, and a mixed 
linear model was used to detect associations between 
these traits and 609,563 autosomal SNPs with a minor 
allele frequency higher than 0.01. The –mlma-loco option 
using GCTA [24] was used which fits a genomic relation-
ship matrix to account for population structure, where 
SNPs from the chromosome under test are excluded 
from the relationship matrix and the tested SNPs are fit-
ted one-at-a-time as fixed effects.

Results
Simulated data
Genetic architecture
In the simulated dataset, there were 20 and 10 QTL with 
non-zero effects on one or both traits for scenarios 1 and 

2, respectively, and all QTL had a variance of 0.01 σ 2
P . 

Table 2 shows the posterior number of SNPs from joint 
distributions for traits 1 and 2, for BayesR and BayesMV 
(where the joint distribution for BayesR was calculated as 
the product of the posterior probabilities for each trait). 
For example, when pQTL = 0, BayesMV estimated that 
25 SNPs were only associated with trait 1, 23 were only 
associated with trait 2 and 41 SNPs were associated with 
both traits. Considering only trait 1, the number of SNPs 
estimated to have no effect (i.e. to have an effect sampled 
from distribution 1) was equal to 12,569 (12,396 + 173) 
for BayesR and 12,680 (12,643 + 14 + 23) for BayesMV. 
BayesR estimated similar distributions for both scenar-
ios; i.e. hundreds of  SNPs were associated with either 
trait 1 or trait 2, and two to three SNPs were associated 
with both traits. BayesMV estimated the true mixing pro-
portions more accurately especially when the same SNPs 
affected both traits in the simulated data (pQTL =  1). 
When the same SNPs affected both traits (pQTL =  1), 
BayesMV estimated that most of the 17 SNPs classified as 
associated with both traits (i.e. they were sampled from 
non-zero distributions) and the remaining two SNPs 
were associated with either trait 1 or trait 2. However, 
when different SNPs were simulated to affect the two 
traits, BayesMV estimated an inflated number of SNPs 
to be associated with both traits (i.e. 41 when no SNPs 
were simulated to affect both traits). Both BayesR and 
BayesMV fitted more SNPs in the model than the num-
ber of QTL simulated, probably because they fit multiple 
SNPs for a given QTL, each with a small variance, instead 
of only 10 SNPs with a large variance.

Table 2  Posterior mean number of SNPs allocated to each 
component of  the  mixture distribution for  the  two 
simulated traits when analyzed with BayesR or BayesMV

a  QTL were independent (no pleiotropic QTL, pQTL = 0) or completely 
pleiotropic (pQTL = 1.0)
b  Subscripts indicate distributions 1 to 4, where distributions 1 to 4 explain 0, 
0.0001, 0.001 or 0.01 σP

2, respectively
c  The number of simulated QTL is also provided
d  Joint probabilities are the product of posterior probabilities (p and q)

pQTLa Distributionb Simulatedc BayesRd BayesMV

0.0 Unassociated 12,725 – 12,643

(trait1)1_(trait2)1 0 12,396 14

(trait1)2–4_(trait2)1 10 174 25

(trait1)1_(trait2)2–4 10 173 23

(trait1)2–4_(trait2)2–4 0 2 41

1.0 Unassociated 12,735 – 12,728

(trait1)1_(trait2)1 0 12,435 0

(trait1)2–4_(trait2)1 0 148 1

(trait1)1_(trait2)2–4 0 159 1

(trait1)2–4_(trait2)2–4 10 3 15
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QTL mapping
Figure 1 illustrates the results from the BayesMV, BayesR, 
and (the multi-trait) single-SNP regression analyses for 
a single replicate dataset where all QTL were pleiotropic 
(pQTL = 1). The mean posterior probability (PP) that a 
SNP had a non-zero effect on any trait was the criterion 
for mapping QTL. This quantity is estimated directly in 
BayesMV and was calculated as 1 – (probability of being 
in the zero distribution for all traits) in BayesR. In the 
simulated data, the QTL were among the SNPs analyzed, 
so the ideal outcome is that these SNPs have a high PP 
and all others have a low PP. As shown in Fig. 1, the QTL 
were mapped quite accurately by BayesMV, since all the 
high PP SNPs were either a causative SNP or very close 
to one. BayesMV tended to have zero or close to zero PP 

for the remaining SNPs. Compared to BayesMV, BayesR 
showed more SNPs with a low PP. It is very difficult from 
the single-SNP regression GWAS to determine the loca-
tion and possible number of QTL in the simulated data-
set. All methods sometimes assigned the highest PP or 
− log10(P) to non-causal SNPs, demonstrating the influ-
ence of linkage disequilibrium (LD) and other nearby 
QTL on the association statistics in the cattle genotypes.

Results over the 20 replicate datasets are summarized 
in Figure S1 [see Additional file  2: Figure S1]. In sce-
narios where all QTL were pleiotropic (pQTL  =  1.0), 
BayesMV had greater power to detect QTL (i.e. where 
power  =  number of detected causative SNPs/total 
number of causative SNPs) when the PP was high 
(PP  >  0.9). This was achieved with approximately the 

Fig. 1  QTL mapping in simulated data where all QTL are pleiotropic. The mean posterior probabilities (PP) of SNPs having a non-zero effect for any 
trait for multivariate (BayesMV, top) and univariate (BayesR, middle) methods with the –log10(P value) for the multi-trait single-SNP genome-wide 
association study (GWAS, bottom) are shown. Results for simulated QTL are highlighted in orange and their position marked with dashed vertical 
lines
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same false-discovery rate (FDR), (i.e. number of detected 
unassociated SNPs/total number of detected SNPs) as 
BayesR. In simulations with no pleiotropy, BayesMV had 
similar power but a higher FDR than BayesR. This was 
likely caused by SNPs that influenced trait 2 being sam-
pled more frequently from the non-zero distributions 
for trait 1 (i.e. joint probabilities from BayesMV indi-
cated that there were 41 SNPs that had non-zero effects 
for both traits but no QTL were simulated to affect both 
traits).

Genomic prediction
The accuracy of predictions from the simulated data 
were high (~ 0.90) when validated in a population sim-
ilar to the reference dataset (Holstein) but lower when 
used for across-breed prediction (validated in Jersey, 
Table  3). Accuracies were much higher than what is 
typically observed in real data but this is as expected 
when causative QTL are included in the analyzed set of 
SNPs, and when the sizes of QTL effects are relatively 
large (0.01 σ 2

P ). In simulations without pleiotropic QTL 
(pQTL = 0), BayesR and BayesMV achieved very similar 
accuracies of prediction, both for the Holstein and the 
Jersey validation datasets (Table  3). However, when all 
QTL were pleiotropic (pQTL = 1.0), BayesMV had sig-
nificantly higher prediction accuracy than BayesR by on 
average 0.08 for Holstein validation and 0.14 for Jersey 
validation.

Real data
Linear decomposition of traits
Milk yield traits had moderate heritabilities (h2  ~  0.5) 
and moderate-high genetic correlations between them 
(0.5  to  0.8) [see Additional file  1: Table  S1]. The eigen-
vector coefficients for the milk production traits showed 
that the first linear combination (LC1) was positively 

correlated to all three yield traits, the second linear com-
bination (LC2) was primarily fat yield corrected for milk 
and protein yield, and the third linear combination (LC3) 
was protein yield corrected for milk yield (Table 4). Her-
itability estimates for the linear combination of traits 
were moderate to high (0.45 to 0.88, Table 4).

Genetic architecture
The distribution of SNPs across the four distributions 
was relatively consistent between BayesR and BayesMV 
(Table  5), i.e., both methods found that 3000  to  4000 
SNPs had non-zero effects for each trait. These findings 
were also consistent with the analysis of the original milk 
yield traits [see Additional file  3: Table  S2]. The differ-
ence between the methods was that BayesMV explained 
all three traits by the same SNPs. For example, only 4092 
associated SNPs were identified in the combined Hol-
stein/Jersey reference set, most of which had effects for 
all three traits. For instance, joint probabilities identi-
fied only one SNP in the associated class that had a zero 
effect for all three traits, 79 SNPs with effects for only one 
trait, 949 SNPs with effects for two traits, and 3062 SNPs 
with effects for all three traits. In contrast, for BayesR, 
although the number of SNPs with non-zero effects per 
trait was similar to that observed for BayesMV, almost 

Table 3  Accuracy of genomic predictions for the analysis of the two simulated traits with BayesR and BayesMV for two 
pleiotropy scenarios

SE standard error (across replicates)
a  QTL were independent (no pleiotropy, pQTL = 0) or completely pleiotropic (pQTL = 1.0) and accuracies are for validation within-(Holstein) or across (Jersey) breeds

Method Pleiotropya Trait Holstein Jersey

Accuracy SE Accuracy SE

BayesR pQTL = 0 1 0.88 0.07 0.78 0.15

2 0.88 0.04 0.82 0.10

pQTL = 1.0 1 0.89 0.05 0.77 0.15

2 0.89 0.04 0.80 0.14

BayesMV pQTL = 0 1 0.89 0.06 0.80 0.15

2 0.90 0.04 0.84 0.11

pQTL = 1.0 1 0.97 0.02 0.96 0.04

2 0.97 0.01 0.96 0.04

Table 4  Eigenvectors applied to  each trait to  construct 
linear combinations (LC1, 2 and  3) with  zero error 
co-variance for the milk production traits

a  Estimated heritability of the linear combinations

LC1 LC2 LC3

Fat yield 0.55 0.83 − 0.01

Milk yield 0.59 − 0.39 − 0.70

Protein yield 0.59 − 0.39 0.71

Heritability (h2)a 0.45 0.73 0.88
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11,500 SNPs had effects for at least one trait and only one 
SNP had effects for all three traits. Both models estimated 
that the Holstein or Jersey reference populations each had 
fewer associated SNPs (i.e. with non-zero effects) than the 
combined breed reference population. This is as expected 
if some QTL segregate in one breed only.

QTL mapping
QTL mapping by BayesMV was assessed in the real 
data by investigating the top 100 SNPs with the high-
est PP for inclusion in the model [see Additional file  4: 
Table S3]. These 100 SNPs were grouped into four types 
of QTL based on their pattern of effects on milk, fat 

and protein yield, where the effect of a SNP for a trait 
was transformed from the LC as TBLCSNP , with LCSNP 
being the vector of SNP effects for the linear combina-
tions and B the matrix of eigenvectors from Table 4. The 
largest group of SNPs corresponded to those that had 
opposite effects on fat yield versus milk volume and pro-
tein yield. This group included several previously mapped 
loci such as DGAT1 [19], GPAT4 (glycerol-3-phosphate 
acyltransferase 4) [25] and MGST1 (microsomal glu-
tathione S-transferase 1) [26]. The second largest group 
of SNPs corresponded to those where an allele increased 
milk volume and milk solids (fat and protein yields). In 
some cases, two SNPs that were less than 100 Mbp apart 
showed a high PP but different patterns of effects, poten-
tially indicating two or more QTL (i.e. BTA3 at about 
15.5 Mbp). We chose two regions on chromosomes 11 
and 19 for further investigation, where SNPs with a high 
PP from the BayesMV analysis also overlapped with 
SNPs associated with either lactoglobulin or potassium 
concentration [see Additional file 5: Table S4].

The mean PP from BayesMV and BayesR on chro-
mosome 11 is shown in Fig.  2. The SNP identified by 
BayesMV is located downstream of PAEP (progesta-
gen associated endometrial protein; formally known as 
LGB or lactoglobulin beta), while the SNP identified by 
BayesR is within the coding region of PAEP. The fig-
ure also shows the GWAS results for beta-lactoglob-
ulin concentration, for which the SNPs identified by 
both BayesMV (BovineHD1100030073) and BayesR 
(BovineHD1100030066) were among those that were 

Table 5  Posterior mean number of  SNPsa in  each 
distribution for  milk production traits from  BayesMV 
or BayesR

a  The posterior mean number of unassociated SNPs from BayesMV is shown 
with the joint probability of a non-zero effect on one or more traits. Joint 
probabilities are the product of posterior probabilities (p and q)
b  Traits are three linear combinations (LC1, LC2, LC3) of fat, milk and protein 
yield
c  Subscripts indicate distributions 1 to 4, each explaining 0, 0.0001, 0.001 or 0.01 
of the genetic variance

Reference Distributionb,c BayesR BayesMV

Hol_Jer Unassociated – 627,911

LC11_LC21_LC31 620,515 1

LC11_LC21_LC32–4 3504 11

LC11_LC22–4_LC31 2994 4

LC12–4_LC21_LC31 4913 64

LC11_LC22–4_LC32–4 21 47

LC12–4_LC21_LC32–4 29 685

LC12–4_LC22–4_LC31 25 218

LC12–4_LC22–4_LC32–4 1 3062

Holstein Unassociated – 628,451

LC11_LC21_LC31 621,268 0

LC11_LC21_LC32–4 2817 2

LC11_LC22–4_LC31 3110 4

LC12–4_LC21_LC31 4743 12

LC11_LC22–4_LC32–4 17 50

LC12–4_LC21_LC32–4 22 124

LC12–4_LC22–4_LC31 25 234

LC12–4_LC22–4_LC32–4 0 3124

Jersey Unassociated – 630,779

LC11_LC21_LC31 624,314 0

LC11_LC21_LC32–4 1957 3

LC11_LC22–4_LC31 1366 3

LC12–4_LC21_LC31 4335 1

LC11_LC22–4_LC32–4 6 101

LC12–4_LC21_LC32–4 14 28

LC12–4_LC22–4_LC31 10 30

LC12–4_LC22–4_LC32–4 0 1057

Fig. 2  Mean posterior probability and associations with 
beta-lactoglobulin concentration on bovine chromosome 11. The 
posterior probability (PP) for a SNP being associated with any trait 
from BayesMV and BayesR and the single-SNP association analysis 
results are shown. The PAEP coding region (formally LGB, lactoglobulin 
beta) is highlighted in grey
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most highly associated with beta-lactoglobulin concen-
tration (P  <  1 ×  10−39; effect ≈  0.68  mg/g). Although a 
QTL near LGB is known to affect milk volume, fat and 
protein yields [27], identification of the causal muta-
tion for this QTL has been difficult due to strong LD in 
the region. The effect of the SNP that was identified by 
BayesMV had opposite effects on fat yield versus milk 
and protein yield.

The second QTL investigated was a novel region on 
chromosome 19, near the KCNJ2 (potassium voltage-
gated channel subfamily J member 2) gene [see Additional 
file  6: Figure S2]. The BovineHD1900017548 SNP was 
the most significant variant in the region for potassium 
concentration (P = 1.21 × 10−7; effect = − 62.87 mg/kg) 
and had a high PP with both BayesR and BayesMV. This 
SNP had opposite effects on protein yield versus milk 
and fat yield. KCNJ2 is potassium transporter that tends 
to transport potassium into (rather than out of ) the cell 
(NCBI GeneID: 3759 [28]).

Genomic prediction
Genomic prediction accuracies for milk yield traits were 
moderate to high for breeds that were included in the 
reference population (~  0.65 for FY, 0.62 for MY, and 
0.58 for PY in Holstein; 0.57 for FY, 0.69 for MY, and 

0.71 for PY in Jersey) but relatively low for Australian 
Reds, which were not included in the reference popula-
tion (~ 0.27 for FY, 0.18 for MY and 0.09 for PY; Table 6). 
Results from linear combinations were consistent with 
previous BayesR analyses of traits in their original form, 
which were higher than obtained in a previous univari-
ate analysis using GBLUP [see Additional file 7: Table S5]. 
The BayesMV analysis tended to have similar or slightly 
higher prediction accuracies than the BayesR analyses 
when validated in the Holstein set (Table  6) but similar 
or slightly lower accuracies for the Jersey and the Austral-
ian Reds validation sets. This could be due to fewer SNPs 
having non-zero effects in the BayesMV compared to the 
BayesR analysis and SNP effects being estimated in a ref-
erence population composed mostly of Holstein animals. 
Estimates of bias were similar to those from a previous 
analysis of the traits [1] and biases failed to show consist-
ent differences, either when comparing bias of results for 
the original traits to those for the linear combinations of 
traits, or when comparing univariate and multivariate 
analyses of the linear combinations.

Discussion
Many genomic prediction and QTL mapping methods 
consider only one trait at a time. In this paper, we present 
a multivariate method for simultaneous QTL mapping, 

Table 6  Accuracy and  bias of  genomic predictions for  milk productiona traits using different reference populations 
and different analysis methods and when validated in Holstein, Jersey or Australian Red animals

a  Milk production traits were fat yield (FY), milk yield (MY) and protein yield (PY)
b  Methods were either BayesR on raw phenotypes (BayesR), linear combinations of traits analyzed with univariate BayesR (BayesR_LC) or the multivariate BayesMV 
method
c  Standard errors are approximately 0.062 for Holstein, 0.098 for Jersey and 0.074 for Australian Red predictions
d  Univariate results from Kemper et al. [1]

Analysis methodb Reference dataset Validation dataset Accuracyc Bias

FY MY PY FY MY PY

BayesRd Holstein Holstein 0.63 0.62 0.58 1.22 0.89 1.02

BayesR_LC Holstein Holstein 0.65 0.62 0.57 1.17 0.91 0.99

BayesMV Holstein Holstein 0.65 0.63 0.59 1.21 0.89 1.03

BayesRd Hol_Jer Holstein 0.65 0.63 0.58 1.25 0.89 0.99

BayesR_LC Hol_Jer Holstein 0.65 0.62 0.58 1.14 0.90 0.97

BayesMV Hol_Jer Holstein 0.66 0.63 0.58 1.17 0.87 0.97

BayesRd Jersey Jersey 0.56 0.70 0.72 0.89 0.98 1.24

BayesR_LC Jersey Jersey 0.57 0.70 0.72 0.70 1.05 1.17

BayesMV Jersey Jersey 0.55 0.70 0.71 0.81 1.00 1.11

BayesRd Hol_Jer Jersey 0.56 0.69 0.71 0.93 0.95 1.18

BayesR_LC Hol_Jer Jersey 0.58 0.69 0.73 0.92 1.00 1.20

BayesMV Hol_Jer Jersey 0.55 0.66 0.69 0.92 0.96 1.15

BayesRd Hol_Jer Aust Red 0.26 0.22 0.10 0.89 0.56 0.38

BayesR_LC Hol_Jer Aust Red 0.28 0.20 0.12 0.87 0.53 0.41

BayesMV Hol_Jer Aust Red 0.26 0.14 0.07 0.75 0.34 0.25
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analysis of genetic architecture, and genomic prediction, 
i.e. BayesMV (a multivariate form of BayesR). BayesMV 
uses information on multiple traits for the selection of 
SNPs to be included in the model and within-trait infor-
mation for estimation of the effects of the selected SNPs. 
It assumes that SNPs fall into one of two classes: either 
they have no effect for any trait or they have an effect for 
one or more traits.

The results using simulated data showed that BayesMV 
can have three advantages over BayesR: BayesMV cor-
rectly identifies QTL that affect multiple traits, it maps 
the QTL more precisely, and it predicts breeding values 
with greater accuracy. However, when no pleiotropic 
SNPs were simulated, BayesMV still identified some 
SNPs with effects for both simulated traits. High false-
discovery rates when no pleiotropic QTL are present 
seems a common problem for multi-trait methods that 
assume pleiotropic effects [9]. The size and number of 
QTL that affect traits also influences the performance of 
multi-trait methods. For example, Jia and Jannink [17] 
used simulation to show that non-linear multivariate 
methods can outperform multivariate GBLUP in terms 
of genomic prediction accuracy when QTL of large effect 
segregate for traits. Furthermore, Chen et al. [12] showed 
that improvements in the accuracy of genomic predic-
tions using a multivariate non-linear Bayesian approach 
were modest (compared to univariate methods) when 
the traits were affected by many segregating QTL com-
pared to traits with few QTL of large effect. Experimental 
power to detect QTL (i.e. sample size) also influences the 
conclusions drawn, with non-linear methods tending to 
have higher accuracy for genomic predictions compared 
to GBLUP as sample size increases [1]. Thus, our simula-
tion results should be interpreted with caution since they 
depend on how the simulations are constructed. How-
ever, they do demonstrate that BayesMV can outperform 
single-trait methods when the genetic architecture of the 
analyzed traits matches the assumptions that underlie the 
BayesMV model.

For the real milk yield data from dairy cattle, the advan-
tage of BayesMV over BayesR was not as clear. For exam-
ple, BayesMV showed limited advantage over BayesR in 
accuracy of genomic prediction, which is not entirely 
unexpected. With pedigree-based BLUP, multi-trait EBV 
are only slightly more accurate than single-trait EBV 
when all traits are measured on all animals and the traits 
have similar heritability [29]. Using genomic prediction 
for psychiatric disorders, Maier et  al. [30] observed a 
2  to  3% increase in predictive ability for schizophrenia, 
bipolar disorder, and major depressive disorder when 
using multivariate GBLUP compared to the univariate 
models. These data included a large number of miss-
ing records (i.e. each individual was recorded for only 

one trait), traits with moderate and similar heritabilities 
(~ 0.25), and moderate genetic correlations between traits 
(~ 0.4 to 0.6). These results agree with several simulations 
that used GBLUP multivariate genomic predictions [17, 
18]. Thus, for genomic prediction, the advantage of mul-
tivariate over univariate GBLUP depends on the genetic 
correlation between traits and the number of (new) 
records contributed by the trait(s) added to the analysis. 
Similar conclusions have been drawn for multi-trait ver-
sus univariate GWAS models [9] and for prediction accu-
racies of non-linear multivariate versus univariate models 
[17]. That is, multivariate models increase the accuracy of 
genomic predictions for low heritability traits that have a 
strong genetic correlation with a trait that has moderate 
to high heritability and when additional records meas-
ured on a trait with high heritability are added to the 
analysis.

Studies that implement multi-trait genomic prediction 
methods are often motivated by multi-breed prediction 
problems and use the flexibility that is inherent in these 
models to share information across breeds [12–16]. For 
example, BayesRS uses location-specific priors to share 
information across breeds about the location of QTL 
regions [14], while other implementations accumulate 
evidence for QTL across multiple breeds and estimate 
SNP effects within breed [12, 13]. Thus, information 
that is shared in both the multi-breed approach and our 
approach impacts the SNP selection step, rather than the 
estimation step, of the analysis. Our method could eas-
ily be applied to multi-breed genomic prediction prob-
lems (with the simplification that there is no error in the 
covariance between traits).

Single-trait methods, such as BayesR, often identify 
SNPs that are close to each other but where each SNP 
appears to be associated with a different trait. The ques-
tion then arises whether there is one QTL that affects 
both traits (pleiotropy) or two linked QTL that each 
affect one trait. The BayesMV method attempts to solve 
this question but its ability to do so is limited by the 
information contained in the data. BayesMV makes no 
assumptions about presence of pleiotropic (one QTL 
affecting more than one trait) versus linked QTL (mul-
tiple QTL each affecting one trait). Any particular SNP 
can have effects for none, some, or all traits. In the simu-
lated data, BayesMV estimates the traits that each SNP 
was associated with moderately well but not perfectly, 
as shown by the results. The high degree of LD in dairy 
cattle populations may make it difficult to distinguish 
between pleiotropic QTL and multiple non-pleitropic 
QTL that are in high LD and each associated with one 
trait. Fitting all SNPs simultaneously partly accounts for 
LD but it is impossible to distinguish between pleiotropy 
and linkage if the linked QTL are in perfect LD. Thus, 
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although our method is motivated by pleiotropic QTL, 
we cannot distinguish pleiotropy from tightly linked 
loci. The distinction, between pleiotropy and linkage, is 
important for QTL discovery but is inconsequential for 
genomic prediction.

In the real data, the five independent chains for the 
BayesMV implementation all showed that most SNPs 
either have no effect or have effects for all three traits. 
These results are markedly different from the single-trait 
BayesR results, where less than 100 SNPs had effects for 
more than one trait (Table 5). In spite of these apparent 
differences in estimated architectures, the accuracy of 
prediction was similar between the multi-trait and single-
trait methods (Table  6). We speculate that the high LD 
in cattle, coupled with the traits being highly polygenic 
and having many more predictors than records ( p ≫ n ) 
results in many possible solutions for prediction that 
yield similar accuracies. However, our results do show 
that one of these possible solutions includes a situation 
where most selected SNPs have effects for both milk vol-
ume and composition. Further information on pleiotropy 
versus linkage can be gained from the pattern of effects 
of each SNP across the three traits. For instance, the 
region identified on chromosome 3 appeared to harbor 
two close QTL, one at 15.4 Mbp affecting protein yield 
and one at 15.6 Mbp affecting milk yield (see Additional 
file 4: Table S3). In contrast, the SNPs on chromosome 14 
at 1 to 2 Mbp, all had the same pattern of effects for the 
three traits and may all be tracking DGAT1. In this case, 
BayesMV may fit multiple SNPs for one QTL because 
the causal mutation is not in the data and because of the 
uncertainty caused by limited sample size.

We analyzed uncorrelated linear combinations of the 
three traits to reduce computing time and to minimize 
pleiotropy. Since milk, fat and protein yields are highly 
genetically correlated, the presence of pleiotropic QTL is 
highly plausible. Therefore, an analysis based on the three 
original traits was certain to find extensive pleiotropy. 
The transformation that was applied (based on the resid-
ual covariance matrix) does not guarantee zero genetic 
correlations but in the case of milk, fat and protein yields, 
the genetic correlations of the transformed traits were 
assumed low. However, a general procedure would be a 
canonical transformation, e.g. [31], where variables are 
both environmentally and genetically uncorrelated.

A consistent finding for both the BayesMV and the 
univariate BayesR analyses was that 3000  to  4000 SNPs 
have non-zero effects for milk yield traits. The BayesMV 
analysis may imply that most of the QTL tracked by these 
SNPs affect all three traits. The GWAS of detailed milk 
composition supported this conclusion by showing that, 
in some cases at least, the same SNPs were associated 

with additional milk composition traits, such as the con-
centration in milk of beta-lactoglobulin and potassium.

The major difference that we observed between the 
BayesMV and BayesR methods was that BayesMV 
identifies SNPs with effects for all traits in the analy-
sis. Using the linear combinations of traits, BayesMV 
identified a subset of SNPs that adequately explained 
variation in multiple traits. This has potential practi-
cal value because it means that we could identify a lim-
ited number of SNPs that could be genotyped rather 
than imputed and these SNPs could be used for mul-
tiple-trait EBV calculation. However, LD between the 
causal mutations and SNPs may differ between breeds, 
which may limit the realized advantage of BayesMV in 
multi-breed data (compared to univariate methods), 
particularly when relying on high-density SNPs. The 
application of BayesMV to sequence data could over-
come this limitation and should increase power to 
identify the causal variants over univariate methods. If 
many unrelated traits are combined in an analysis, it 
is possible that a very large number of sequence vari-
ants (~  100  K [32]) will have estimated effects for at 
least one trait, but the number of associated SNPs 
should still be much smaller than the total number of 
polymorphisms in the genome. This would especially 
be the case if the hypothesis of universal pleiotropy 
holds, i.e. a mutation at any locus has the potential to 
affect many (or most) traits [33, 34]. Simultaneously 
analyzing traits within a physiological domain, as we 
have done here, is a practical first-step to assessing and 
using pleiotropy.

Conclusions
We have implemented a multivariate version of the 
BayesR methodology that is designed to exploit pleio-
tropic effects of causal loci to improve mapping ability 
and, in turn, improve accuracy of genomic predictions. 
A key feature of our method is that across-trait infor-
mation is used in the selection of SNPs but effects of 
SNPs are estimated independently for each trait. Our 
model performed well in simulated datasets where 
causal mutations were included in the analyzed SNPs 
and the QTL had relatively large effects (1% of phe-
notypic variance). In real data, the multivariate model 
identified most selected SNPs to be associated with all 
three milk yield traits (fat, milk and protein yield) but 
we found little evidence to support our hypothesis that 
multi-trait information would improve genomic predic-
tion accuracies in milk yield traits for dairy cattle. An 
advantage of the new method is that it selects a small 
subset of SNPs that could be used for genomic predic-
tion for multiple traits.
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Appendix 1
Wright’s fixation index (FST) and a per-breed measure of 
inbreeding [2FST/(1 +  FST)] were calculated [35] for all 
pair-wise combinations of the three dairy breeds (Hol-
stein, Jersey, Australian Reds) and six additional beef 
breeds (Angus, Charolais, Hereford, Limousin, Murray 
Grey and Shorthorn, from [36]) using 610,123 autoso-
mal SNPs. Beef breeds were included to provide addi-
tional context for the genetic relationships between 
the dairy breeds. The ‘ape’ package in R [37, 38] was 
used to construct an unrooted tree of the relationships 
between the breeds using the neighbor-joining method. 
The resultant tree [see Additional file 8: Figure S3] indi-
cates that Jerseys are highly differentiated from all other 
breeds (e.g. FST: Holstein-Jersey  =  0.08; FST: AustRed-
Jersey  =  0.072), including the beef breeds, and that 
Australian Reds are closely related to Holsteins (FST: 
AustRed-Holstein = 0.033).

Appendix 2
The model fitted to each trait is:

where
y is a vector of n phenotypes for cows or bulls,
b is a vector containing the overall mean, breed and sex 

effects,
a is a vector of u polygenic breeding values, distributed 

as N (0,Aσ 2
a),

v is a vector of m SNP effects,
e is a vector of n residual errors, distributed as N (0,R),
X is a design matrix allocating phenotypes to mean and 

sex effects,
Z is a design matrix allocating phenotypes to polygenic 

breeding values ( Z = n by u matrix),
W is a standardized genotype matrix ( W = n by 

m matrix), where w is the first column of W and 
w =

(

W ∗
l − W̄ ∗

l

)

/σl , σ 2
l = 2c(1− c) , c = W̄ ∗

l /2 and W ∗
l  is 

the first column of a n×m matrix of genotype calls,
A is a numerator relationship matrix,
R is an error covariance matrix, where R = Eσ 2

e  and 
E−1 is a n by n diagonal matrix of error weights. 

y = Xb+ Za +Wv + e,
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Calculation of the weights follows [1, 20], we used d
(

1−r2
)

4−h2
 

for bulls and t
(

1−h2
)

1+(t−1)r−th2
 for the cows (where t is the 

number of records per cow, r is the trait repeatability, d is 
the number of daughters per sire and h2 is the heritability 
of the trait).
σ 2
a  is the additive genetic variance not explained by the 

SNPs.
σ 2
e  is the error variance.

It is assumed that the residuals ( e ) and polygenic effects 
( a ) are independent between traits. The only connec-
tion between traits is the model for the SNP effects ( v ) as 
explained below.

Priors
The mean, breed and sex effects ( b ), and polygenic effects 
( a ) were assigned an uninformative normal prior distri-
bution. The prior for the variance parameters ( σ 2

a  and σ 2
e  ) 

were scaled inverse Chi squared distribution with n− 2 
degrees of freedom.

BayesMV introduces (compared to the univariate equiv-
alent BayesR) a parameter p , which is the proportion of 
unassociated SNPs (i.e. SNPs with zero effect on all traits). 
For SNPs in the associated class ( 1− p ), the prior distri-
bution for the SNP effects ( v ) follows Erbe et al. [22] and 
assumes SNP effects are from a mixture of four zero mean 
normal distributions with 0, 0.0001 σ2

a∗
 , 0.001 σ2

a∗
 or 0.01 

σ
2
a∗

 variance (where σ2
a∗

 is the genetic variance, as esti-
mated from pedigree analysis) and mixing proportions 
qk ,j for distribution k from trait j. The genetic variance was 
assumed known and determined prior to the analysis, i.e. 
see Table 4 for heritability estimates. The mixing propor-
tions ( p and q ) follow Dirichlet distributions with one 
pseudo count in each category. Note that the distribution 
from which the effect of an associated SNP is drawn for 
one trait is independent of that for other traits.

Gibbs sampling
Note that in the following, the current estimates of the 
parameters in the Gibbs sampler (e.g. b̃ ) are distinguished 
from the final estimates (e.g. b̂ ) using superscripts.

For each trait,

1.	 Sample σ 2
e  from a scaled inverse Chi squared distri-

bution with mean equal to ẽ′E−1ẽ and n− 2 degrees 
of freedom, where ẽ = y− Xb̃− Zã−Wṽ , and b̃ , ã 
and ṽ are the current estimates of the parameters.

2.	 Sample estimates for the mean and sex effects from a 
normal distribution with mean 

[

X ′R−1X
]−1

X ′R−1y∗ 
(where y∗ is the phenotype y corrected for the cur-
rent estimates of all other terms in the model) and 
variance 

[

X ′R−1X
]−1.

3.	 Sample polygenic effects for animal i from a normal 
distribution with mean 
[

Z′
iR

−1
ii Zi + A−1

ii σ−2
a

]−1
Z′
iR

−1
ii y∗ (where Zi is the row 

corresponding to animal i in Z , and A−1
ii  and R−1

ii  are 
the i th diagonal elements of A−1 and R−1 , respec-
tively) and variance 

[

Z
′

iR
−1
ii Zi + A−1

ii σ−2
a

]−1
.

4.	 Sample the polygenic variance from a scaled inverse 
Chi squared distribution with mean ã′A−1ã and 
n− 2 degrees of freedom.

Combining the data for all traits,

5.	 Sample the effect of each SNP as follows:
(a)	 Sample the SNPs as unassociated with probability 

p
∏

J Lj,1

p
∏

J Lj,1+(1−p)
∏

J

(
∑

K Lj,kqj,k
) , where Lj,k is the likeli-

hood of the SNP being sampled from distribution k 
for trait j , K  is the number of distributions (i.e. K  = 4), 
J is the number of traits, p and qj,k are the mixing pro-
portions and the first distribution for each trait has 
zero variance. The log-likelihood is calculated as 
ln
(

Lk ,j
)

= −0.5
[

ln
(

1+ w
′R−1

wσ 2
k ,j

)

+ y∗′j R
−1y∗j − y∗j R

−1
wvk ,j

]

 , 

where σ 2
k ,j is the variance of distribution k for trait j , y∗j  

is the phenotype for trait j corrected for all other cur-
rent effects in the model, w is a vector of genotypes for 
the current SNP and 
vk ,j =

[

w′R−1w + σ−2
k ,j

]−1
w
′R−1y∗j .

(b)	 If the SNP is sampled as unassociated, the SNP 
effect for all traits is set to zero and the algorithm 
moves onto the next SNP.

(c)	 If the SNP is sampled as associated, the distribution 
k is sampled independently for each trait j with 
probability Lj,kqj,k

∑

J ,K Lj,kqj,k
.

(d)	 Using the sampled distributions, the effect of each 
SNP is sampled for each trait from 
N (vk ,j′ ,

[

w′R−1w + σ 2
k ,j

]−1
).

6.	 Update p by sampling from a Dirichlet distribution 
given by p ∼ Dir(α + β0), where α′ = (1, 1) is the 
prior and β0 is the current number of markers in the 
associated and unassociated class.

Update qj,k for each trait by sampling from a Dir-
ichlet distribution given by qj,k ∼ Dir

(

γ+ εk,j

)

 , where 
γ
′ = (1, 1, 1, 1) is the prior and εk,j is the current number 

of markers with effects sampled from distribution k for 
trait j.
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