
Wientjes et al. Genet Sel Evol           (2018) 50:65  
https://doi.org/10.1186/s12711-018-0434-6

RESEARCH ARTICLE

Required properties for markers used 
to calculate unbiased estimates of the genetic 
correlation between populations
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Abstract 

Background:  Generally, populations differ in terms of environmental and genetic factors, which can create differ-
ences in allele substitution effects between populations. Therefore, a single genotype may have different additive 
genetic values in different populations. The correlation between the two additive genetic values of a single genotype 
in two populations is known as the additive genetic correlation between populations and thus, can differ from 1. Our 
objective was to investigate whether differences in linkage disequilibrium (LD) and allele frequencies of markers and 
causal loci between populations affect the bias of the estimated genetic correlation. We simulated two populations 
that were separated by 50 generations and differed in LD pattern between markers and causal loci, as measured by 
the LD-statistic r. We used a high marker density to represent a high consistency of LD between populations, and 
lower marker densities to represent situations with a lower consistency of LD between populations. Markers and 
causal loci were selected to have either similar or different allele frequencies in the two populations.

Results:  Our results show that genetic correlations were underestimated only slightly when the difference in allele 
frequencies between the two populations was similar for the markers and the causal loci. A lower marker density, 
representing a lower consistency of LD between populations, had only a minor effect on the underestimation of the 
genetic correlation. When the difference in allele frequencies between the two populations was not similar for mark-
ers and causal loci, genetic correlations were severely underestimated. This bias occurred because the markers did not 
predict accurately the relationships at causal loci.

Conclusions:  For an unbiased estimation of the genetic correlation between populations, the markers should accu-
rately predict the relationships at the causal loci. To achieve this, it is essential that the difference in allele frequencies 
between populations is similar for markers and causal loci. Our results show that differences in LD phase between 
causal loci and markers across populations have little effect on the estimated genetic correlation.
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Background
Alleles in different populations are often expressed in dif-
ferent environments and genetic backgrounds. Because of 
genotype by environment interactions and non-additive 
genetic effects, these differences result in different allele 
substitution effects between populations [1–3]. In addi-
tion, the set of loci that underlie a trait can differ between 
populations. Therefore, a single genotype may have dif-
ferent additive genetic values in different populations [2, 

4]. For each population, the additive genetic value is the 
product of the genotype, which is measured as the allele 
count at each locus, multiplied by the allele substitution 
effects for that population. The additive genetic correla-
tion between two populations is the correlation between 
the two additive genetic values of a single genotype in the 
two populations and may differ considerably from 1.

Knowledge of the genetic correlation between popula-
tions helps to understand the differences and similarities 
in genetic architecture of complex traits between popu-
lations [5, 6]. For both genomic prediction and genome-
wide association studies, combining information from 
populations is an attractive approach to increase the 
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accuracy of estimated genetic values or the power to 
identify quantitative trait loci. This is especially the case 
when the number of individuals with marker genotypes 
and phenotypes in a population is limited. For both 
genomic prediction and genome-wide association stud-
ies, the genetic correlation between populations deter-
mines the added benefit of combining information from 
multiple populations [5, 7, 8]. Therefore, the genetic cor-
relation between populations is an important parameter 
in human studies e.g. [5, 9], as well as in animal and plant 
breeding e.g. [10, 11].

To estimate a genetic correlation between two popu-
lations, it is essential to know the relationships between 
individuals from the two populations. Traditionally, 
relationships between individuals are based on pedigree 
information, which generally is only available within 
a population. The current availability of genome-wide 
marker panels has opened up new opportunities to esti-
mate genetic correlations between populations of dis-
tantly related individuals, such as between breeds e.g. 
[10, 12], lines [13], sub-populations e.g. [11], or ethnici-
ties e.g. [5, 9]. Genetic correlations between populations 
can be estimated using methods based on genomic rela-
tionships [10], random regression on marker genotypes 
[14, 15], or summary statistics of genome-wide associa-
tion studies [6, 16]. Wientjes et al. [17] showed that it is 
possible to obtain an unbiased estimate of the genetic 
correlation from genomic relationships based on causal 
loci.

Because causal loci are generally unknown, genomic 
relationships have to be based on marker information. 
It is expected that this creates bias in the estimates of 
genetic correlation, because the strength and phase of 
linkage disequilibrium (LD) between causal loci and 
markers differ between populations in humans [18], 
livestock [19, 20], and plants [21, 22]. Due to imperfect 
LD between causal loci and markers, not all the genetic 
variance is explained by the markers, which can further 
distort the estimation of genetic correlations [16, 23]. 
In contrast to the expectations, a simulation study with 
populations that had different LD patterns showed that 
the estimated genetic correlation between populations 
based on marker information was only slightly biased 
[7]. This contrast indicates that the impact of differences 
in LD patterns between populations on the estimated 
genetic correlation remains unclear.

The objective of this study was to investigate whether 
differences in LD patterns between populations and dif-
ferences in allele frequencies of markers and/or causal 
loci between populations  affect bias of the estimated 
genetic correlation. We simulated two populations that 
were separated by 50 generations using scenarios that dif-
fered in consistency of LD between populations, defined 

as the correlation in LD phase between the two popula-
tions, and in allele frequencies of markers and causal loci 
between the populations. We used marker-based rela-
tionship matrices to estimate the genetic correlation.

Methods
Population structure
Two populations were simulated using the QMSim soft-
ware [24]. The simulations were set-up with two charac-
teristics: (1) the two populations have different LD 
patterns, as measured by the LD statistic r ; and (2) a large 
number of loci segregate in the last generation with part 
of these (> 200,000) having similar allele frequencies in 
both populations, and another part (> 200,000) having 
different allele frequencies in each population. We simu-
lated a historical population for 211 generations (Fig. 1). 
The first generation (generation − 211) contained 300 
individuals. During the following 100 generations (gener-
ations − 211 to − 112), population size decreased gradu-
ally to 50 individuals to create LD. From generation -111 
to generation − 12, population size increased gradually to 
300 individuals and was kept constant for the next 10 
generations (generations − 11 to − 2). In the last genera-
tion of the historical population (generation − 1), popula-
tion size increased to 1800 individuals. In the entire 
historical population, generations were discrete, there 
was no selection, mating was at random, and the male to 
female ratio was 1:5. The effective population size ( Ne ) of 
the entire historical population was ~ 79, which was 
approximated as the harmonic mean of Ne in each gener-
ation calculated as: 1

Ne
= 1

4Nm
+ 1

4Nf
 , where Nm is the 

number of males and Nf  the number of females used to 
create the next generation [25].

The last generation of the historical population was 
divided randomly into two equally-sized populations ( A 
and B ) of 900 individuals. In the next generation, the size 
of both populations was increased to 1800 individuals 
and was kept constant for the following 40 generations 
(generations 1–40). These reasonably large population 
sizes limited the drift of allele frequencies. The number 
of offspring was set to 10 and selection was at random, 
such that the number of selected offspring per indi-
vidual followed approximately a Poisson distribution, 
as assumed in the Wright-Fisher model of genetic drift. 
During the last 10 generations (generations 41–50), pop-
ulation size decreased to 120 individuals in each popula-
tion to increase the extent of LD in each population, and 
the number of offspring was set to 20. Similar to the his-
torical population, these generations were discrete, there 
was no selection, mating was at random, and the male to 
female ratio was 1:5. All individuals from the last genera-
tion (2000) were used for the analyses.



Page 3 of 16Wientjes et al. Genet Sel Evol           (2018) 50:65 

Genome size
A genome of 10 chromosomes of one Morgan each was 
simulated. This genome size was a balance between the 
computational effort necessary for the analyses and the 

variation in relationships between family members [26]. 
Each chromosome contained 300,000 randomly spaced 
loci, with a recurrent mutation rate of 0.00005 in the his-
torical population. In the last generation of the historical 

Fig. 1  Schematic representation of the simulated population structure
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population, segregating loci were selected and mutation 
was stopped. The chosen population size and mutation 
rate resulted in a U-shaped allele frequency distribution 
of segregating loci in the two populations, as common in 
real populations.

In the last generation (generation 50), markers and 
2000 causal loci were selected from all segregating loci. 
Three marker panels were constructed: a high-density 
panel (HDP) with 200,000 markers, a medium-density 
panel (MDP) with 20,000 markers, and a low-density 
panel (LDP) with 2000 markers. Each of the smaller 
marker panels was a subset from the larger marker 
panels.

Markers and causal loci were selected to have either 
similar or different allele frequencies in populations A 
and B . For both approaches, three selection criteria were 
used; namely (1) the segregation in one or both popu-
lations, (2) the absolute difference in allele frequency 
between population A ( pA ) and population B ( pB ), and 
(3) the difference in 2p(1− p) between populations A 
and B , which is a measure of the difference in variance 
explained by a locus when allele substitution effects are 
the same in the two populations. The last criterion was 
mainly effective for loci with a low allele frequency, since 
an apparently small difference in allele frequency can 
result in a relatively large difference in variance explained 
for those loci. This criterion was used to ensure that the 
proportion of genetic variance explained by a locus was 
more or less similar in the two populations when popula-
tions had similar allele frequencies.

As a first step, markers were selected from the segre-
gating loci. To select markers with similar allele frequen-
cies in the two populations, (1) loci had to segregate in 
both populations, (2) |pA − pB| should be less than 0.14, 
and (3) |[2pA(1− pA)− 2pB(1− pB)]|/[2p̄AB(1− p̄AB)] 
should be less than 2, where p̄AB is the average of pA and 
pB . To select markers with different allele frequencies in 
the two populations, (1) loci had to segregate in at least 
one population, (2) |pA − pB| should be more than 0.14, 
and (3) |[2pA(1− pA)− 2pB(1− pB)]|/[2p̄AB(1− p̄AB)] 
should be more than 1. The cut-off values were chosen to 
either minimize or maximize the difference in allele fre-
quencies between the populations, while ensuring that 
enough loci in each replicate met the criteria. Our aim 
was to select marker panels with a uniform distribution 
of allele frequencies to reflect commercially available 
marker chips [27–30]. For this step, the loci that met the 
criteria were divided into 50 bins based on average allele 
frequency over the two populations (i.e., allele frequen-
cies of bin 1 ranged from 0 to 0.02, of bin 2 from 0.02 to 
0.04, etc.), and from each bin an equal number of loci 
was randomly selected. When the number of loci was too 

small in the two extreme bins (0.00–0.02, and 0.98–1.00), 
the bins were combined with the neighbouring bin.

As a second step, causal loci were selected from the 
segregating loci that were not selected as markers. To 
select causal loci, the same criteria and cut-off values 
were used as for markers, with one exception. In all sce-
narios, causal loci did not have to segregate in both pop-
ulations, since some causal loci are known to be at least 
partly population-specific [31]. Causal loci were selected 
randomly from all simulated loci that met the criteria, 
and therefore the pattern of their allele frequencies fol-
lowed an approximate U-shaped distribution as expected 
for causal loci [32, 33].

LD patterns and consistency of LD between populations
The LD pattern and consistency of LD between the 
populations was investigated. Within each population 
and between all causal loci and markers less than 10 cM 
apart, the parameter r was calculated [34]:

where f11 is the haplotype frequency with allele 1 at the 
first locus and allele 1 at the second locus, f22 , f12 and f21 
are frequencies of the other possible haplotypes, f1. and 
f2. are the frequencies of allele 1 and allele 2 at the first 
locus, and f.1 and f.2 are the frequencies of allele 1 and 
allele 2 at the second locus. The LD pattern within each 
population was represented by the average r2 for inter-
vals of 0.1 cM between the markers. The consistency of 
LD between the two simulated populations A and B was 
calculated as the correlation between r values of the two 
populations for intervals of 0.1  cM, following De Roos 
et al. [35]. The consistency of LD between populations is 
known to decrease when the genomic distance between 
markers and causal loci increases [35]. This indicates that 
the populations were expected to have a higher consist-
ency of LD between markers and causal loci when using 
HDP markers than when using MDP or LDP markers. In 
this way, the analysis with the HDP markers represented 
a situation with the highest consistency of LD between 
populations, and the analysis with LDP markers rep-
resented a situation with the lowest consistency of LD 
between populations.

Phenotypes
For each causal locus, allele substitution effects were sam-
pled from a bivariate normal distribution, with a mean 
of 0, a standard deviation of 1, and a correlation between 
the populations of 1, 0.8, 0.6, 0.4, 0.2 or 0. For each indi-
vidual, its allele counts for the causal loci (coded as 0, 1, 

r =
(

f11f22 − f12f21
)

√

f1.f2.f.1f.2
,
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and 2) were multiplied by the corresponding allele substitu-
tion effects and the results were summed over loci to cal-
culate the additive genetic value (AGV) of the individual. 
The AGV were scaled to a mean of 0 and a variance of 1 
across all individuals. Since allele substitution effects were 
sampled independently from allele frequency, the corre-
lation between AGV of populations A and B (i.e., genetic 
correlation) was similar to the correlation between allele 
substitution effects (i.e., 1, 0.8, 0.6, 0.4, 0.2 or 0). A normally 
distributed environmental effect was sampled for each 
individual to obtain a heritability of 0.3 in each population. 
Phenotypes of all 2000 individuals in generation 50 were 
computed by summing the AGV and the environmental 
effects.

The simulation of phenotypes was replicated 50 times 
for each scenario. For each replicate, markers and causal 
loci were selected for three scenarios; (1) similar allele fre-
quencies between populations for both markers and causal 
loci, (2) similar allele frequencies between populations for 
markers and different allele frequencies between popula-
tions for causal loci, and (3) different allele frequencies 
for both markers and causal loci. Within each scenario, 
phenotypes were simulated for each of the six genetic 
correlations. Scripts and seeds to simulate the data are in 
Additional file 2.

Estimation of the genetic correlation
The additive genetic correlation between populations was 
estimated using the following bivariate model:

where yk is a vector of phenotypes for population k 
( k = A,B), xk is an incidence vector relating phenotypes to 
the mean in population k ( µk ), Zk is an incidence matrix 
relating phenotypes to estimated additive genetic values 
([

aA
aB

]

∼ N

([

0
0

]

,

[

σ 2
A σAB

σAB σ 2
B

]

⊗
[

GAA GAB

GBA GBB

]))

 with 

⊗ representing the Kronecker product function, and ek are 
vectors with independent residual effects. Genetic and 
residual variances were estimated using restricted maxi-
mum likelihood (REML). The first analyses were per-
formed using the ASReml software [36]. For the scenarios 
analysed later, we switched to MTG2 [37] to reduce com-
putation time. We verified that the estimated variance 
components were identical using both programs.

The genomic relationship matrix ( G ) between all individ-
uals was calculated as [17]:

[

yA
yB

]

=
[

xA 0
0 xB

][

µA

µB

]

+
[

ZA 0
0 ZB

][

aA
aB

]

+
[

eA
eB

]

,

where Wk is a matrix with centered allele counts of all 
individuals from population k , and pki is the allele fre-
quency for locus i in population k . Centered allele counts 
were calculated as gijk − 2pki , where gijk is the allele count 
of locus i for individual j from population k , coded as 0, 
1 or 2. This G defines the relationships as standardized 
covariances between the genetic values of individuals 
[17]. In all scenarios and for all replicates, we calculated G 
using allele counts of (1) causal loci, (2) HDP markers, (3) 
MDP markers, or (4) LDP markers in both populations.

The relationships at causal loci are the true rela-
tionships for that trait, which are approximated when 
using markers. Marker-based relationships are subject 
to sampling error, since markers are a subset of the 
genome and in imperfect LD with the causal loci. A 
way to account for this sampling error is by regressing 
G towards the pedigree relationship matrix ( A ) [32, 38, 
39], which is expected to reduce bias of the estimated 
variance components [32]. To investigate the effect of 
this regression, G matrices based on the three marker 
panels were regressed towards A and used for the sce-
narios with a correlation of 0.8 or 0.4.

Before regressing G towards A , the inbreeding level 
of each within-population block in G was rescaled to 
the inbreeding level in A , following [39]:

where F̄k is the average inbreeding coefficient of all indi-
viduals of population k based on the pedigree, and J is a 
matrix of 1s. The rescaled G∗ was regressed towards A 
following [32, 38]:

where n is the number of markers. To set-up A , the 
pedigree of the last 10 generations was used, such that 
between-population A relationships were zero. The 
regression was done separately within each population 
per bin of pedigree relationships (< 0.10, 0.10–0.25, 0.25–
0.50, > 0.5) and between populations, since regression 
coefficients are higher for stronger pedigree relationships 

G =
�

GAA GAB

GBA GBB

�

=







WAW
′
A

�

2pAi(1−pAi)

WAW
′
B√

�

2pAi(1−pAi)
√

�

2pBi(1−pBi)
WBW

′
A√

�

2pAi(1−pAi)
√

�

2pBi(1−pBi)

WBW
′
B

�

2pBi(1−pBi)






,

G∗ =
(

1− F̄k
)

G+ 2F̄k J,

Ĝ = A + b
(

G∗ − A
)

with b = Var(G∗ − A)

Var(G∗ − A)+ 1
n

,
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[40, 41]. For the diagonal elements, only the inbreeding 
coefficients in G∗ were regressed towards A [32]. Regres-
sion coefficients were all close to 1 for higher marker den-
sity panels (> 0.99 for HDP and > 0.97 for MDP). For LDP 
markers, regression coefficients were lower, i.e. ~ 0.84 for 
between-population relationships, ~ 0.89, ~ 0.91, ~ 0.94 
and ~ 0.96 for the four bins of within-population relation-
ships, and ~ 0.93 for inbreeding coefficients.

Results
Characteristics of the simulations
The criteria for selecting markers and causal loci resulted 
in clear differences between the scenarios with simi-
lar and different allele frequencies in the two popula-
tions (Fig.  2) and [see Additional file  1]. As designed in 
the simulations, the distribution of allele frequencies 
was uniform for markers and U-shaped for causal loci 
as expected in livestock populations. Therefore, the per-
centage of causal loci with a minor allele frequency lower 
than 0.05 was higher (on average 33% in each popula-
tion) than the percentage of markers with a minor allele 
frequency lower than 0.05 (on average only 15% in each 
population). The decay of LD was similar in both popula-
tions (Fig. 3), with a stronger decay as distances between 
the loci in the 0–2  cM interval increased. The correla-
tion of LD phase between the populations, representing 
the consistency of LD phase between the populations, 
decreased rapidly at short distances (0–5 cM), and fluc-
tuated around zero at distances longer than 5  cM. As 
designed in the simulations, the extent and consistency 
of LD between populations were comparable to those in 
chicken and pig populations [20, 42–44].

Proportion of explained variance
The proportion of the phenotypic variance explained 
by the markers, known as the genomic heritability [45], 
was close to the simulated heritability for the scenarios 
with HDP and MDP markers and slightly lower than the 
simulated heritability for the scenarios with LDP mark-
ers (estimated: ~ 0.29; simulated: 0.3). This implies that 
genetic variances were estimated accurately regardless of 
the marker panel used.

Estimated genetic correlation
With relationships based on causal loci, all estimated 
genetic correlations were unbiased, irrespective of 
whether causal loci had similar or different allele frequen-
cies in the two populations (Fig.  4). This was expected 
based on our previous results [17].

With relationships based on markers, all estimated 
genetic correlations were slightly to severely biased. 
The bias was very small when the difference in allele 
frequencies between the two populations was similar 
for the markers and the causal loci. For example, when 
marker-based relationships were not regressed towards 
the pedigree relationships, genetic correlations were 
underestimated by only ~ 2.5% for HDP, ~ 3% for MDP, 
and ~ 11% for LDP markers (Fig.  4a, c). The bias was 
much larger when markers had similar allele frequencies 
in the two populations and causal loci had different allele 
frequencies, i.e. when the difference in allele frequencies 
between the two populations differed between markers 
and causal loci (Fig.  4b; ~ 28% for HDP, ~ 30% for MDP, 
and ~ 41% for LDP markers). It should be noted that the 

Fig. 2  Allele frequencies of markers in two populations using two approaches to select markers. For one random replicate, allele frequencies of 
markers from both populations are plotted against each other for markers that are selected to have a similar allele frequencies or b different allele 
frequencies in the two populations
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distribution of allele frequencies was always uniform for 
markers and always U-shaped for causal loci.

Across all scenarios, regressing G towards A had only a 
small effect on the estimated genetic correlation (Fig. 5). 
At a high marker density, regressing G towards A lowered 
the estimated genetic correlation. Therefore, the underes-
timation for HDP and MDP markers increased from ~ 4 
to ~ 9% when the difference in allele frequencies between 
the populations was similar for markers and causal loci, 
and from ~ 28 to ~ 32% when this was not the case. In 
contrast, regressing G towards A resulted in higher esti-
mated genetic correlations at low marker density. For 
LDP markers, the underestimation decreased from ~ 12 
to ~ 8% when the difference in allele frequencies between 
the populations was similar for markers and causal loci 
and from ~ 41 to ~ 38% when this was not the case. Thus, 
regressing G towards A was only beneficial for the esti-
mation of the genetic correlation between populations 
when the marker density was low.

In general, standard errors of the mean across repli-
cates for the estimated genetic correlation were small 
for all scenarios (~ 0.02), and tended to be slightly larger 
for lower true genetic correlations. Moreover, standard 
errors were slightly larger when the difference in allele 
frequencies between populations was not similar for 
markers and causal loci (Fig. 4b vs a, c). Regression of G 
towards A had no effect on the standard error.

Genomic relationships
Estimates of the genetic variance are biased when the 
regression of true relationships on marker-based rela-
tionships is not equal to 1 [38]. We investigated whether 
this could explain the underestimation of the genetic 
correlation by considering the genomic relationships at 
the causal loci as the true relationships for that trait. In 
Figs.  6 and 7, we plotted the relationships at the causal 
loci versus the unregressed relationships at the markers 
for one of the replicates. The regression coefficients for 
within-population genomic relationships were close to 1, 
and were only slightly lower when causal loci had differ-
ent allele frequencies (Fig.  7) compared to similar allele 
frequencies (Fig.  6) in the two populations. This means 
that the within-population relationships at the mark-
ers can predict quite accurately the relationships at the 
causal loci.

Regression coefficients of between-population relation-
ships deviated more from 1, especially at low marker den-
sity. When the difference in allele frequencies between 
the populations was similar for markers and causal loci, 
the regression coefficients were equal to ~ 0.8 for HDP 
and MDP and 0.67 for LDP markers (Fig. 6). This means 
that the relationships at the markers led to an over-
prediction of the relationships at the causal loci. When 
the difference in allele frequencies between the popula-
tions was not similar for markers and causal loci, regres-
sion coefficients of between-population relationships 

Fig. 3  Extent of LD in two populations and correlation of LD phase between the populations as a function of distance. The average LD ( r2 ) between 
causal loci and markers for both populations, and the correlation of LD-phase (correlation of r  ) between the populations, as a function of distance 
between causal loci and markers for one random replicate
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Fig. 4  Estimated genetic correlations between populations without regressing the genomic relationship matrix. The average estimated genetic 
correlation (± standard error of the mean) at different simulated genetic correlations for the scenario in which a markers and causal loci have similar 
allele frequencies in the two populations, b markers have similar and causal loci different allele frequencies in the two populations, or c markers 
and causal loci have different allele frequencies in the two populations, when the genomic relationship matrix is either based on the genotypes of 
causal loci (2000), HDP (200,000), MDP (20,000), or LDP (2000) markers without regression towards the pedigree relationship matrix. Standard errors 
were calculated as the standard deviation over replicates divided by the square root of the number of replicates
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were equal to ~ 0.30 (Fig.  7). Thus, the over-prediction 
of between-population relationships using markers was 
much larger when the difference in allele frequencies 
between the populations was not similar for markers and 
causal loci.

The correlation between the relationships at the 
causal loci and at the markers, i.e., the accuracy of the 
marker-based relationships, decreased when the den-
sity of the markers decreased (Figs.  6, 7). When the 
difference in allele frequencies between the popula-
tions was similar for markers and causal loci, the cor-
relation for within-population relationships was ~ 0.91 
for HDP and MDP, and ~ 0.88 for LDP markers. The 
correlation for between-population relationships 
was ~ 0.70 for HDP and MDP, and 0.60 for LDP mark-
ers. The correlation between relationships at causal loci 

and at markers was much lower when the difference 
in allele frequencies between the populations was not 
similar for markers and causal loci (within-population 
relationships: ~ 0.66 for HDP and MDP, ~ 0.63 for LDP; 
between-population relationships: ~ 0.09 for HDP and 
MDP, ~ 0.08 for LDP).

Discussion
Our objective was to investigate whether differences in 
LD patterns between populations and differences in allele 
frequencies of markers and/or causal loci between pop-
ulations  affect bias of the estimated genetic correlation. 
We simulated two populations that differed in LD pattern 
between markers and causal loci, as measured by the LD-
statistic r . Our results show that when the difference in 
allele frequencies between the two populations is similar 

Fig. 5  Estimated genetic correlations between populations with regression of the genomic relationship matrix. The average estimated genetic 
correlation (± standard error of the mean) at a simulated genetic correlation of a 0.8 or b 0.4 for the three scenarios with HDP (200,000), MDP 
(20,000), or LDP (2000) markers and regression of G towards A . Standard errors were calculated as the standard deviation over replicates divided by 
the square root of the number of replicates
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for markers and causal loci, estimated genetic correla-
tions are only slightly underestimated using markers. 
When the difference in allele frequencies between the 
two populations was not similar for markers and causal 
loci, genetic correlations were severely underestimated. 
Differences in LD and allele frequencies of causal loci 
between populations had only a very slight effect on the 
precision of the estimated genetic correlation.

Estimation of genetic correlations using marker‑based 
relationships
Estimates of the genetic variance and heritability are 
known to be biased when the regression coefficient of the 
true relationships on the marker-based relationships is 
not equal to 1, i.e., when E(Gcausal loci|Gmarkers) �= Gmarkers 
[32, 38, 46]. When this regression coefficient is less than 
1, relationships at the markers show too much variation, 

Fig. 6  Genomic relationships at causal loci versus markers when causal loci have similar allele frequencies in the two populations. The genomic 
relationships at the causal loci versus the genomic relationships based on a HDP (200,000) markers, b MDP (20,000) markers, or c LDP (2000) 
markers, when markers and causal loci have similar allele frequencies in the two populations for one replicate. Relationships in population A are 
represented in dark blue (Eq. 1 of regression line and correlation), relationships in population B are represented in medium blue (Eq. 2 of regression 
line and correlation), and relationships between population A and B are represented in light blue (Eq. 3 of regression line and correlation)
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which results in an underestimation of the genetic vari-
ance. Yang et al. [32] argued that a regression coefficient 
less than 1 can be due to two effects: (1) sampling error 
on the relationships because the number of markers 
is finite; and (2) a difference in the distribution of allele 
frequencies between causal loci and markers. In all our 
scenarios, the number of markers was finite and the 

distribution of allele frequencies differed between causal 
loci and markers. However, within populations, the esti-
mated genomic heritability [45] was close to the simu-
lated trait heritability for all scenarios. This suggests that 
the number of markers used was sufficient to constrain 
the sampling error on within-population relationships 
to an acceptable level, and that our estimated genetic 

Fig. 7  Genomic relationships at causal loci versus markers when causal loci have different allele frequencies in the two populations. The genomic 
relationships at the causal loci versus the genomic relationships based on the a HDP (200,000) markers, b MDP (20,000) markers, or c LDP (2000) 
markers, when markers have similar and causal loci different allele frequencies in the two populations for one replicate. Relationships in population 
A are represented in dark blue (Eq. 1 of regression line and correlation), relationships in population B are represented in medium blue (Eq. 2 of 
regression line and correlation), and relationships between population A and B are represented in light blue (Eq. 3 of regression line and correlation)
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variances were affected only slightly by the difference in 
the distribution of allele frequencies between causal loci 
and markers. Thus, the underestimation of the genetic 
correlation between populations is not a result of biased 
estimates of the genetic variance.

The relative sampling error due to the use of a finite 
number of markers is much larger for between-popula-
tion relationships than for within-population relation-
ships, because more markers are needed to accurately 
estimate the small between-population relationships 
[38]. Moreover, we showed that the accuracy of predict-
ing the between-population relationships at the causal 
loci using markers depended on whether the difference in 
allele frequency of causal loci between populations was 
reflected by the markers. These two factors can result in 
an underestimation of the genetic covariance between 
populations, which can explain the slight underestima-
tion of the genetic correlation in the scenarios in which 
the difference in allele frequencies between the two pop-
ulations was similar for markers and causal loci and the 
larger underestimation in the scenarios in which this was 
not the case. The higher sampling error on between-pop-
ulation relationships can also explain the larger underes-
timation of the genetic correlation for the LDP markers 
than for the HDP and MDP markers. Thus, to estimate 
the genetic correlation between populations, it is impor-
tant that the difference in allele frequencies between the 
populations is similar for markers and causal loci and 
that the number of markers is sufficiently large.

The additive genetic correlation between popula-
tions is defined as the correlation between the two addi-
tive genetic values of a single genotype, measured as the 
allele count at each causal locus, in the two populations. 
This correlation is equal to the correlation between allele 
substitution effects when allele substitution effects are 
independent of allele frequency. This independency was 
used in our simulated phenotypes and also to set-up the 
G matrix, as it is an implicit assumption in Method 1 of 
VanRaden [47]. When this assumption is not met, the 
genetic correlation is no longer equal to the correlation 
between allele substitution effects, and violation of this 
assumption in the set-up of G may result in biased esti-
mates of the genetic correlation.

Regression of the maker‑based relationships
Regressing G towards A is a way of correcting the marker-
based relationships for the sampling error due to a finite 
number of markers [39]. The regression was strongest 
for LDP markers and reduced the underestimation of 
the genetic correlation. These results agree with the find-
ings that regressing G towards A is important when the 
number of markers is small [32] and supports our state-
ment that relationships at LDP markers were affected by 

sampling error. However, regressing G towards A slightly 
increased the underestimation of the genetic correlation 
with HDP and MDP markers. The reason for this is not 
clear. It might be that the regression of G towards A not 
only reduces the sampling error, but also amplifies the 
effect of the difference in the distribution of allele fre-
quencies between causal loci and markers.

In our study, regressing G towards A was slightly det-
rimental for the estimation of the genetic correlation 
when using HDP (200,000) or MDP (20,000) markers, 
with regression coefficients being only slightly less than 
1, and it was beneficial when using LDP (2000) markers 
with regression coefficients being considerably less than 
1. The simulated genome represented about one-third 
of the genome of livestock species such as cattle and 
chicken [48, 49]. This suggests that regressing G could be 
detrimental when using a genome-wide total of 60,000 
or more markers in livestock. Note that this number of 
markers will depend on the consistency of LD between 
populations. Between-population relationships are all 
closer to zero when the LD pattern is less consistent 
between populations [50]. Such weaker relationships gen-
erally require more markers to reduce their relative sam-
pling error to an acceptable level [32]. Hence, we think 
that the regression coefficients may be a better indicator 
for deciding whether or not to regress G ; when all regres-
sion coefficients are close to 1, e.g., higher than 0.95, it is 
probably better not to regress G towards A when estimat-
ing the genetic correlation between populations.

The coefficients to regress G towards A were approxi-
mated using the number of markers and the variation in 
Gmarkers − A , assuming that the sampling error was only 
a result of using a limited number of markers [38]. To 
investigate the impact of this approximation, we repeated 
the analysis by using b = Cov(Gcausal loci−A,Gmarkers−A)

Var(Gmarkers−A)
 [38] as 

the regression coefficient to regress G towards A . This 
regression requires that the causal loci are known, which 
generally is not the case. Here, we used this approach to 
investigate whether the bias in the estimated genetic cor-
relation indeed occurs because the marker-based rela-
tionships do not accurately predict the relationships at 
the causal loci, i.e., E(Gcausal loci|Gmarkers) �= Gmarkers , and 
not because of differences in LD between populations. 
We calculated b separately for within- and between-pop-
ulation relationships, using 11 bins based on pedigree 
relationships within populations (< 0.05, 0.05–0.10, 0.10–
0.15, 0.15–0.20, 0.20–0.25, 0.25–0.30, 0.30–0.35, 0.35–
0.40, 0.40–0.50, > 0.50, self-relationships) and 3 bins 
based on genomic relationships between populations 
(< − 0.10, − 0.10–0.10, > 0.10), and used those b values to 
rescale the relationships. As shown in Fig. 8, this rescal-
ing removed almost completely the bias in the estimated 
genetic correlations based on HDP and MDP markers, 



Page 13 of 16Wientjes et al. Genet Sel Evol           (2018) 50:65 

but overestimated the genetic correlation when using 
rescaled relationships based on LDP markers. This might 
result from the much larger sampling error for LDP 
markers compared to HDP and MDP markers, which 
could result in underestimated b values. Thus, there 
appears to be a lower boundary for the number of mark-
ers necessary to calculate between-population genomic 
relationships that can be corrected using regression. 
Altogether, our results confirm that for an unbiased esti-
mate of the genetic correlation between populations, the 
regression coefficient of true relationships on marker-
based relationships should be equal to 1.

Consistency of LD between populations
When calculating the marker-based relationships, the 
current generation within each population was used as 
the base population, since we used current population-
specific allele frequencies. This means that between-pop-
ulation relationships were zero on average. When the LD 
is at least partly consistent between the populations, due 
to the existence of a recent or distant common ancestor, 
between-population relationships will show variation 
around zero [50]. This variation is essential to estimate 
the genetic correlation between populations, and genetic 
correlation estimates are more precise when it is larger 
[51].

We expected that a lower consistency of LD between 
populations would reduce the estimated genetic corre-
lation between populations, because it reduces the cor-
relation between (apparent) marker effects. Surprisingly, 
our results showed that estimated genetic correlations 
were similar with HDP and MDP markers, and only 

slightly lower with LDP markers. This can be explained 
by the potential of marker-based relationships to accu-
rately predict the relationships at the causal loci, which 
is essential to estimate without bias the genetic (co)vari-
ances and the genetic correlation between populations. 
A lower consistency of LD between populations results 
in a smaller variation in between-population relation-
ships [38, 50], both at causal loci and at markers. There-
fore, the regression coefficient of the relationships at the 
causal loci on the relationships at the markers may not 
be greatly affected (Figs.  6, 7; HDP and MDP markers). 
Hence, the consistency of LD between the populations 
seems to have little impact on the estimated genetic cor-
relation between populations.

The consistency of LD between populations does affect 
the correlation between the relationships at the causal 
loci and at the markers (Figs. 6, 7), i.e., the accuracy of the 
marker-based relationships. For an unbiased estimate of 
the genetic correlation between populations, the regres-
sion of true relationships on marker-relationships should 
be equal to 1 and marker-based relationships do not 
necessarily have to be accurate. This contrasts with the 
estimation of genetic values, as in genomic prediction, 
for which relationships must be accurate and must show 
variation [38]. Thus, an unbiased estimate of the genetic 
correlation between populations does not guarantee that 
accurate genomic prediction across populations can be 
performed.

In our study, the analysis with the HDP markers rep-
resented a situation with the highest consistency of LD 
between populations, and the analysis with LDP mark-
ers represented a situation with the lowest consistency of 

Fig. 8  Estimated genetic correlations between populations after rescaling the marker-based genomic relationship matrix. The average estimated 
genetic correlation (± standard error of the mean) at different simulated genetic correlations for the scenario in which markers and causal loci have 
similar allele frequencies in the two populations when the genomic relationship matrix is either based on the genotypes of HDP (200,000), MDP 
(20,000), or LDP (2000) markers, after rescaling the marker-based relationships using a regression coefficient based on the relationships at causal 
loci. Standard errors were calculated as the standard deviation over replicates divided by the square root of the number of replicates
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LD between populations. Therefore, the effects of marker 
density and consistency of LD between populations were 
confounded. The combined impact of marker density and 
consistency of LD appears to be limited, because the bias 
in the HDP and MDP scenarios was similar and only a 
little stronger in the LDP scenario. The impact of marker 
density can be reduced by regressing the genomic rela-
tionships towards the pedigree relationships. If the causal 
loci are known and the regression coefficients are calcu-
lated using relationships at causal loci, we showed that 
this regression completely removed the bias in estimated 
genetic correlations based on HDP and MDP markers. 
This suggests that the slight bias in the HDP and MDP 
scenario was due to marker density, and that differences 
in LD between the populations had almost no effect.

Simulated population versus livestock populations
In order to investigate whether the simulated genome 
represented livestock genomes, we compared the dis-
tribution of allele frequencies and LD pattern with real 
genomes, as suggested by Daetwyler et al. [52]. The sim-
ulated genome showed a comparable pattern of allele 
frequencies between markers and causal loci, and a com-
parable extent and consistency of LD between popula-
tions as shown in chicken and pig populations [20, 28, 
30, 42–44]. Thus, our results can be translated directly to 
livestock populations if the same marker density is used. 
This simulated LD was much higher than that generally 
observed in human populations [53, 54]. Since marker 
density, and thereby the average LD between causal loci 
and nearest marker, had almost no effect on the esti-
mated genetic correlation, it is expected that the simu-
lated LD pattern will not affect the results.

We simulated causal loci that were spread randomly 
across the genome, which is not always the case in real 
populations. When causal loci are enriched in regions 
with either high or low LD, (co)variance estimates can 
be over- or underestimated [46, 55]. However, we expect 
that the impact of the heterogeneity of LD will be smaller 
on the estimated genetic correlation than on the herit-
ability, since differences in LD across the genome affect 
both the genetic variance and covariance estimates. This 
mechanism may also explain why estimates of the genetic 
correlation between traits within a population are less 
affected by incomplete LD between causal loci and mark-
ers than genetic variance estimates [56].

As explained above, the genetic correlation is equal 
to the correlation between allele substitution effects 
when allele substitution effects are independent of 
allele frequency. Differences in allele substitution effects 
between populations result from non-additive genetic 

effects and from differences in allele frequencies, and/
or from genotype by environment interactions [1–3]. To 
date, the magnitude of these additive, dominance and 
epistatic effects is not well known. Therefore, we chose 
to simulate directly the different allele substitution 
effects from a bivariate normal distribution, instead of 
simulating the underlying non-additive effects.

Contrary to our simulations, selection generally 
occurs in livestock populations. Selection creates nega-
tive correlations between causal loci, known as the Bul-
mer effect [57]. However, the impact of the Bulmer 
effect on the correlation between loci is very small 
because the number of causal loci ( ncausal loci ) is large 
for most breeding goal traits (the average correlation is 
at maximum −1

ncausal loci−1
 ). Moreover, in general, selection 

acts on multiple traits, which further reduces the cor-
relation between the causal loci affecting a trait. There-
fore, the Bulmer effect will have only a small effect on 
the correlation between loci in one population. Since 
selection is within population, the Bulmer effect does 
not cause covariances between loci in different popula-
tions. For these reasons, we do not expect that selec-
tion and the Bulmer effect would have a large impact of 
on the results of our study.

Furthermore, the Bulmer effect is a transient phenome-
non that depends on the type and intensity of selection. 
Hence, the additive genetic variance as affected by the 
Bulmer effect does not represent a fundamental biological 
property of a population, but it can result from selection 
decisions that may fluctuate over time. The biologically 
relevant quantity is the genic (co)variance, which is always 
twice the Mendelian sampling (co)variance. The relevance 
of the genic (co)variance follows from the decomposition 
of the additive genetic value of an individual into the 
Mendelian sampling deviations of its ancestors [58], 
A = c′m , where c is a vector of contributions of ancestors 
to the individual (including the individual itself, for which 
ci = 1 ), and m is a vector of Mendelian sampling devia-
tions of those ancestors. Hence, the variance of the addi-
tive genetic values equals VA = c′var(m)c . In the absence 
of selection, var(m) is diagonal and 
VA =

∑

i c
2
i σ

2
m =

(

12 + 2× 1
2

2 + 4 × 1
4

2 + · · ·
)

σ 2
m = 2σ 2

m , where 
σ 2
m is the (full) Mendelian sampling variance. Selection 

causes var(mi) to deviate from σ 2
m and creates covariances 

between Mendelian sampling deviations of different 
ancestors. These deviations are transient, and are eroded 
by recombination when selection ceases, so that VA 
returns to 2σ 2

m [57]. This illustrates that the genic (co)vari-
ance is the biologically relevant quantity. We have investi-
gated the estimation of the genic correlation, by focusing 
on a population in the absence of selection, so that genic 
and genetic correlations are equal.
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Implications
Generally, marker panels are designed such that the 
markers have intermediate allele frequencies across mul-
tiple populations [27–29]. Hence, markers tend to have 
a higher average minor allele frequency than causal loci 
[32, 33]. Moreover, the difference in allele frequencies 
of causal loci between populations is probably not accu-
rately represented by markers. These factors likely result 
in underestimated genetic correlations between popula-
tions using real data, but the impact of each of the factors 
requires further research.

Conclusions
For an unbiased estimate of the genetic correla-
tion between populations based on marker informa-
tion, it is important that marker-based relationships 
accurately predict the relationships at causal loci, i.e., 
E(Gcausal loci|Gmarkers) = Gmarkers . This is obtained when 
the difference in allele frequencies between the two pop-
ulations is similar for the markers and the causal loci, and 
the number of markers is sufficiently large to constrain 
the sampling error on between-population relationships 
to an acceptable level. Our results show that differences 
in LD phase between causal loci and markers across pop-
ulations have little effect on the estimated genetic corre-
lation (Additional file 2).
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