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Abstract 

Background:  Catfish farming is the largest segment of US aquaculture and research is ongoing to improve produc-
tion efficiency, including genetic selection programs to improve economically important traits. The objectives of this 
study were to investigate the use of genomic selection to improve breeding value accuracy and to identify major 
single nucleotide polymorphisms (SNPs) associated with harvest weight and residual carcass weight in a channel 
catfish population. Phenotypes were available for harvest weight (n = 27,160) and residual carcass weight (n = 6020), 
and 36,365 pedigree records were available. After quality control, genotypes for 54,837 SNPs were available for 2911 
fish. Estimated breeding values (EBV) were obtained with traditional pedigree-based best linear unbiased prediction 
(BLUP) and genomic (G)EBV were estimated with single-step genomic BLUP (ssGBLUP). EBV and GEBV prediction accu-
racies were evaluated using different validation strategies. The ability to predict future performance was calculated as 
the correlation between EBV or GEBV and adjusted phenotypes.

Results:  Compared to the pedigree BLUP, ssGBLUP increased predictive ability up to 28% and 36% for harvest weight 
and residual carcass weight, respectively; and GEBV were superior to EBV for all validation strategies tested. Breeding 
value inflation was assessed as the regression coefficient of adjusted phenotypes on breeding values, and the results 
indicated that genomic information reduced breeding value inflation. Genome-wide association studies based on 
windows of 20 adjacent SNPs indicated that both harvest weight and residual carcass weight have a polygenic archi-
tecture with no major SNPs (the largest SNPs explained 0.96 and 1.19% of the additive genetic variation for harvest 
weight and residual carcass weight respectively).

Conclusions:  Genomic evaluation improves the ability to predict future performance relative to traditional BLUP and 
will allow more accurate identification of genetically superior individuals within catfish families.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Catfish farming is the largest aquaculture segment in the 
US, accounting for approximately 50% of US food-fish 
production [1]. The US catfish industry is based on the 
production of channel catfish (Ictalurus punctatus) and 
the hybrid between the channel and blue catfish (Icta-
lurus furcatus). To provide a centralized source for US 
catfish production research, the USDA-ARS Warmwater 
Aquaculture Research Unit (WARU) was established in 
Stoneville, MS. As part of its mission to improve catfish 

production efficiency, the WARU has conducted a chan-
nel catfish breeding program since 2006, primarily select-
ing fish for increased growth and carcass yield.

Traditional evaluation using pedigree-based best linear 
unbiased prediction (BLUP) has been applied since the 
beginning of the breeding program at WARU. To inves-
tigate the potential for implementing genomic selection 
in the WARU catfish breeding program, animals were 
genotyped using a 57 K single nucleotide polymorphism 
(SNP) array. Dense markers are used as an extra source 
of information to estimate breeding values [2] in breed-
ing programs for several livestock species because of 
the potential increase in accuracy of estimated breeding 
values (EBV). Another advantage of genomic selection, 
which is particularly important to aquaculture breeding, 
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is the ability to exploit within-family genetic variation for 
animals that do not have records [3].

One of the methods available for genomic evaluation is 
single-step genomic BLUP (ssGBLUP) [4]. This method 
combines phenotypes, pedigree, and genotypes, and 
potentially gives more accurate and less biased genomic 
EBV (GEBV) than multistep methods [5]. In ssGBLUP, 
the relationship matrix is a combination of pedigree and 
genomic relationships [4, 6]; therefore, information on all 
animals can be used in the evaluation, regardless of geno-
typing status.

The accuracy of genomic evaluation depends on several 
factors including linkage disequilibrium (LD) between 
markers and quantitative trait loci (QTL), effective popu-
lation size ( Ne ), and the relationship among individuals in 
training and validation data [7, 8]. Thus, investigating the 
Ne and the extent of LD can give clues about how much 
genetic gain can be obtained by adopting genomic selec-
tion, how many animals should be genotyped, and poten-
tially, how many SNPs should be included in the marker 
panel. The possibilities of using lower density SNP chips 
to reduce costs and promote adoption of genomic selec-
tion, and searching for individual SNPs explaining major 
portions of variance should also be explored. If major 
SNPs explain a reasonable proportion of the genetic vari-
ance observed for a trait, selection based on a limited 
number of SNPs can be performed.

The first objective of this study was to investigate the 
feasibility of implementing genomic evaluation in US 
channel catfish by using ssGBLUP. The second objective 
was to determine the presence of potential regions in the 
genome that contain SNPs with major effects on harvest 
weight and residual carcass weight (i.e. carcass weight 
adjusted for harvest weight).

Methods
Data
Data from the USDA-ARS Warmwater Aquaculture 
Research Unit (WARU) were available for this study. 
Harvest weight and carcass weight (i.e., the weight of a 
fish with intact skin, but removed head and viscera) were 
recorded from 2008 to 2015, with a total of 27,160 and 
6020 records, respectively, and pedigree information was 
available for 36,365 fish. Among those, 27,883 had either 
phenotypes/genotypes or were related to phenotyped/
genotyped fish. This population constitutes the Delta 
Select strain that was developed based on 10 to 13 egg-
masses collected from eight commercial catfish farms in 
the spring of 2006 (total = 97 egg masses). Each egg-mass 
was assumed to be a single full-sib family and families 
were assumed to be unrelated to each other. Each egg-
mass was hatched in a separate hatching tank, fry were 
reared in separate full-sib family tanks until the fingerling 

stage when ~ 50 fish per family were tagged with passive 
integrated transponders (PIT tags) and stocked commu-
nally in earthen ponds where they were grown until the 
fall of 2007. At harvest, gender and weight of all fish were 
recorded, and an average of seven males and six females 
were randomly selected from each full-sib family and 
kept as broodfish. In addition to these fish, mature fish 
were obtained from two additional farms (40 males and 
39 females from one farm, and 20 males and 59 females 
from the other farm). The broodfish from the base popu-
lation were allowed to mate at random until 2 and 3 years 
old, and offspring represent the 2008 and 2009  year-
class. Parentage was determined by genotyping fish for 
16 microsatellites [9]. In total, 181 and 198 families were 
produced in 2008 and 2009, respectively. The families 
were reared separately until tagging (about 280 days old). 
Approximately 30 fish per family were tagged and reared 
communally in earthen pounds. Harvest weight was 
recorded when the animals were about 16  months old 
and a month later, approximately seven fish per family 
were processed for carcass weight recording.

Variance components and EBV were estimated and 
broodfish were selected using an index, which was the 
average standardized EBV for harvest weight and residual 
carcass weight. This approach was used to equalize selec-
tion emphasis on each trait. The fish selected from the 
2008 and 2009  year-class (first generation of selection) 
were spawned in ponds in 2011 and 2012 as 2-, 3- and 
4-year old fish. Performances of the 2011 and 2012 year-
class progeny reflect effects of one generation of selec-
tion. Progeny from the 2011 and 2012 year-classes were 
evaluated and selected on the same index, spawned in 
ponds in 2014 and 2015 as 2-, 3- and 4-year old. Prog-
eny from the 2014 and 2015  year-class were evaluated 
as described previously, and their performance reflects 
effects of the second generation of selection. Approxi-
mately 10% of the harvested fish from each year-class 
were kept as broodfish and no more than 10% of selected 
broodfish were from a single full-sib family to limit 
inbreeding. From 110 to 198 full-sib families were evalu-
ated for each year-class and 954 and 752 full-sib families 
were evaluated for harvest weight and residual carcass 
weight, respectively.

Broodfish were stocked in March of each spawn-
ing year into 0.04 to 0.1 ha earthen ponds at a rate of 
800 to 1000 kg per ha and stockings were designed to 
prevent mating among full-sibs. Male to female ratios 
in brood ponds ranged from 1:1 to 1:2. In early April, 
weighted plastic ‘spawning-cans’ were placed in ponds 
to provide spawning sites, and cans were inspected for 
the presence of egg-masses two or three times a week. 
Egg-masses were collected from ponds and trans-
ported to the hatchery. Fry were reared in separate 
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full-sib tanks until the fingerling stage at which point 
they were tagged and stocked communally in earthen 
ponds and fed daily. Appropriate commercial cat-
fish diets were provided and proper water quality was 
maintained throughout the year.

Genomic DNA from 49 founders of the Delta 
Select strain (described above) was sequenced with 
2 × 150  bp reads on the NextSeq  500 platform (Illu-
mina Inc., San Diego, CA) to obtain approximately 5× 
genome coverage per individual (25–40 million read 
pairs per individual). Paired sequences were aligned 
to the reference genome [10] using BWA-MEM [11] 
and variants were identified using the Genome Anal-
ysis ToolKit [12]. The GATK best practices workflow 
was used to identify SNPs and indels in individuals 
(HaplotypeCaller) and then jointly across the popula-
tion (GenotypeGVCFs). The analysis produced more 
than 15 million raw variants (SNPs plus indels) and 
more than 12 million raw SNPs. Filtering for strand 
bias, map quality, and depth of coverage ( ≤ mean + 2 
standard deviations) reduced the number of high-
quality putative SNPs to 7,445,905. Further filtration 
to identify SNPs that were positioned at least 50  bp 
from another SNP or indel and with a minor allele fre-
quency higher than 0.05 reduced the number of candi-
date SNPs to 1,661,221.

An Axiom custom screening array (ThermoFisher 
Scientific, Waltham, MA) was produced using 660,000 
SNPs, and 162 channel catfish were genotyped to vali-
date the selected SNPs. Six doubled haploid (homozy-
gous) catfish were also included to identify false 
heterozygosity at loci within genomic repeats. A total 
of 489,390 loci were called as polymorphic, high resolu-
tion loci on the array, and 340,737 loci were uniquely 
located on the catfish genome assembly. After the 
removal of 17,635 loci that demonstrated heterozygo-
sity in the doubled haploids, 323,102 converted SNPs 
were available. A custom python script (Guangtu Gao, 
personal communication) was used to select SNPs that 
were evenly distributed across each of the 29 chromo-
somes. A new custom Axiom genotyping array was 
produced, which contained 57,354 SNPs with an aver-
age distance between markers of 13.3 kb. The final gen-
otype data included 2911 animals, each genotyped at 
54,837 SNPs after quality control. The SNPs excluded in 
the quality control had a minor allele frequency lower 
than 0.05, were monomorphic or had a call rate lower 
than 90%. Genotyped animals were excluded if the call 
rate was lower than 90% (i.e., 10% of the genotypes were 
missing). Among the animals that passed the quality 
control, 2826 had records on harvest weight and 969 on 
carcass weight. The distribution of genotypes and phe-
notypes based on year-class is in Table 1.

Model and analysis
Single-trait animal models were used for harvest weight and 
residual carcass weight. For harvest weight, the model was:

where yw is a vector of harvest weight; b is a vector of 
fixed effect of year-sex-pond interaction, and age (rang-
ing from 391 to 620  days) as a linear covariable nested 
within sex; u is a vector of additive direct genetic effect; 
p is a vector of common environmental effect, which 
accounts for the fact that full-sibs from the same spawn 
were raised in the same tank until they reach an age and 
weight suitable for tagging (average tagging weight of 
119.3 g and average tagging age of 271 days); e is the vec-
tor of residuals; X , Z , and W are incidence matrices for 
the effects contained in b , u , and p , respectively.

For residual carcass weight, the model was:

where yc is a vector of carcass weight; b1 is a vector of 
linear covariables for body weight nested within year-sex 
interaction; b2 is a vector of fixed effect of year-sex-pond 
interaction; u , p , and e are described above; X1 and X2 
are incidence matrices for the effects contained in b1 and 
b2 . The term residual carcass weight arose from the fact 
that adjusting carcass weight to a common body weight 
allows identification of fish that have a higher proportion 
of whole weight as saleable carcass. The idea is similar to 
the residual feed intake which is widely used in livestock 
breeding.

Traditional BLUP and ssGBLUP analyses were per-
formed using the BLUPF90 family of programs [13]. In 
the mixed model equations for ssGBLUP, the inverse of 
the pedigree relationship matrix ( A−1 ) is replaced by H−1 
[4], the realized relationship matrix that combines pedi-
gree and genomic relationships:

(1)yw = Xb+ Zu +Wp+ e,

(2)yc = X1b1 + X2b2 + Zu +Wp+ e,

(3)H−1 = A−1 +

[

0 0

0 G−1 − A−1
22

]

,

Table 1  Distribution of  phenotypes and  genotypes 
by year-class

Year-class Full-sib 
families

Harvest weight Carcass weight Genotyped 
animals

Before 2006 – – – 70

2006 – – – 2

2008 181 4762 829 78

2009 198 5686 1352 44

2011 180 1982 – 38

2012 110 4484 924 133

2014 113 4141 955 189

2015 172 6105 1960 2357

Total 954 27,160 6020 2911



Page 4 of 12Garcia et al. Genet Sel Evol           (2018) 50:66 

where G−1 is the inverse of the genomic relationship 
matrix and A−1

22  is the inverse pedigree relationship 
matrix for genotyped animals. The G matrix was con-
structed as in VanRaden [14]:

where M is a matrix of genotypes centered by twice the 
current allele frequencies ( p ); j is the j th locus; D is a 
diagonal matrix of SNP weights with a dimension equal 
to the number of SNPs. All SNPs were assumed to have 
homogeneous weights in ssGBLUP, meaning that D was 
an identity matrix ( I ). To avoid singularity problems, G 
was blended with 5% of A22.

Validation
The main interest in fish breeding is to better predict 
genetic merit of a fish as broodstock; however, the data 
collected so far during this first development of genomic 
predictions for catfish in the US do not allow a com-
parison between mid-parent GEBV and progeny perfor-
mance, but this comparison will soon be possible. In our 
study, most of the genotyped animals with phenotypes 
were from the same year-class (i.e., 2015), precluding 
the use of validation on progeny performance and also 
forward prediction (i.e., future performance on indi-
vidual fish). Therefore, to compare predictive ability of 
traditional and genomic evaluations, we conducted vali-
dations using several strategies to split fish into training 
and validation datasets.

Strategies 1 and 2 were used for both harvest weight 
and residual carcass weight. Strategy 1 was a random 
k-fold cross-validation, where the dataset was randomly 
split into k folds, predicting one fold based on k-1 folds. 
Genotyped animals with phenotypes were randomly 
split into 5 or 10 mutually exclusive groups (k = 5 or 
k = 10, respectively). In each round of cross-validation, 
phenotypes from one group (i.e., validation group) were 
removed from the dataset and the remaining folds (i.e., 
training group) were used to predict the future perfor-
mance for animals in the validation group. This k-folds 
cross-validation was replicated five times and results are 
presented as the mean and standard error for the five 
replicates. In the validation strategy 2, genotyped full-sibs 
were split into two groups with one group used for train-
ing and the other group used for validation, and all phe-
notypes of the validation group were removed from the 
evaluation. This scenario is most important when pheno-
types are measured on sibs of the selection candidates.

Validation strategies 3 and 4 were conducted for resid-
ual carcass weight only to evaluate the importance of 

(4)G=
MDM′

2
∑

pj(1− pj)
,

collecting genotypes on fish that will be slaughtered for 
phenotype recording. Carcass weight requires the slaugh-
tering of many animals and thus their removal from the 
pool of selection candidates and is also considerably more 
expensive to measure than harvest weight. Harvest weight 
is quickly and inexpensively measured on all selection 
candidates and therefore, evaluating scenarios 3 and 4 for 
harvest weight provided no realistic benefit. Strategy 3 was 
similar to strategy 2 except that we assumed that only half 
of the full-sibs in the training population had phenotypes. 
This third validation strategy would be especially impor-
tant for carcass traits to reduce the number of genotyped 
animals that are slaughtered to collect phenotypes. The val-
idation group remained the same as in scenario 2.

In strategy 4, training animals had genotypes, but no phe-
notypes and the validation group remained the same. The 
ssGBLUP method uses all available information in the eval-
uation, meaning that phenotypes for 5051 ungenotyped, 
slaughtered fish were included. In this way, genotyped 
animals could benefit from phenotypes of ungenotyped 
animals if both groups are related through the pedigree 
relationship matrix although no genotyped animals had 
phenotypes for carcass weight. This scenario was proposed 
because the cost of genotyping fish can be as high as the 
value of a fish itself. If genotyped fish have to be slaughtered 
for phenotype recording and they are removed as selection 
candidates, the cost of implementation of genomic selec-
tion would likely increase.

Trait heritabilities with the full data were 0.27 and 0.34 
for harvest weight and residual carcass weight, respec-
tively. As we changed the data structure by creating dif-
ferent training datasets for each validation strategy, we 
also estimated updated variance components to evaluate 
how changing the animals used in the training set analy-
sis (which also changed the subsequent variance compo-
nents) impacted predictive ability and inflation of (G)EBV. 
Reverter et al. [15] pointed out that breeding value inflation 
or deflation can be introduced if variance components do 
not reflect the actual data.

Ability to predict performance was used to compare 
traditional and genomic models. It was calculated as the 
correlation between (G)EBV for validation animals and 
phenotypes adjusted for fixed effects ( y∗) , as described in 
(1) and (2), which were estimated based on the full data:

In addition, the regression coefficient ( b1 ) of adjusted 
phenotypes on (G)EBV was used as a measure of inflation 
of breeding values.

(5)predictive ability = cor
[

(G)EBV, y∗
]

,

(6)y∗ = b0 + b1 × (G)EBV + e ,
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A regression coefficient lower than 1 indicates (G)
EBV inflation, whereas a value higher than 1 indicates 
deflation.

Genome‑wide association
A genome-wide association study (GWAS) was per-
formed to identify possible regions of the genome con-
taining SNPs with major effects on harvest weight or 
residual carcass weight. Weighted ssGBLUP (WssGB-
LUP; Wang et  al. [16]) implemented in postGSf90 from 
the BLUPF90 family of programs [13] was used for the 
GWAS. In the first implementation of WssGBLUP, Wang 
et  al. [16] suggested that SNP weights should be calcu-
lated as dj = â2j 2pj

(

1− pj
)

 , following the formula for 
genetic variance due to an additive locus [17]. How-
ever, Lourenco et  al. [18] showed that this method did 
not reach convergence under a more polygenic scenario 
because of extreme weights. Therefore, the SNP weights 
used in this study were described by VanRaden [14] as 
non-linear A weights:

where CT is a constant that determines the departure 
from normality; 

∣

∣âj
∣

∣ is the absolute estimated SNP effect 
for marker j , and sd

(

â
)

 is the standard deviation of the 
vector of estimated SNP effects. non-linear A weights 
had good convergence properties and avoided extreme 
values (Breno O. Fragomeni, personal communication). 
This is because the maximum change in weights is lim-
ited by the minimum between 5 and the exponent of 
CT . In our study, CT received a value of 1.125 based on 
Legarra et  al. [19] and VanRaden [14]. Although these 
values were empirically derived based on dairy cattle 
populations, they resulted from tests over several traits 
with a more polygenic architecture.

The WssGBLUP is an iterative process. Wang et  al. 
[16] and Zhang et  al. [20] suggested that two iterations 
of weights were sufficient to maximize genomic accu-
racy and to correctly identify major SNPs in WssGBLUP. 
Based on the non-linear A weights, the number of itera-
tions to reach convergence may vary from 5 to 10 (Breno 
O. Fragomeni, personal communication). Therefore, we 
chose five iterations and checked the stability of predic-
tive ability and regression coefficients of adjusted phe-
notypes on GEBV. Predictive ability and inflation can be 
used as indicators for convergence when computing SNP 
weights in WssGBLUP [16]. After investigating which 
iteration had the highest predictive ability, based on 
reduced data, WssGBLUP was applied to the full data for 
harvest weight and residual carcass weight, and Manhat-
tan plots were drawn for that iteration.

(7)dj = CT

∣

∣

∣
âj

∣

∣

∣

sd(â)
−2

,

Manhattan plots were drawn based on the proportion of 
additive genetic variance explained by windows of 20 adja-
cent SNPs. The concept of SNP windows is rather abstract 
and tries to approximate haplotype blocks; therefore, it 
assumes that windows may be inherited together, which 
may not always be the case for all assumed windows.

Linkage disequilibrium and effective population size
We used the first medium density SNP array (55 K SNP) 
developed for channel catfish in this study. However, we 
also examined linkage disequilibrium (LD) to determine 
the feasibility of using a lower cost, reduced SNP panel 
for genomic selection in this population.

In our study, LD was calculated with preGSf90 using 
the following equation:

where D = PAB − PAPB ; PAB is the frequency of the gen-
otype AB ; PA , Pa , PB and Pb are the allele frequencies. The 
LD was calculated as the average of adjacent SNPs within 
chromosomes and across the genome.

A curve that fits the LD decay with distance between 
markers for each chromosome was calculated by fitting 
the equation proposed by Sved [21]:

where dij is the distance between markers i and j in Mor-
gan and Net is the effective population size for the chro-
mosome t , calculated as proposed by Saura et al. [22]:

with dt as the average chromosome length in Morgan; 
r2t  is the average LD at chromosome t ; N−1 is the adjust-
ment term for sample size (number of genotyped ani-
mals); and α is a fixed parameter that is assumed to be 1 
if mutation is not considered and 2 if it is considered; we 
considered α = 2.

Besides chromosome-based Ne , we also calculated Ne 
based on the rate of inbreeding by generation using the of 
formula Falconer et al. [17]:

where

with Fn as the inbreeding coefficient in the n th 
generation.

(8)r2 =
D2

PAPaPBPb
,

(9)E
[

r2t

]

=
1

1+ 4Netdij
,

(10)Net = (4dt)
−1

[

(

r2t − N−1
)−1

− α

]

,

(11)NeF =
1

2�F
,

(12)�F =
Fn − Fn−1

1− Fn−1
,
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Results and discussion
Predictive ability and inflation
Table 2 shows the predictive ability for both traits under 
different validation strategies. In all validations, using 
genomic information through ssGBLUP improved the 
ability to predict future fish performance relative to tra-
ditional BLUP.

In general, cross-validation scenarios using either k = 5 
or k = 10-fold scenarios had very similar predictive abil-
ity. In addition, updating the variance components for 
different training datasets did not affect predictive abil-
ity, as expected [15]. Including genomic information 
increased predictive ability by 28% (for both five and ten 
fold) for harvest weight, and by 29% and 33% (five and 
ten fold, respectively) for residual carcass weight relative 
to traditional BLUP.

Validation strategy 2 (splitting full sibs into training 
and validation sets) resulted in overall predictive abili-
ties for traditional BLUP and ssGBLUP that were greater 
compared to k-fold cross-validations. This was likely due 
to closer relationships between animals in training and 
validation groups [23] in strategy 2. The ssGBLUP out-
performed BLUP by 23% for harvest weight and by 36% 
for residual carcass weight in strategy 2. Genomic infor-
mation may have more impact on traits that cannot be 
measured on the selection candidates [24], such as car-
cass and disease resistance traits. For instance, in our 
study the greatest increase in predictive ability was for 
residual carcass weight.

Validation strategy 3, where only a portion of the full-
sibs in the training set had phenotypes, had a predictive 
ability slightly higher than strategy 4 (no phenotypes on 
genotyped animals), but lower than those for validation 
on full-sibs with genotypes and phenotypes (strategy 2) 
and k-folds cross-validation (strategy 1). The gain in pre-
dictive ability of GEBV over EBV in strategy 3 was 22% 
for residual carcass weight. The drop in predictive ability 

for residual carcass weight for strategy 3 relative to strat-
egies 1 and 2 was caused by the reduction in the number 
of phenotypes available to estimate breeding values.

Validation strategy 4 represented the situation where 
genotyped fish had no phenotypes in the dataset, which 
would eliminate the need to process genotyped fish. Pre-
dictive ability for residual carcass weight EBV decreased 
from 0.24 to 0.22, and of GEBV from 0.31 to 0.24. These 
results suggest that having genotypes for fish that are 
slaughtered for carcass weight recording is important 
and translates into the greatest benefit from genomic 
selection. Having phenotypes for genotyped individu-
als is important not only in aquaculture genomics, but in 
general livestock genomics. In a simulation study, Pszc-
zola et  al. [25] showed that the highest accuracies from 
genomic evaluation were obtained when animals from 
both reference (phenotyped) and evaluated (non phe-
notyped) populations were genotyped. Furthermore, 
Lourenco et  al. [26] showed only one point increase in 
predictive ability in the genomic evaluation for calving 
ease in American Angus and related that to the small 
number of genotyped animals with records on difficult 
calving.

Although predictive ability decreased considerably 
when carcass records for genotyped fish were removed, 
ssGBLUP still outperformed traditional BLUP by about 
9%. The improved performance of ssGBLUP in this situ-
ation is due to the fact that the H matrix connects gen-
otyped animals without phenotypes to ungenotyped 
animals with phenotypes, if they are connected through 
the pedigree.

Overall, the use of genomic information improved the 
calculation of relationships among animals and allowed 
for a better estimation of Mendelian sampling, promot-
ing an increase in predictive ability and allowing the use 
of within-family variation. Without genomic information, 
young full-sib fish (i.e., without phenotype or progeny) 

Table 2  Predictive ability for  harvest weight and  residual carcass weight under  BLUP and  ssGBLUP for  all validation 
scenarios

Predictive ability is measured by the correlation between (G)EBV and phenotypes adjusted for fixed effects in the validation population
a  Updating variance components or not produced exactly the same predictive ability for all scenarios
b  Average and standard error across five replicates

Validation strategy Validation scenariosa Harvest weight Residual carcass weight

BLUP ssGBLUP BLUP ssGBLUP

1 Five fold cross-validationb 0.290.001 0.370.001 0.240.002 0.310.002

1 Ten fold cross-validationb 0.290.0003 0.370.0004 0.240.002 0.320.002

2 Full sib validation 0.31 0.38 0.25 0.34

3 Half of the full sibs with phenotypes – – 0.23 0.28

4 No phenotypes for all genotyped animals – – 0.22 0.24
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would have the same EBV for a trait, which equals to par-
ent average [27].

Lourenco et  al. [28] showed that when an animal is 
genotyped but has no phenotype and progeny, the GEBV 
is composed of:

where PA is the parent average EBV for the animal, GP 
is the portion of prediction due to the genomic informa-
tion, coming from G , and PP is pedigree prediction that 
comes from A22 ; weights w1–w3 sum to 1. Quaas [29] 
described that the breeding value of an animal is the 
average of EBV from parents ( PA ) plus a random term 
that takes into account the uncertainty about which 50% 
of the genes were passed to progeny (i.e., Mendelian 
sampling):

where EBVS is EBV from sire; EBVD is EBV from dam 
and ϕ is the Mendelian sampling term. If the first por-
tion of the formula corresponds to PA , ϕ can be par-
tially estimated by the genomic information present in 
GP , as shown in Eq.  (13), because genomic data helps 
to estimate part of the uncertainty about which alleles 
and the proportion of alleles shared among individuals. 
Therefore, genotyped full-sibs that are selection candi-
dates (i.e., young) have unique GEBV (not just PA ) and 
the best candidates can be identified within families. 
Figure 1 shows the distribution of GEBV for a family of 
34 full-sibs that had no phenotypes for residual carcass 
weight but were genotyped. Without genomic informa-
tion, all 34 full-sibs had only PA, which is equal to 4.64 g. 
After including genomic information for all full-sibs, we 
observed a distribution ranging from 1.24 to 7.65. Use of 
GEBV would allow selection of fish within a family based 
on individual genetic merit for carcass weight, avoiding 
random selection of fish within a family based on BLUP 
EBVS , which could result in selecting fish with in fact 
lower genetic merit.

The ability to identify selection candidates within a 
family that have higher genetic merit is a key benefit for 
a trait such as carcass weight in fish, which is not meas-
ured on selection candidates, and for quite large full-sib 
family sizes. Studies on other fish species such as Atlan-
tic salmon [30–33] and rainbow trout [34, 35] have 
demonstrated increases in predictive ability or accuracy 
of GEBV compared to EBV, confirming the benefits of 
genomic selection for aquaculture species.

Tables 3 and 4 present EBV and GEBV inflation ( b1 ) for 
harvest weight and residual carcass weight. In all valida-
tion scenarios, GEBV were less inflated or deflated com-
pared to EBV, meaning that GEBV were closer in scale to 
the adjusted phenotypes. Updating variance components 
for each training dataset was beneficial for estimating 

(13)GEBV = w1PA + w2GP− w3PP,

(14)EBV = 0.5EBVS + 0.5EBVD +ϕ,

inflation for both EBV and GEBV. The benefit comes from 
the fact that the variance components used to predict (G)
EBV reflect the true state of the population after remov-
ing phenotypes for validation animals and therefore, less 
inflation is expected. Wiggans et  al. [36] suggested that 
one way to reduce inflation of genomic evaluations of US 
cows would be to reduce heritability; this would be in line 
with a reduced additive genetic variation in recent gen-
erations. In our study, when variance components were 
re-estimated, the regression coefficients became closer 
to 1 and were the most beneficial for the cross-validation 
scenario for harvest weight, in which b1 = 1 for GEBV, 
meaning that GEBV and adjusted phenotypes had similar 
dispersion.

Genome‑wide association
Manhattan plots from the GWAS for harvest weight 
and residual carcass weight are shown in Figs. 2 and 3, 
respectively. The plots were drawn for the first itera-
tion of WssGBLUP, because it had the greatest pre-
dictive ability and least inflation. In the first iteration, 
GEBV were computed assuming that all SNPs had the 
same weight. The GEBV were then back-solved to SNP 
effects and new weights were calculated and plotted 
as percentage of variance explained. Although predic-
tive ability had to be computed based on the reduced 
dataset, the Manhattan plots were drawn based on the 
full dataset. The proportion of additive genetic vari-
ance explained by windows of 20 adjacent SNPs was 
up to 0.96% for harvest weight and up to 1.19% for 
residual carcass weight, which indicates that both traits 

Fig. 1  Distribution of genomic EBV for residual carcass weight (g) in a 
family of 34 young genotyped full-sibs
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are extremely polygenic. A single window explaining 
close to 1% of the additive genetic variation for harvest 
weight was located on chromosome 19, whereas, for 
residual carcass weight the top windows were located 
on chromosomes 13 and 21.

In an experimental population of less than 600 geno-
typed progeny of F1 males (channel x blue catfish) and 

channel catfish females, Li et  al. [37] found a signifi-
cant association between SNPs on chromosome 5 and 
body weight. These SNPs explained from 3.69 to 6.72% 
of the phenotypic variance for body weight. In a rain-
bow trout population from the National Center for Cool 
and Cold Water Aquaculture, Gonzalez-Pena et  al. [38] 
found windows of 20 SNPs that explained more than 1% 

Table 3  Regression coefficients of adjusted phenotypes on EBV or GEBV for harvest weight

a  Average and standard error across five replicates

Validation strategy Validation scenario Same variance components Updated variance components

BLUP ssGBLUP BLUP ssGBLUP

1 Five fold cross-validationa 0.870.002 0.920.002 0.970.002 1.000.002

1 Ten fold cross-validationa 0.870.001 0.920.001 0.960.001 1.000.001

2 Full sib validation 0.94 0.98 1.05 1.04

Table 4  Regression coefficients of adjusted phenotypes on EBV or GEBV for residual carcass weight

a  Average and standard error across five replicates

Validation strategy Validation scenario Same variance components Updated variance 
components

BLUP ssGBLUP BLUP ssGBLUP

1 Five fold cross-validationa 0.800.008 0.910.007 0.890.03 0.940.007

1 Ten fold cross-validationa 0.800.008 0.920.005 0.820.008 0.950.005

2 Full sib validation 0.83 1.08 0.85 1.10

3 Half of the full sibs with phenotypes 0.75 0.95 0.77 0.98

4 No phenotypes for all genotyped animals 0.76 0.87 0.79 0.90

Fig. 2  Manhattan plot for harvest weight in the 1st iteration of WssGBLUP, with the proportion of additive genetic variance explained by windows 
of 20 adjacent SNPs
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of the additive genetic variance for body weight at 10 
and 13  months on chromosome 5, for fillet weight and 
yield on chromosome 9, and for carcass weight on chro-
mosomes 9, 17, and 27. In our study, the windows that 
explained the top variance did not overlap with windows 
already described in the literature for the same species or 
trait.

The fact that top windows do not overlap even in popu-
lations from the same species has been described in the 
literature. Silva et  al. [39] found very few overlapping 
genomic windows that explained more than 1% of the 
additive genetic variance for columnaris disease in two 
different rainbow trout populations. Fragomeni et al. [40] 
showed that, in a selected commercial broiler chicken 
population, the location of the windows with the largest 
effect was not consistent across different generations.

With a polygenic architecture and windows of SNPs 
explaining small proportions of the additive genetic vari-
ance, genomic selection for harvest weight and residual 
carcass weight in this catfish population is preferred 
over marker-assisted selection (MAS). Using MAS with 
such an architecture would not provide successful results 
given that only a small proportion of variance can be 
explained by individual SNPs.

Under a polygenic architecture, the use of Bayes-
ian alphabet (e.g., BayesA, BayesB) and GBLUP-based 
methods that allow SNPs to explain a different pro-
portion of variance (i.e., different SNP weightings; 
[20, 27]) may not help to increase the predictive abil-
ity or accuracy of GEBV. In fact, we observed that 

predictive ability for harvest weight and residual car-
cass weight did not change over the iterations of Wss-
GBLUP when using non-linear A weights (results not 
shown). In addition, inflation slightly increased from 
iterations 1  to  3, reaching a plateau in later iterations 
(results not shown). When the best results for pre-
dictive ability and inflation are obtained in the first 
iteration of WssGBLUP, we can assume that using dif-
ferent weights is not beneficial, and, in this case, GEBV 
obtained from WssGBLUP are the same as in ssGB-
LUP. In a simulation study using linear SNP weights 
(i.e., dj = â2j 2pj

(

1− pj
)

 ), Lourenco et  al. [18] found 
that for more polygenic traits, decreases in accuracy or 
increases in inflation/deflation for WssGBLUP could 
be caused by the shrinkage of SNP weights for SNPs 
with smaller effects.

Although Manhattan plots were drawn based on the 
first iteration of WssGBLUP, the percentage of variance 
explained by SNPs did not change considerably over 
iterations. In fact, there was no change from iterations 
2 to 5 for harvest weight and 3 to 5 for residual carcass 
weight. This possibly shows that non-linear A weights 
are not overestimated and they converge at some point. 
This convergence occurs because the formula contains 
a maximum limit for SNP weight. In an attempt to use 
the linear weights, we observed a constant increase 
in the proportion of variance explained (results not 
shown). This increase is due to the fact SNP weights 
keep changing over iterations without a limit for maxi-
mum change.

Fig. 3  Manhattan plot for residual carcass weight in the 1st iteration of WssGBLUP, with the proportion of additive genetic variance explained by 
windows of 20 adjacent SNPs
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Linkage disequilibrium and effective population size
The overall whole-genome LD was 0.22 and ranged from 
a low value of 0.12 (chromosome 29) to a high value of 
0.37 (chromosome 17). The LD was moderate even at 
long distances as shown in the LD decay plots in Fig. 4. 
There was a large, conservative LD block, which did not 
decay even at long distances (20 Mb) on chromosome 17, 
and a more in-depth investigation is needed to under-
stand what might have caused this LD pattern.

The effective population size calculated based on LD 
and that based on inbreeding did not differ much, i.e. 
27 and 28, respectively. Compared to livestock spe-
cies, Ne in catfish is relatively small. Pocrnic et al. [41] 

showed that Ne for broiler chicken, swine, Angus cat-
tle, Jersey, and Holstein cattle were 44, 32, 113, 101, and 
149, respectively. In studies based on simulated popu-
lations, Pocrnic et  al. [42] and Muir [7] associated Ne 
with the dimensionality of the genomic information 
and showed higher accuracy of genomic predictions 
for smaller Ne . When Ne is small, there are fewer and 
longer LD blocks, which can be well estimated even 
when the number of genotyped animals is less than 
5000 [18]. In this way, the small Ne in this catfish popu-
lation may have contributed to the great increase in 
predictive ability even when only 2911 fish were geno-
typed (i.e., 8% of the population).

Fig. 4  LD decay plots for 29 chromosomes
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Considering the small effective population size and 
the long-range LD in this population, it might be possi-
ble to reduce the number of markers needed for genomic 
selection. Other studies have demonstrated similar 
accuracies when comparing low- and high-density SNP 
panels in salmonid species [23, 30, 32, 35]. Recently, 
Vallejo et al. [43] reported gains of accuracy (relative to 
traditional BLUP) of 88% for a 35 K SNP panel and 42% 
with a greatly reduced 200 SNP panel with ssGBLUP for 
bacterial cold water disease resistance in rainbow trout. 
The authors related the efficiency of the reduced SNP 
panel to the strong long-range LD in that rainbow trout 
population.

Reducing the density of markers in the panel would 
likely reduce genotyping costs and improve the cost 
efficiency of genomic selection in fish. More studies 
are necessary to investigate the overall cost and benefit 
of different SNP panel densities on implementation of 
genomic selection in this catfish population.

Conclusions
Genomic information is beneficial for channel catfish 
breeding because it provides greater ability to predict 
future performance and reduces inflation of breeding val-
ues. For carcass traits, it is important to record carcass 
weight phenotypes on genotyped fish to obtain the larg-
est advantage of genomic selection. Genomic informa-
tion also allows the estimation of Mendelian sampling, 
enabling the identification of genetically superior individ-
uals within families, which is not possible with pedigree 
information only. Genome-wide association suggests that 
harvest weight and residual carcass weight have a poly-
genic architecture, indicating that using many SNPs in a 
genome-wide selection approach would be superior to 
using fewer SNPs in a marker-assisted selection type of 
approach.
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