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Multiple QTL underlie milk phenotypes 
at the CSF2RB locus
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Abstract 

Background:  Over many years, artificial selection has substantially improved milk production by cows. However, 
the genes that underlie milk production quantitative trait loci (QTL) remain relatively poorly characterised. Here, we 
investigate a previously reported QTL located at the CSF2RB locus on chromosome 5, for several milk production phe-
notypes, to better understand its underlying genetic and molecular causes.

Results:  Using a population of 29,350 taurine dairy cows, we conducted association analyses for milk yield and 
composition traits, and identified highly significant QTL for milk yield, milk fat concentration, and milk protein con-
centration. Strikingly, protein concentration and milk yield appear to show co-located yet genetically distinct QTL. To 
attempt to understand the molecular mechanisms that might be mediating these effects, gene expression data were 
used to investigate eQTL for 11 genes in the broader interval. This analysis highlighted genetic impacts on CSF2RB 
and NCF4 expression that share similar association signatures to those observed for lactation QTL, strongly implicating 
one or both of these genes as responsible for these effects. Using the same gene expression dataset representing 357 
lactating cows, we also identified 38 novel RNA editing sites in the 3′ UTR of CSF2RB transcripts. The extent to which 
two of these sites were edited also appears to be genetically co-regulated with lactation QTL, highlighting a further 
layer of regulatory complexity that involves the CSF2RB gene.

Conclusions:  This locus presents a diversity of molecular and lactation QTL, likely representing multiple overlapping 
effects that, at a minimum, highlight the CSF2RB gene as having a causal role in these processes.
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(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In much of the Western world, milk is primarily pro-
duced for human consumption by taurine cattle (Bos tau-
rus) dairy breeds. Within these breeds, many generations 
of selection have improved milk production capacity and 
efficiency. However, in spite of numerous recent genome-
wide association studies (GWAS) e.g., [1–4], major QTL 
remain for which no causative gene has been definitively 
assigned.

Several genes with substantial impacts on milk yield 
are known, including DGAT1 [5], ABCG2 [6], GHR [7], 
SLC37A1 [8], and MGST1 [9]. Recently, as part of work 
presented elsewhere [10], we performed a genome-wide 

association analysis for milk volume in 4982 mixed breed 
cattle using a BayesB model [11, 12] and a panel of 3695 
variants selected as tag-SNPs representing expression 
QTL (eQTL) from lactating mammary tissue. Of the top 
three loci explaining the greatest proportion of genetic 
variance in this model, genes representing the top and 
second to top effects have been well described for their 
role in milk production (DGAT1 and MGST1 respec-
tively [5, 9]), whereas no causative gene appears to have 
been definitively assigned for the third signal on chromo-
some 5 between 75 and 76 Mbp.

This locus broadly overlaps QTL that were reported 
previously for milk yield [3, 13], milk protein yield [3, 
13], milk protein concentration [1, 2, 14], and milk fat 
concentration [2, 9]. Although no gene has been defini-
tively implicated, Pausch et al. [2] noted significant mark-
ers that were located adjacent to the CSF2RB, NCF4, and 
TST genes, and proposed the latter as the most likely 
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candidate based on its proximity to the top associated 
variant. Other studies have proposed CSF2RB due to its 
high level of expression in the mammary gland [1, 14], or 
involvement in the JAK-STAT signalling pathway [3, 13]. 
Other nearby genes that have been suggested to cause 
these effects also include MYH9 [3] and NCF4 [13].

Given these observations, and the magnitude and 
diversity of effects at this locus, the aim of this study was 
to investigate this region on chromosome 5 in detail. By 
combining information on milk yield and composition 
with gene expression data from a large bovine mammary 
RNA sequence dataset, we highlight multiple lactation, 
gene expression, and RNA-editing QTL that segregate at 
this locus, and present CSF2RB as the most likely causa-
tive gene responsible for these effects.

Methods
Genotyping and phenotyping
All cows that had been genotyped using the Geneseek 
Genomic Profiler (GGP) LDv3 or LDv4 chips, and for 
which herd test phenotypes were available, were targeted 
in the current study (N = 29,350). These animals were 
selected because, based on preliminary sequence-based 
association analyses not reported here, these panels had 
been enriched with 365 polymorphisms identified as tag-
variants of the chromosome 5 lactation QTL (spanning 
a region from 74.8 to 76.2 Mbp; [see Additional file 1]). 
These variants included 30 SNPs from the Illumina 
BovineSNP50 chip (50  k), which were added to assist 
with imputation by increasing the overlap between the 
GGP and 50 k panels. Tag-variants were targeted as cus-
tom content using a scheme that attempted to genotype 
sites in both orientations (two primers per site), result-
ing in 341 custom markers on the LDv3 chip, and 342 on 
the LDv4 chip for this locus. The breed composition of 
the animals used for these analyses comprised 8930 HF, 
3599 J, and 15,652 HF × J cows, for which breed propor-
tion was based on pedigree records, and purebreds were 
defined as animals that had a breed proportion higher 
than 13/16. We also included 1169 cows with minor pro-
portions of Ayrshire ancestry.

Phenotypes were calculated from animal herd-test 
records for the three yield traits plus fat and protein con-
centration in milk. These phenotypes were generated 
using herd-test data from the first lactation, adjusted by 
using an ASReml-R [15] model with birth year, age at 
calving, breed, and heterosis as linear covariates, stage 
of lactation as a fixed effect, season/herd as an absorbed 
fixed effect, and animal as a random effect. Herd test 
records were sampled using Fourier-transform infrared 
spectroscopy on a combination of Milkoscan FT6000 
(FOSS, Hillerød, Denmark) and Bentley FTS (Bentley, 
Chaska, USA) instruments.

Imputation and association analyses
Genotypes for 29,350 animals were imputed to whole-
genome sequence (WGS) resolution in the window of 
interest using Beagle 4 [16] as described previously [9, 
17]. Briefly, a reference population of 565 animals, com-
prising Holstein-Friesians, Jerseys, and crossbred cattle, 
was sequenced using the Illumina HiSeq  2000 instru-
ment to yield 100-bp reads. Read mapping to the UMD 
3.1 bovine reference genome was conducted using the 
BWA MEM 0.7.8 software [18], followed by variant call-
ing using GATK HaplotypeCaller 3.2 [19]. Variants were 
phased using Beagle 4 [16], and those with poor phasing 
metrics (allelic R2 < 0.95) were excluded, yielding 12,867 
variants. Quality control filtering to remove variants with 
a MAF lower than 0.01% (N = 673) or Hardy–Weinberg 
equilibrium p-values below 1 × 10−30 (N = 461) resulted 
in a final set of 11,733 variants. As described above, the 
imputation window was enriched for custom, physically 
genotyped variants on the GGP-LDv3/4 chips, markedly 
increasing the scaffold density at this location.

Imputed genotypes for 639,822 autosomal SNPs on 
the Illumina BovineHD SNPchip were used to calculate 
a genomic relationship matrix (GRM) for the 29,350 ani-
mals of interest, using GCTA (version 1.91.3beta) [20, 
21]. The imputation step also used the Beagle 4 software, 
leveraging a BovineHD-genotyped reference popula-
tion of 3389 animals. Heritabilities for all phenotypes 
were calculated using this GRM with the REML option 
in GCTA. A leave-one-chromosome-out (LOCO) GRM 
was also created excluding chromosome 5, and used in 
combination with the imputed variant set and pheno-
types to perform a mixed linear model analysis (MLMA-
LOCO) [22] using GCTA.

RNAseq, gene expression and eQTL
RNAseq data from lactating mammary gland biop-
sies representing 357 mixed-breed cows were gener-
ated as described previously [23]. Briefly, samples were 
sequenced using Illumina HiSeq  2000 instruments, 
yielding 100-bp paired-end reads. These were mapped 
to the UMD 3.1 reference genome using TopHat2 (ver-
sion 2.0.11) [24]. The Stringtie software (version 1.2.4) 
[25] was used to quantify gene expression values for 
genes mapping to the window chr5:75–76 Mbp, yielding 
fragments per kilobase of transcript per million mapped 
reads (FPKM) and transcripts per million (TPM) [26] 
metrics. These calculations used gene models defined 
by the Ensembl gene build (release 81). Gene expression 
levels were also processed using the variance-stabilising 
transformation (VST) function implemented in the Bio-
conductor package DESeq (version 1.28.0) [27] to pro-
duce expression data suitable for analysis using linear 
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models. The 357 biopsied cows comprised, using the 
same breed definitions as above, 224 HF, 3  J, and 126 
HF × J cows, with the remaining four cows having minor 
proportions of Ayrshire ancestry.

WGS-resolution genotypes were imputed using the 
same WGS sequence reference described above in con-
junction with a mixture of genotype panels (see Meth-
ods in [23]) for the 357 cows, yielding 12,825 variants 
in the 74.6–76.2 Mbp window. Removal of variants with 
more than 5% missing genotypes (N = 36) or a MAF 
lower than 0.5% (N = 1643) resulted in a final set con-
taining 11,146 variants. VST-transformed gene expres-
sions were analysed for genes with FPKM > 0.1, using 
the GCTA MLMA-LOCO method described above. The 
GRM was calculated using physically genotyped variants 
from the BovineHD SNP chip for 337 cows, and imputed 
BovineHD genotypes for the remaining 20 cows based on 
an Illumina SNP50 platform scaffold.

RNA‑editing site discovery and edQTL
RNA editing in the 3′-UTR of the CSF2RB gene was 
investigated in the discovery set of nine animals from 
[28], these animals having been previously sequenced 
using both RNAseq and WGS methodologies. Editing 
sites were identified using custom scripts [28] and by 
manual inspection of WGS and RNAseq BAM files for 
each animal. Sites were considered to represent RNA 
edits where: (1) an A-to-G variant was present in the 
RNAseq reads, but was absent from the WGS reads, and 
(2) had at least five reads containing ‘G’ at the position 
in every animal. This yielded 38 candidate edited sites. 
Following the recommendations of Ramaswami et  al. 
[29] for non-Alu sites, the 38 candidate sites were exam-
ined for the presence of 5′ mismatches, simple repeats, 
homopolymer runs ≥  5  bp, or splice junctions within 
4 bp; however, none of the candidates were impacted by 
these filters, and all 38 were retained for further analyses.

Having determined the positions of variant sites, the 
rate of editing at each site was quantified in the larger 
‘quantification set’ of 353 cows [28] with RNA editing 
phenotypes for each site generated by transforming edit-
ing proportions using the logit function. RNA editing 
QTL discovery was performed using these phenotypes 
by performing MLMA-LOCO, incorporating the same 
GRM and imputed WGS genotypes used for eQTL dis-
covery (N = 353 animals).

RNA secondary structure around the edited sites 
was predicted using dot-plots as described by [28]. The 
sequence that contained all 38 edited sites and an addi-
tional 800  bp upstream and downstream was extracted 
and then plotted against its complement, with dots 
placed where at least 11 of 15 nucleotides surround-
ing a point were complementary. Diagonal lines in the 

resulting plot indicate regions of extended complementa-
rity, which therefore have the potential to form double-
stranded secondary structures.

Copy number variant genotyping and imputation
Manual examination of the WGS BAM files suggested 
the presence of a copy-number variant (CNV) located 
downstream of CSF2RB, mapping to chr5:75,781,300–
75,782,800. Copy numbers were estimated from WGS 
reads for each of the 560 cattle using the software pack-
age CNVnator (version 0.3) [30], based on sequence read 
depth. Thresholds for genotype calling of the CNV were 
set based on the histogram of the trimodal distribution 
of the copy number (CN) estimates, with a homozy-
gous deletion being called when CN < 0.95, heterozy-
gous 0.95 ≤ CN < 1.95, and homozygous wild type when 
CN ≥ 1.95. CNV genotypes were imputed into a larger 
population (N = 29,350), for use in association analyses, 
using Beagle version 4.1 [31], and the reference popula-
tion of 560 cattle described above. Combining the refer-
ence genotype calls with the imputed population yielded 
a set of 31,950 animals for use in MLMA-LOCO analy-
ses, as described above.

Results
Sequence‑based association analysis at the chr5 interval
Fine mapping of milk yield and protein concentration 
QTL at the chr5:75–76 Mbp locus was performed using 
imputed sequence genotypes (see Methods) representing 
29,350 cows. Sequence data were imputed using Beagle4 
[16] (74.8–76.2 Mbp; 11,733 markers), and phenotypes 
were produced from herd-test records (N = 29,350 cows) 
from the animals’ first lactations to derive values for milk 
yield (MY), protein yield (PY), fat yield (FY), protein con-
centration (PC), and fat concentration (FC; see Methods). 
Mixed linear model association (MLMA) analyses were 
conducted using GCTA (version 1.91.3beta) [21]. The 
top associated variant for each of the five phenotypes is 
in Table 1. All QTL were significant at the genome-wide 
threshold 5 × 10−8. The most significant QTL was identi-
fied for PC, followed by FC and MY, and the least signifi-
cant QTL was detected for FY. QTL for PC and MY are 
illustrated in Fig. 1.

AI-REML analysis was performed, using a GRM calcu-
lated over all the autosomes, to estimate genomic herit-
abilities (h2; Table  2). To investigate these QTL further, 
the linkage disequilibrium (LD) statistics (R2) between 
each pair of top variants were calculated (Fig. 2). Strong 
LD was observed between the top variants for MY, FC, 
and PC (MY vs FC tag variants R2 = 0.887; MY vs PC tag 
variants R2 = 0.991).
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Functional prediction of variant effects suggests 
regulatory QTL mechanisms
To assess potential functional effects of the statistically 
implicated QTL variants, all polymorphisms in strong LD 

(R2 >0.9) with the top-ranked QTL variants for each trait 
were extracted (N = 365 variants), and analysed using 
the Ensembl Variant Effect Predictor (VEP) [32]. Most of 
these variants (N = 247) were predicted to map outside 

Table 1  Top variants for milk yield and composition trait QTL

Phenotypes are daily yields for fat (FY), protein (PY), and milk (MY); and composition (percentage) phenotypes for fat (FC) and protein (PC). Locations on chromosome 
5 are shown for the UMD 3.1 reference genome. The gene column indicates the nearest gene annotated in the UCSC genome browser for the bosTau8 assembly

Phenotype Top variant Location Gene Beta SE P

FY (kg/day) rs466308089 75,957,201 IL2RB − 0.015 0.003 2.40 × 10−8

PY (kg/day) rs108985709 76,157,976 ELFN2 0.004 0.001 1.05 × 10−8

MY (L/day) rs208473130 75,685,770 NCF4 0.216 0.021 6.64 × 10−25

FC (%) rs379739117 75,786,436 RPL7 − 0.055 0.004 3.27 × 10−41

PC (%) rs208375076 75,651,326 NCF4 − 0.035 0.002 7.28 × 10−83

Fig. 1  The genetic context of milk trait QTL. Panels a and b: QTL for the herd-test-derived phenotypes protein concentration (a) and milk yield (b). 
Colours represent LD (R2) with the most significant marker on a continuous scale, with colours provided in the legend for every 0.2 R2. Panel c shows 
the locations of genes mapping into this window (bottom) and the numbers of RNAseq reads mapping at positions across the window (top)
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of genes, whereas 113 were predicted to be intronic, with 
58 in transcript ENSBTAT00000009911.4 (NCF4) and 
55 in ENSBTAT00000011947.5 (CSF2RB). The remain-
ing five variants were predicted to be synonymous muta-
tions, with two in ENSBTAP00000009911.4 (NCF4) at 
positions p.Gln145 = and p.Tyr243 = , and three in ENS-
BTAP00000011947.5 (CSF2RB) at positions p.Asn58 = , 
p.Tyr405 = , and p.Glu424 = . Importantly, none of the 
highly associated variants were predicted to change the 
protein sequences of genes, suggesting a regulatory effect 
as the likely mechanism(s) of the QTL.

Expression QTL analysis highlights three genes 
differentially expressed by genotype
To look for cis-eQTL effects that might explain the lac-
tation QTL, gene expression levels were calculated for 
genes in the chr5:75–76 Mbp window, using RNAseq 
data representing lactating mammary tissue biopsies 
from 357 cows (Fig. 1c). Expression levels in FPKM and 
TPM were calculated using Stringtie (version 1.2.4) [25] 
and are in Table  3 for transcripts for which FPKM was 
higher than 0.1. The gene with the highest expression 

level was CSF2RB, which is consistent with previous 
observations in murine mammary RNAseq data [33]. 
Moderate expression was also observed for the candi-
date gene MYH9. However, the expression level of NCF4 
was very low, at FPKM = 0.406. The highest correlation 
between pairs of gene expression levels was observed for 
TST and MPST (r = 0.545 ±0.077), which is concordant 
with the published observation of a shared bidirectional 
promoter for these two genes [34].

Association mapping was conducted for the 11 
expressed genes in Table 3. To this end, gene expression 
data were first scaled using the variance-stabilising trans-
formation (VST) implemented in DESeq (version 1.28.0) 
[27]. A GRM was then calculated for the 357 cows rep-
resenting the RNAseq dataset, and the MLMA-LOCO 
method was performed as described for the analysis of 
lactation traits. This yielded genome-wide significant 
eQTL for three genes: CSF2RB (1.33 × 10−26), NCF4 
(4.30 × 10−16), and TXN2 (5.85 × 10−12) (see Table 3 and 
Fig. 3). All three genes were  located within the peaks of 
their respective eQTL, demonstrating regulation in cis.

In cases in which genetic regulation of gene expression 
(i.e., an eQTL) underlies a complex trait QTL, we expect 
that both QTL share similar association signals, with the 
most (and least) associated variants similar between phe-
notypes. To test whether any of the 11 expressed genes 
shared similarities with the milk QTL, Pearson correla-
tions between the log10 p-values for each of the milk QTL 
and eQTL were calculated. Table 4 shows the QTL:eQTL 
correlations for all five phenotypes with three significant 

Table 2  Genomic heritability estimates for  milk yield 
and composition phenotypes

Phenotypes are milk fat daily yield (kg) and concentration (%), protein daily yield 
and concentration, and milk daily volume (L)

FY (kg/day) FC (%) PY (kg/day) PC (%) MY (L/day)

0.184 ±0.008 0.622 ±0.007 0.183 ±0.008 0.614 ±0.007 0.263 ±0.008

Fig. 2  Linkage disequilibrium (LD) observed between the top associated markers for each phenotype (R2). Markers are identified using dbSNP 
reference SNP ID numbers. Phenotypes are as in Table 2
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eQTL, plus the TST gene, which did not yield a genome-
wide significant eQTL, although it has been proposed as 
a candidate underlying this locus. The eQTL for CSF2RB 
has R2 >0.5 (r >0.707) with three of the five milk pheno-
types, while correlations for the neighbouring gene NCF4 
are just below this level. Neither of the TXN2 or TST 
genes exhibited high correlations with any milk QTL. 
The eQTL for CSF2RB was also highly correlated with 
the NCF4 eQTL (r = 0.863 ±0.005). A similar picture is 
obtained when examining the LD between the top tag 
markers for each QTL, with high LD observed (Fig.  4) 
among the tags for MY, FC, and PC with the tags for the 
CSF2RB and NCF4 eQTL.

Evidence of multiple, differentially segregating QTL 
for milk yield and protein concentration
Examining Fig.  1a (repeated in Fig.  5a) suggested that 
protein concentration might be influenced by two co-
located but mechanistically independent QTL, since 
a number of markers that are not in strong LD with 
the top marker nevertheless exhibit very small p-val-
ues (<1 × 10−60). To investigate this possibility, the 
top associated marker (rs208375076) was fitted as a 
fixed effect and the MLMA-LOCO analysis repeated 
using the residual, PC phenotype (Fig.  5b). The new 
top marker (rs210293314) remained highly significant 
(P = 1.30 × 10−24 after adjustment, 9.31 × 10−41 before 
adjustment), suggesting that it is tagging a different QTL. 
Adjusting the original protein concentration phenotype 
for rs210293314 and repeating the MLMA-LOCO analy-
sis yielded the result shown in Fig. 5c. Here, the most sig-
nificant marker was rs208086849, a variant that is largely 
statistically equivalent to the top rs208375076 marker 
from the original, unadjusted analysis (R2 = 0.999). These 

observations suggest the presence of two QTL for milk 
protein percentage.

This analysis was repeated with the MY phenotype 
(Fig.  5d). This phenotype showed little evidence of a 
second co-locating QTL, where fitting the top associ-
ated marker (rs208473130) dropped the signal below 
the genome-wide significance threshold (P = 1.36 × 10−6 
for marker rs378861677; Fig.  5e). However, adjusting 
the MY phenotype by fitting rs378861677 and repeat-
ing the MLMA-LOCO analysis resulted in an increase 
in significance for the top marker rs208473130, from 
6.64 × 10−25 to 8.63 × 10−29 (Fig.  5f ), which suggests 
that there may indeed be an additional weak QTL, or 
the variant otherwise addresses some other confounding 
signal. The variants rs208086849 (from the PC analysis 
in the previous paragraph) and rs208473130 show very 
strong LD (R2 = 0.991), which suggests that both markers 
are in fact tagging the same QTL across PC and MY. In 
contrast, variants rs210293314 (PC analysis above) and 
rs378861677 show moderate to weak LD (R2 = 0.332), 
which suggests that the two signals tagged by these vari-
ants are genetically distinct.

Most of the QTL were represented by common tag-
variants, with minor allele frequencies (MAF) higher 
than 0.4 across the whole population (Table  5). The 
two seemingly distinct PC QTL also segregated in both 
breeds, as do the PY and FC QTL. One of the two MY 
QTL, tagged by rs378861677, was uncommon in the Jer-
sey population (MAF = 0.01), and the FY QTL tagged by 
rs466308089 had a MAF of only 0.002 in Jersey cows. The 
minor allele of the latter QTL was also the rarest signal in 
the population overall, with a MAF of 0.031.

Since at least two differentially segregating QTL 
were detected at the locus, they may be underpinned 
by different genes and/or molecular mechanisms. To 

Table 3  Median gene expression levels and top variants identified in eQTL analyses

Genes with FPKM values less than 0.1 are not shown. Gene symbols are from VGNC and Ensembl. Beta is the effect size of the minor allele on gene expression, 
measured in VST-transformed units. Three genes have eQTL which exceed the genome-wide significance threshold 5 ×10−8 [60]

Gene Ensembl FPKM TPM Top variant MAF Beta SE P

APOL3 ENSBTAG00000040244 0.934 1.166 rs433710540 0.101 0.128 0.0315 4.84 × 10−5

CSF2RB ENSBTAG00000009064 61.888 80.081 rs384734208 0.439 0.428 0.0401 1.33 × 10−26

EIF3D ENSBTAG00000001988 9.139 11.461 rs110614216 0.353 − 0.072 0.0138 1.66 × 10−7

FOXRED2 ENSBTAG00000000015 0.142 0.179 rs385243246 0.176 0.036 0.0133 6.52 × 10−3

IFT27 ENSBTAG00000026657 0.904 1.107 rs110654851 0.440 0.046 0.0103 8.01 × 10−6

IL2RB ENSBTAG00000016345 0.285 0.359 rs43436480 0.364 0.058 0.0184 1.61 × 10−3

MPST ENSBTAG00000030648 1.564 1.957 rs109488885 0.314 − 0.053 0.0144 2.40 × 10−4

MYH9 ENSBTAG00000010402 14.448 17.497 rs377857213 0.034 0.280 0.0715 9.07 × 10−5

NCF4 ENSBTAG00000007531 0.406 0.513 rs209273109 0.443 0.137 0.0168 4.30 × 10−16

TST ENSBTAG00000030650 2.131 2.662 rs109922126 0.073 − 0.152 0.0313 1.19 × 10−6

TXN2 ENSBTAG00000000014 4.345 5.653 rs109450151 0.454 − 0.080 0.0116 5.85 × 10−12
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Fig. 3  QTL plots showing eQTL for the three genes that exhibit genome-wide significant cis-eQTL (Table 3). From top to bottom, the three genes 
are a CSF2RB, b NCF4, and c TXN2. Colours represent correlations for each marker with the top variant for that eQTL (see Fig. 1 for legend). Grey 
bands indicate the location of the gene for which the eQTL is displayed

Table 4  Correlations between the − log10 p-values for milk trait QTL and co-located eQTL

Pearson correlations are shown, with 95% confidence intervals. Three genes with significant (P < 5×10−8) eQTL are shown, along with the TST gene [2] that has 
previously been proposed as a candidate causative at this locus

Phenotype CSF2RB NCF4 TST TXN2

FY (kg/day) 0.376 ± 0.017 0.164 ± 0.019 0.293 ± 0.018 0.024 ± 0.020

PY (kg/day) 0.562 ± 0.014 0.404 ± 0.017 0.425 ± 0.016 0.032 ± 0.020

MY (L/day) 0.849 ± 0.006 0.682 ± 0.011 0.306 ± 0.018 − 0.039 ± 0.020

FC (%) 0.756 ± 0.009 0.648 ± 0.012 0.104 ± 0.020 − 0.128 ± 0.020

PC (%) 0.754 ± 0.009 0.689 ± 0.011 0.059 ± 0.020 − 0.118 ± 0.020
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assess whether the significant, co-locating CSF2RB and 
NCF4 eQTL were themselves comprised of multiple, 
overlapping signals (i.e. multiple cis-eQTL driven by 
different regulatory elements), the top associated vari-
ants were fitted as fixed effects to the gene expression 
phenotypes, and the analyses were rerun as above. This 
yielded new top markers with p-values of 8.87 × 10−5 
and 1.75 × 10−4 respectively, suggesting that the 
expression of these two genes, if influenced by multiple 
regulatory factors, had weak effects, or were too heavily 
confounded by LD to differentiate clearly.

To investigate how the eQTL might contribute to the 
multiple, co-locating PC QTL in comparative terms, the 
SNP-adjusted PC association results were used to calcu-
late eQTL correlations, using the methodology described 
in the previous section. Notably, these analyses resulted 
in improved correlations with eQTL. The correlation 
between the CSF2RB cis-eQTL and the unadjusted PC 
phenotype was 0.754 ± 0.009 (Figs.  4, 6a). However, 
using the phenotype adjusted for rs210293314 yielded a 
correlation of 0.807 ±0.007 (Fig.  6b). The same pattern 
was observed for the NCF4 gene, for which correlations 
improved from 0.689 ± 0.011 to 0.843 ± 0.006 (Fig.  6c, 
d). Applying the same approach to MY (unadjusted, and 
adjusted by rs37886167) similar results were obtained, 
albeit with only marginal increases: correlations with 
the CSF2RB eQTL increased from 0.849 ±0.006 to 
0.872 ±0.005, and correlations with the NCF4 eQTL 
increased from 0.681 ±0.011 to 0.713 ±0.010.

To investigate the possibility that secondary, co-locat-
ing PC and/or MY QTL might be caused by protein-
coding variants, all variants in strong LD (R2 >0.9) with 
rs210293314 (secondary PC tag-SNP) or rs378861677 
(secondary MY tag-SNP) were analysed using VEP as 
described previously. Of the 260 variants captured by 
this analysis, two missense SNPs were identified in con-
junction with rs378861677, both mapping to exon 2 of 
MPST: rs211170554 (p.Asp129Asn) with a SIFT score of 
0.88 (predicted tolerated), and rs209917448 (p.Arg47Cys) 
with a SIFT score of 0.01 (predicted deleterious). In the 
absence of additional eQTL that might account for the 
secondary PC and MY signals, these results suggest a 
potential protein-coding-based mechanism for the MY 
effect, at least.

CSF2RB encodes a promiscuously RNA‑edited transcript
Previous work [28] had identified four RNA editing sites 
that mapped to the introns of CSF2RB. Here, while man-
ually examining RNAseq and WGS sequence reads map-
ping to the gene, a surprising number of additional RNA 
edits were observed (see Methods). This included 38 
novel A-to-G variant sites present in the RNAseq data, 
yet absent from the whole-genome sequence represent-
ing the nine cows for which both data sources were avail-
able. These sites were present in four clusters within the 
3′ UTR (Fig. 7), which had been missed from our previ-
ously published genome-wide analysis [28] because it was 
based only on reference annotations that failed to capture 

Fig. 4  Linkage disequilibrium between the top tag variants for milk trait QTL and co-located gene expression QTL. Three genes with significant 
(P < 5×10−8) eQTL are included, along with the TST [2] that have previously been proposed as a candidate causative gene at this locus
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Fig. 5  The effect of fitting the top variant on protein concentration (a–c) and milk yield (d–f) QTL. The top panels a and d show the QTL with no 
marker adjustments fitted; the centre panels b and e show the QTL after fitting the top variant from the panel above; and the bottom panels c 
and f show the QTL after fitting the top variant from the centre panel above. The phenotypes were adjusted by fitting the following markers: b 
rs208375076, c rs210293314, d rs208473130, e rs378861677

Table 5  Minor allele frequencies for each top QTL variant

Allele frequencies are shown across the entire study population of cows and by breed (HF Holstein–Friesian; J Jersey)

Asterisks (*) indicate breeds where the minor allele differs from that for the population as a whole. The markers listed in the top section of the table tag the primary 
QTL for each phenotype, while those listed in the bottom section tag secondary QTL

Phenotype Variant MAF All HF (N = 8930) J (N = 3599) Cross 
(N = 15,652)

FY (kg/day) rs466308089 0.031 0.042 0.002 0.032

PY (kg/day) rs108985709 0.409 0.483 0.298 0.391

MY (L/day) rs208473130 0.444 0.489 0.390 0.435

FC (%) rs379739117 0.473 *0.476 0.391 0.464

PC (%) rs208375076 0.446 0.492 0.391 0.437

MY (%) rs378861677 0.116 0.182 0.010 0.101

PC (%) rs210293314 0.276 0.333 0.184 0.264
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the full length 3′ UTR sequence, which was evident when 
empirically derived gene structures from the mammary 
RNAseq data were used. Because the ADAR enzymes 
responsible for adenosine-to-inosine editing (A-to-G in 
sequence reads) target double-stranded RNA [35, 36], 
we predicted the potential for the sequences around the 
edited sites to form double-stranded RNA. The dot-plot 
in Fig.  7 shows that, of the 38 edited sites (red dashed 
lines), 37 (97.4%) sit within regions of extended comple-
mentarity (diagonal black lines), thus having the potential 
to form double stranded secondary structures.

As recently reported, we have observed that a propor-
tion of RNA-edited bases are genetically modulated for 
some sites [28]. To investigate potential genetic regu-
lation of RNA-editing on CSF2RB transcripts, pheno-
types for the proportion of reads edited were generated 
(see Methods), to detect RNA editing QTL (edQTL [28, 
37]). Using the MLMA-LOCO method as applied for the 
eQTL analysis described above, genome-wide significant 
edQTL (P < 5 × 10−8) were identified for 18 of the 38 sites. 
Because RNA editing may impact gene expression by 

Fig. 6  Correlations between eQTL and the co-located protein concentration QTL for the genes CSF2RB (left) and NCF4 (right). Panels on the top row 
are plotted against the original protein concentration QTL (Fig. 5a), while panels on the bottom row are plotted against the phenotype after fitting 
rs210293314 (Fig. 5c)
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different mechanisms [38–40], we investigated whether 
any edQTL were correlated with the eQTL for CSF2RB. 
One site, mapping to chr5:75,750,220, had a correla-
tion of 0.849 ±0.005 between the − log10 p-values of the 
edQTL and the eQTL. This edQTL was also strongly cor-
related with the NCF4 eQTL (0.929 ±0.003).

As an extension to the hypothesis that edQTL might 
underlie changes in gene expression (i.e. eQTL), we 
reasoned that one or more of the milk phenotype QTL 
might also be impacted, as evidenced by the correla-
tion values. Investigation of this hypothesis showed 
correlations r higher than 0.707 between edQTL and 
FC, PC, and PY (Table  6). In addition, we found very 

Fig. 7  Left: dotplot of the sequence from the CSF2RB 3′-UTR against its complement. Positions are relative to chr5:75,747,904. Black dots indicate 
that seven of the 11 surrounding nucleotides are complementary. Vertical dashed red lines indicate the locations of predicted RNA-editing sites. 
Sections of the region 2275–2452 are complementary to the regions 837–915, 1178–1350, 1591–1719, and 1757–1832, suggesting that the UTR 
is able to fold into multiple configurations. Right: the section of predicted double stranded sequence between 1184 and 1217 on the left strand 
(running upward), and 2411–2444 on the right strand (running downward). Edited sites are coloured based on the strength of the edQTL at that 
site, from blue (not significant) to red (max P = 5.22 × 10−26). Sites are labelled with the correlation between the edQTL and the milk volume (MY) 
QTL after adjusting for marker rs208473130

Table 6  Correlations between the − log10 p-values for milk 
trait QTL and co-located edQTL

Pearson correlations (with 95% confidence intervals) between the − log10 
p-values for milk trait QTL and edQTL for sites mapping to the 3′-UTR of CSF2RB. 
Only sites and phenotypes where the correlation exceeded 0.707 (R2 >0.5) are 
shown

Phenotype Edit site Correlation

FC (%) chr5:75,750,310 0.751 ±0.009

PC (%) chr5:75,750,220 0.753 ±0.009

PC (%) chr5:75,750,310 0.771 ±0.008

PY (kg/day) chr5:75,748,794 0.799 ±0.007

PY (kg/day) chr5:75,749,140 0.787 ±0.008

PY (kg/day) chr5:75,750,204 0.718 ±0.010
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strong correlations (r > 0.9) between two edQTL 
(chr5:75,749,101 and chr5:75,750,335) and MY after 
adjusting for the genotype of marker rs208473130 
(yield QTL illustrated in Fig. 5e, correlations in Fig. 7). 
A strong correlation (0.822) was also detected between 
the edQTL for chr5:75,748,760 and the PC QTL after 
adjusting for marker rs208375076 (PC QTL illustrated 
in Fig.  5b). As with the analyses of candidate protein-
coding variants, these results suggest other alternative 
(and likely overlapping) mechanisms that may account 
for the multiple QTL segregating at the chromosome 5 
locus.

Hypervariability at the CSF2RB locus presents 
an abundance of candidate causative variants
Manual examination of the WGS alignments at the locus 
also revealed read depth anomalies at approximately 
chr5:75,781,300–75,782,800. This analysis revealed a 
suspected 1.5 kbp deletion variant, located between the 
CSF2RB and TEX33 genes (downstream of the 3′ UTR 
of both genes given a ‘tail to tail’ orientation). To attempt 
to derive genotypes for this variant, the copy number at 
this site was estimated for 560 whole-genome sequenced 
cattle using CNVnator 0.3 [30]. The resulting estimates 
of copy number formed a trimodal distribution (Fig. 8a), 
which suggested a biallelic variant that could be assumed 
to be inherited in a Mendelian fashion [41]. Although one 
pseudogene maps to the region (LOC788541 60S riboso-
mal protein L7), the deleted segment appeared otherwise 
devoid of noteworthy genomic features.

To investigate the candidacy of the deletion as a poten-
tial causative variant for one or more of the QTL in the 
region, genotypes were called from CNVnator copy num-
ber predictions (see Methods), and the LD (R2) between 

the deletion and top QTL variants was investigated. 
Strong LD (0.887) was observed with the top markers for 
MY (rs208473130) and PC (rs208375076), as well as with 
rs208086849, the top variant for PC after adjusting for 
the secondary QTL (Fig.  8b). A slightly lower LD score 
was observed for FC (R2 = 0.807). The deletion allele was 
more frequent than the reference allele in the NZ dairy 
population (deletion = 0.547).

The strong LD between the ~  1.5 kbp deletion and 
key QTL tag variants qualified the variant as a poten-
tial candidate for these QTL; therefore, we imputed the 
variant into the association analysis population to test 
for association directly. Using the same MLMA-LOCO 
analysis method that was applied for other variants, sig-
nificant associations (P < 5 × 10−8) were observed for 
PC (P = 7.30 × 10−71), FC (P = 1.08 × 10−30), and MY 
(P = 1.18 × 10−18). Although highly significant, when 
ranking all variants by p value, the deletion variant never 
ranked higher than the 400th most significant marker; 
however, given the very large number of associated vari-
ants in this region generally (> 800 in the top 20 orders 
of magnitude for PC), and the fact that some of the read-
depth-based genotype calls may be erroneous, the dele-
tion remains a plausible candidate variant for future 
consideration of these QTL.

Discussion
Milk phenotype QTL
We report QTL mapping of a chromosome 5 locus for 
several milk yield and composition traits, with a diver-
sity of gene expression and RNA editing QTL that could 
underpin these effects. We note, in particular, that some 
phenotypes exhibit multiple QTL that probably have 
distinct genetic causes. The FC and PC QTL are both 

Fig. 8  a Histogram of copy number genotype calls of 560 animals from CNVnator. Copy numbers follow a trimodal distribution, suggesting that 
the variant is bialleleic. Genotype classes are coloured in gold (homozygous deletion), grey (heterozygous) and blue (homozygous wild-type). b 
Deletion variant genotypes plotted against the genotypes of the rs208086849 variant. The two variants are in strong LD (R2 = 0.887). Points are 
jittered to increase visibility
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in high LD with the MY QTL, which suggests that these 
effects may be mediated by changes in the total volume 
of milk produced without concomitant changes in fat or 
protein production. The fat and protein yield QTL are 
not in LD with either each other or with milk yield. How-
ever, these two QTL are less significant than the others by 
many orders of magnitude (see Table 1), which suggests 
that the lack of LD may be due to insufficient power in 
the dataset to identify reproducible tag variants. How-
ever, it should be noted that the MAF for the FY QTL is 
much lower than those for the MY and PY QTL, which 
suggests that this signal may indeed be discrete from the 
other two yield signals. The frequencies of the various tag 
variants across the breeds is also of note, which suggests 
that the QTL are both shared, and unique to individual 
breeds.

Candidate causative genes
Several candidate causative genes have been previously 
proposed to underlie lactation effects at this locus, and 
based on the work presented here, we propose that one 
or both of the CSF2RB and NCF4 genes are the likely 
candidates, with a predicted deleterious variant in the 
MPST gene also providing a potential candidate for milk 
yield QTL with a secondary effect.

The CSF2RB gene (ENSBTAG00000009064) encodes 
the common beta chain of the receptors for GM-CSF, 
interleukin-3, and interleukin-5, cytokines that are 
involved in regulating the proliferation and differentia-
tion of hematopoietic cells [42]. The granulocyte–mac-
rophage colony-stimulating factor (GM-CSF) is produced 
in the mammary gland by alveolar macrophages [43] 
where it enhances the bactericidal activity of milk neu-
trophils [44]. These receptors form a link in the JAK-
STAT signalling pathway, operating via JAK2 and STAT5 
[45]. The STAT5 proteins, especially STAT5A, are impor-
tant for enabling mammopoiesis and lactogenesis [46, 
47] and directly bind the gamma-interferon-activating 
sequence (GAS) found in the promoters of milk pro-
teins such as beta-casein, [48], beta-lactoglobulin [49], 
and whey acidic protein in mice [49]. The importance of 
this pathway is further evidenced by associations with 
milk production traits observed at the STAT5 locus [23, 
50, 51]. Although the relevant ligands and subunits with 
which CSF2RB forms complexes are unknown in the cur-
rent context, mutations that impact downstream interac-
tions with STAT5 proteins could be assumed to impact 
milk production/composition phenotypes.

The NCF4 gene (ENSBTAG00000007531) encodes 
neutrophil cytosolic factor 4, which forms the p40-phox 
subunit of the NADPH oxidase enzyme complex [52]. 
This enzyme produces superoxide ( O−

2
 ), a reactive oxy-

gen species produced in phagocytic cells during the 

respiratory burst [53], which is intended to kill invad-
ing fungi and bacteria [54]. NCF4 has been shown to 
be upregulated in mastitic mammary glands [55], and 
two SNPs mapping to the NCF4 gene have been associ-
ated with elevated somatic cell scores (SCS) [55, 56], a 
trait that is used as a surrogate phenotype for mastitis 
in dairy animals. Since cows suffering from mastitis pro-
duce smaller volumes of milk than healthy cows [57], this 
provides a possible mechanism by which NCF4 could 
influence milk production. A more appealing mechanism 
is one that involves CSF2RB or NCF4 but outside of a 
pathogen response context, given that the locus is better 
known for its impacts on milk production and composi-
tion in the absence of overt mammary infection.

Both the CSF2RB and NCF4 eQTL were correlated with 
the MY QTL, with the former showing stronger correla-
tions (r = 0.849 compared to 0.682). Lower correlations 
were observed between the two eQTL and the PC QTL 
(r = 0.754 and 0.691), however, removing one of the two 
apparent signals at this locus by fitting rs210293314 to 
the PC phenotype increased correlations for both candi-
date genes. Since no other genes showed similar patterns 
of co-association, we consider that one or both of these 
genes are the best candidates at this locus. The CSF2RB 
gene was expressed very strongly in mammary samples 
(TPM = 80.1), and by comparison, at a much higher level 
than NCF4 (TPM = 0.51). This observation suggests a 
critical role for CSF2RB-mediated signalling in lactation, 
and given the plausible biological linkages of CSF2RB 
to these processes (via JAK-STAT signalling), we favour 
CSF2RB as the more likely of these two candidates.

The TST gene (ENSBTAG00000030650) was recently 
proposed by Pausch et al. [2] as a candidate for milk fat 
and protein percentage QTL at ~75–76 Mbp on chro-
mosome 5. TST encodes thiosulfate sulfurtransferase, 
also known as rhodanese, a mitochondrial enzyme that 
catalyses the conversion of cyanide plus thiosulfate into 
thiocyanate plus sulfite [58]. It has been shown that the 
rhodanese enzyme (in misfolded form) can bind with 
5S-rRNA, enabling its import into the mitochondria [59]. 
There appears to be limited literature implicating TST in 
mammary development and milk production, and given 
that the gene maps downstream of association peaks in 
our dataset, and has no prominent eQTL by which to 
mediate these effects, a role for this gene seems unlikely 
for QTL in the NZ population. This does not preclude 
the involvement of the gene in other populations, how-
ever, we consider that the most parsimonious hypothesis 
is that these QTL are shared across populations, at least 
partially underpinned by regulatory variants modulating 
the expression of the CSF2RB gene.
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RNA editing and edQTL
Previously, we [10] reported four RNA editing sites map-
ping to the CSF2RB gene, one of which (chr5:75,739,106) 
showed a significant edQTL (smallest P = 6.68 × 10−13). 
This site exhibited only modest correlations with the 
CSF2RB eQTL, or with the milk yield or composition 
QTL [10].

In the current paper, we report the discovery of 38 
additional RNA-editing sites mapping to the 3′-UTR of 
CSF2RB. These sites were not identified in the previous 
work since they map approximately 3 kbp downstream 
of the gene structure based on the Ensembl reference 
annotation. Two of the novel sites, chr5:75,749,101 and 
chr5:75,750,335, exhibited edQTL with correlations 
exceeding 0.9 with the milk yield QTL after adjusting 
for marker rs208473130. The correlation between the 
CSF2RB eQTL and the same milk QTL was − 0.173, 
which suggests that, if the lactation effects indeed derive 
from an RNA-editing-based mechanism, this mechanism 
is not wholly reflected by the gene expression data used 
to quantify the eQTL effects.

Conclusions
We have examined a previously implicated chromo-
some 5 locus for milk yield and composition traits, and 
identified highly significant QTL for milk yield, pro-
tein concentration, and fat concentration. Using a large 
mammary RNA sequence resource, we have conducted 
eQTL mapping of the locus and show that expression of 
CSF2RB, a highly expressed gene involved in signalling 
pathways that are important to mammary development 
and lactation, appears to be responsible for these effects. 
RNA editing sites were also discovered in the 3′-UTR of 
CSF2RB, and edQTL for two of these are correlated with 
one of two co-located but differentially segregating milk 
yield QTL, which was also in strong LD with a predicted 
deleterious missense variant in the MPST gene. These 
results highlight the pleiotropic nature of the CSF2RB 
gene, and showcase the mechanistic complexity of a locus 
that will require further statistical and functional dissec-
tion to catalogue the full multiplicity of effects.
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