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Abstract 

Background:  In pig and poultry breeding programs, the breeding goal is to improve crossbred (CB) performance, 
whereas selection in the purebred (PB) lines is often based on PB performance. Thus, response to selection may be 
suboptimal, because the genetic correlation between PB and CB performance ( rpc ) is generally lower than 1. Accurate 
estimates of the rpc are needed, so that breeders can decide if they should collect data from CB animals. rpc can be 
estimated either from pedigree or genomic relationships, which may produce different results. With genomic relation-
ships, the rpc estimate could be improved when relationships between purebred and crossbred animals are based 
only on the alleles that originate from the PB line of interest. This work presents the first comparison of estimated rpc 
and variance components of body weight in broilers, using pedigree-based or genotype-based models, where the 
breed-of-origin of alleles was either ignored or considered. We used genotypes and body weight measurements of PB 
and CB animals that have a common sire line.

Results:  Our results showed that the rpc estimates depended on the relationship matrix used. Estimates were 5 to 
25% larger with genotype-based models than with pedigree-based models. Moreover, rpc estimates were similar (max. 
7% difference) regardless of whether the model considered breed-of-origin of alleles or not. Standard errors of rpc esti-
mates were smaller with genotype-based than with pedigree-based methods, and smaller with models that ignored 
breed-of-origin than with models that considered breed-of-origin.

Conclusions:  We conclude that genotype-based models can be useful for estimating rpc , even when the PB and CB 
animals that have phenotypes are closely related. Considering breed-of-origin of alleles did not yield different esti-
mates of rpc , probably because the parental breeds of the CB animals were distantly related.
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Background
In pig and poultry breeding programs, the breeding 
goal is to improve crossbred (CB) performance, whereas 
selection in the purebred (PB) lines is often based on PB 
performance. Thus, response to selection in CB perfor-
mance may be suboptimal, because the genetic correla-
tion between PB and CB performance ( rpc ) is generally 
lower than 1 [1–3]. An rpc lower than 1 can be caused 
by genotype-by-environment interactions [4, 5], by 

genotype-by-genotype interactions in combination with 
allele frequency differences between the two parental 
breeds [6], and by differences in trait definitions between 
PB and CB performance [7, 8]. With a low rpc , the use of 
CB instead of PB data may improve response to selection 
for CB performance [4, 9–11]. Thus, accurate estimates 
of the rpc are needed, so that breeders can decide if they 
should collect data from CB animals.
rpc is the additive genetic correlation between breeding 

values for PB and CB performance, and is defined as:

(1)rpc =
σAPB, CB

σAPBσACB

,
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where σAPB,CB is the additive genetic covariance between 
breeding values for PB and CB performance and σAPB 
( σACB ) is the additive genetic standard deviation in pure-
breds (crossbreds) [6, 12]. To estimate rpc , phenotypic 
data from both PB and CB animals are needed. When 
these data are available, rpc can be estimated with a ped-
igree-based animal or sire model [13]. Such models treat 
PB and CB performance as correlated traits and use a 
pedigree-based relationship matrix ( A ) to link PB and 
CB observations [1]. To estimate rpc with A , pedigree 
data should be available for both PB and CB individu-
als, and provide a link between PB and CB individuals. 
When the CB individuals are paternal half-sibs of the PB 
individuals, the accuracy of rpc estimated with A depends 
on the number of common sires between the PB and CB 
animals, and the accuracy of the estimated breeding val-
ues of the sires [14]. However, in practice, pedigree infor-
mation is often not recorded in CB populations and the 
number of sires that have both PB and CB offspring with 
phenotypes may be limited.

These requirements for estimating rpc with pedi-
gree information can be alleviated by replacing A with 
a multi-breed genomic relationship matrix ( G ) [15, 16]. 
An advantage of this approach is that the rpc can then 
also be estimated when the PB and CB animals are more 
distantly related, or when pedigree information is not 
recorded. In addition, genomic relationships may be 
more accurate than pedigree relationships [17, 18], which 
results in a smaller standard error of the estimate of rpc 
[19, 20].

Usually, the rpc between the CB and one of the PB 
parental lines is estimated. As such, genomic relation-
ships between PB and CB animals should ideally be 
based on alleles that originate from that PB parental line 
only. However, the ordinary G is based on both alleles of 
an individual, which in the case of CB individuals, also 
include those originating from the other PB line. For 
example, when rpc is estimated between CB and its PB 
sire line, the ordinary G matrix is also based on alleles 
that originated from the dam line. An alternative for G 
is a genomic partial relationship matrix ( GBOA ) that is 
based on the breed-of-origin of the alleles in the CB ani-
mals [21, 22]. Recently, a method to determine the breed-
of-origin of alleles (BOA) based on phased genotypes 
was developed, allowing GBOA to be constructed [23]. 
In GBOA , relationships between PB and CB animals are 
expected to be more accurate than in G , because relation-
ships in GBOA are based on marker alleles that originated 
from the same breed. This approach was successfully 
applied to estimate variance components from data of 
three-way crossbred pigs, where 93% of the alleles of the 
crossbreds could be assigned a breed-of-origin [24, 25]. 
However, empirical studies in other species are lacking 

and, to date, no studies have compared rpc estimates and 
their standard errors from pedigree-based models to 
those from genotype-based models. In addition, it is 
not yet clear how rpc estimates and their standard errors 
are affected by the model used. Thus, our objective was 
to compare estimates of rpc and variance components 
obtained from pedigree-based and genotype-based mod-
els. In addition, we compared models that either consider 
or ignore breed-of-origin of alleles. We analysed body 
weight in broilers, using genotypes and measurements of 
PB and CB animals that have a common sire line.

Methods
Data
Data were collected on male and female broilers from a 
PB sire line (A) and on a three-way cross between this 
sire line and crossbred dams (BC), where lines B and C 
are dam lines. The dam lines were selected on egg pro-
duction and the sire line on male fertility, along with 
standard traits, i.e., growth, yield, and feed efficiency. The 
three parental lines (A, B, and C) were genetically dis-
tant, as shown by the principal component analysis plot 
(Fig. 1). PB and CB animals were weighed between 6 and 
8 days of age (BW7) and between 33 and 36 days of age 
(BW35). We chose these phenotypes because they are 
easy to measure proxies for growth, which is an impor-
tant trait for breeding companies (Cobb; 2018 personal 
communication). Phenotype recording was done in five 
consecutive trials of similar size, which each included 
both PB and CB animals. All animals were housed in 
the same environment, in a barn located in Herveld, The 
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Fig. 1  Principal component plot of the genotype data for the 
parental lines and the crossbreds. Values for principal component 
1 (x-axis) are plotted against values for principal component 2 
(y-axis). Between brackets is the variance explained by each principal 
component. Colours indicate genetic group
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Netherlands. The distribution of animals across trials and 
pens is in Table 1. Each pen had an approximately equal 
number of males and females. Offspring of a given sire 
were housed mostly in the same pen but each pen had 
offspring of multiple sires. Pens mostly had either PB or 
CB animals. An outlier analysis was done separately for 
PB and CB animals and separately for each day of meas-
urement. Observations with standard deviations more 
than 3.5 away from the mean were considered as outli-
ers and removed, which resulted in 4687 PB and 10,585 
CB records on BW7 and 4471 PB and 10,272 CB records 
on BW35 (Table 2). The number of animals with observa-
tions ( NPB for PB and NCB for CB animals) was smaller 
for BW35 than for BW7 because some animals did not 
survive until 35 days.

All PB and CB animals with phenotypes were geno-
typed, as well as all their potential parents, and most of 
their potential grandparents. Markers with an unknown 
location, on sex chromosomes, on the mitochondrial 
genome, or with a call rate lower than 90% were removed. 
Marker positions were determined based on the Gallus 
gallus 4.0 (galGal4) reference assembly. All genotyped 
animals had a call rate of at least 90%. Genotypes were 
used for parentage assignment, such that pedigree infor-
mation was available for all animals with phenotypes, up 
to the generation of their grandparents. The PB and CB 
animals had 161 unique PB sires, of which 135 sires had 
both PB and CB offspring with phenotypes, seven sires 
had only PB offspring with phenotypes, and 21 sires had 
only CB offspring with phenotypes (Table 2). The PB off-
spring had 628 unique dams, whereas the CB offspring 
had 1028 unique dams.

Markers with more than 1% inconsistent genotypes 
between derived parent–offspring pairs were removed 
and any remaining inconsistencies were set to miss-
ing. All missing genotypes of PB and CB animals were 
imputed simultaneously with FImpute [26]. Genotypes 
of the parents and grandparents were used to assign 
the breed-of-origin of alleles in the CB animals but 
were not included in the trait analyses. After assigning 

breed-of-origin, we removed markers if they had a minor 
allele frequency lower than 0.005 in either the genotype 
file or in the breed-of-origin file. These edits resulted in 
50,960 markers that were used in the trait analyses.

Assigning breed‑of‑origin of alleles
The breed-of-origin of alleles in the A(BC) crossbreds 
was derived with the BOA approach [23, 24]. In short, 
the BOA approach consists of (1) simultaneously phasing 
genotypes of PB and CB animals with AlphaPhase 1.1 by 
using pedigree information [27], (2) collecting a library 
of haplotypes for each line using phased haplotypes of 
the PB lines, and (3) assigning the breed-of-origin of 
alleles in the CB animals. With this approach, 49.5% of 
the alleles were assigned to sire line A, which is close 
to the expected 50%. The full procedure and results are 
described in Calus et al. [28].

Statistical model
The BW7 and BW35 phenotypes were analysed sepa-
rately with a bivariate model that treats PB and CB per-
formance as separate but correlated traits. We compared 

Table 1  Distribution of animals across trials and pens for body weight measured around 7 days (BW7)

The distribution of animals across trials and pens for body weight measured around 35 days (BW35) was very similar
a  Number of animals with unknown pen

Trial Pen 1 Pen 2 Pen 3 Pen 4 NAa Total

1 654 235 404 627 0 1920

2 821 0 829 860 0 2510

3 1281 1117 1122 1225 55 4800

4 1275 662 514 895 0 3346

5 1187 204 213 1092 0 2696

Total 5218 2218 3082 4699 55 15,272

Table 2  Summary statistics for  body weight measured 
around 7 (BW7) and 35 days (BW35)

Statistics are presented for PB and CB data, separately

SD standard deviations
a  Total number of sires for all purebred and crossbred animals

Number (N) N sires N dams Mean SD

BW7 (kg)

 Purebreds 4687 142 628 176 25

 Crossbreds 10,585 156 1028 179 23

 Total 15,272 161a 1656

BW35 (kg)

 Purebreds 4471 140 623 2066 303

 Crossbreds 10,272 156 1027 2090 302

 Total 14,743 161a 1650
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four models that differed in the relationship matrix used. 
The general bivariate model can be written as [1, 29]:

where y is a vector of phenotypes, b is a vector of fixed 
effects (breed  ×  trial  ×  pen  ×  sex  ×  age at measure-
ment), with 85 (BW7) and 103 (BW35) levels, X is the 
design matrix of fixed effects, m is a vector of length 
equal to the total number of BC dams that contains (non-
genetic) maternal effects with incidence matrix L , u is a 
vector of length (NPB + NCB) that contains additive 
genetic effects with incidence matrix Z , and e is a vector 
of random residuals. Subscripts denote whether the 
terms relate to PB or CB performance. The distribution 
of maternal effects was 
[

mPB

mCB

]

∼ N

([

0

0

]

,

[

Iσ 2
m,PB 0

0 Iσ 2
m,CB

])

, where σ 2
m,PB 

( σ 2
m,CB ) is the maternal variance in the PB (CB) animals, 

and I is an identity matrix. Note that these maternal 
effects are not genetic effects, but permanent environ-
mental effects. The distribution of additive genetic effects 
for PB ( uPB ) and CB performance ( uPB ) was:

where σ 2
a,PB ( σ 2

a,CB ) is the additive genetic variance in the 
PB (CB) animals, σPB,CB is the genetic covariance between 
PB and CB performance, and K is the relationship matrix 
between all animals, which differed between models. This 
parameterization yields additive genetic effects for both 
PB and CB performance of all animals. The distribution 

of residuals was 
[

ePB
eCB

]

∼ N

([

0

0

]

,

[

Iσ 2
e,PB 0

0 Iσ 2
e,CB

])

 , 

where σ 2
e,PB ( σ 2

e,CB ) is the residual variance in the PB (CB) 
animals. Concerning the fixed effects, we used the full 

(2)

[

yPB
yCB

]

=

[

XPB 0

0 XCB

][

bPB
bCB

]

+

[

LPB 0

0 LCB

][

mPB

mCB

]

+

[

ZPB 0

0 ZCB

][

uPB
uCB

]

+

[

ePB
eCB

]

,

(3)
[

uPB
uCB

]

∼ N

([

0

0

]

,

[

σ 2
a,PB σPB,CB

σPB,CB σ 2
a,CB

]

⊗ K

)

,

interaction between effects (breed × trial × pen × sex × 
age at measurement), because males and females (in PB 
and CB animals) may have different growth rates 
(breed  ×  sex  ×  age at measurement), pens may have 
housed different groups of animals across trials 
(trial  ×  pen), and the number of degrees of freedom 
(maximum 103) needed was acceptable for the size of 
this dataset.

Variance components were estimated by restricted 
maximum likelihood (REML) using the MTG2 software 
[30]. From the estimated variance components (indicated 
by ^), the estimate of rpc was computed as:

We compared estimates obtained from four models 
that use different relationship matrices, and we assessed 
model performance by comparing the standard errors 
and likelihoods of these models.

Relationship matrices
We compared four models that use different relation-
ship matrices (i.e., that replace K in Eq. (3): (1) based on 
pedigree ( A ; PED), (2) based on pedigree ignoring dams 
of CB animals ( ABOA ; PED_BOA), (3) based on marker 
genotypes ( G ; GEN), and (4) based on marker alleles with 
sire origin ( GBOA ; GEN_BOA). We included PED_BOA 
because it only fits the additive genetic effects for CB per-
formance that are contributed by the sire line.

The A and ABOA matrices were constructed from pedi-
gree information, which was available for all animals with 
phenotypes, up to the generation of their grandparents. 
A single base population was assumed for all PB lines 
(i.e., no genetic groups were included). With A , the full 
pedigree was used, whereas with ABOA , the dams of CB 
animals were set to missing. In addition, we set all the 
self-relationships of CB animals in ABOA equal to 0.5 [31]. 
As such, PED_BOA is the pedigree equivalent of GEN_
BOA. The G matrix was constructed following the multi-
breed genomic relationship matrix of Wientjes et al. [16]:

(4)r̂pc =
σ̂PB,CB

σ̂a,PBσ̂a,CB
.

(5)

G =
�

GPB GPB−CB

GPB−CB GCB

�

=











MPBM
′
PB

�

2pPBj

�

1−pPBj

�

MPBM
′
CB

�

�

2pPBj

�

1−pPBj

�

�

�

2pCBj

�

1−pCBj

�

MCBM
′
PB

�

�

2pPBj

�

1−pPBj

�

�

�

2pCBj

�

1−pCBj

�

MCBM
′
CB

�

2pCBj

�

1−pCBj

�











,
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where MPB ( MCB ) is a centred marker genotype matrix of 
PB (CB) animals, and pPBj  ( pCBj  ) is the allele frequency of 
marker j in PB (CB) animals. We used the line-specific 
allele frequencies to separately centre the genotype matri-
ces MPB and MCB . The GBOA-matrix was constructed fol-
lowing Sevillano et al. [25] as:

where TCB is a centred marker allele matrix of CB ani-
mals, with a value of 

(

0− pj
)

 if the reference allele was 
inherited from the PB line, and a value of 

(

1− pj
)

 if the 
alternative allele was inherited, where pj is the frequency 
of the alternative allele at marker j , which was calculated 
as the total number of alternative alleles in the PB and CB 
animals that were inherited from the PB line, divided by 
the total number of PB alleles in these animals. Note that 
the resulting GBOA matrix is similar to the marker-based 
partial relationship matrix of Christensen et al. [22], with 
a scaling factor of 

∑

2pj
(

1− pj
)

.
The expected value of diagonal elements for CB animals 

in GBOA and ABOA is 0.5. The phenotypic variance of CB 
performance with PED_BOA and GEN_BOA was there-
fore computed as 0.5σ 2

a,CB + σ 2
m,CB + σ 2

e,CB.

Scaling of relationship matrices
With pedigree-based models, the population to which the 
variance components refer is the population of the found-
ers of the pedigree. However, with genotype-based models, 
the reference population is, in most cases, the group of gen-
otyped individuals, because G and GBOA were constructed 
using the allele frequencies in the genotyped group. Thus, 
estimated variance components from pedigree- and gen-
otype-based models are not directly comparable, because 
they refer to a different population [32]. To let the variance 
components from different models refer to the same (arbi-
trary) population, all relationship matrices were adjusted 
as:

where K11 denotes relationships among the PB animals, 
K22 denotes relationships among the CB animals, and K12 
and K21 denote the relationships between PB and CB ani-
mals, as defined in Eqs. (5) and (6). Scalar Dk1 ( Dk2 ) is the 
scaling factor of PB (CB) animals, which was defined as:

(6)

GBOA =
�

GBOA,PB GBOA,PB−CB

GBOA,PB−CB GBOA,CB

�

=





MPBM
′
PB

�

2pj(1−pj)

MPBT
′
CB

�

2pj(1−pj)
TCBM

′
PB

�

2pj(1−pj)

TCBT
′
CB

�

2pj(1−pj)



,

K
′ =

[

K11

Dk1

K12√
Dk1

√
Dk2

K21√
Dk1

√
Dk2

K22

Dk2

]

,

Dkx = Diag(Kx)− K̄x,

where Diag(Kx) is the mean of off-diagonals in Kx and 
K̄x is the mean of all elements in Kx . This scaling pro-
cedure is equivalent to multiplying estimated variance 
components from models with unscaled relationship 
matrices by the appropriate scaling factors, as proposed 
by Legarra [32]. For models that considered the breed-
of-origin of alleles, the expected value of Dk2 was close to 
0.5, so we used 2Dk2 instead of Dk2 as a scaling factor in 
these models.

Results
Detailed information and estimates from all models are 
in Additional file  1. The phenotypic variance for BW7 
was around 363 g2 for PB performance and 291 g2 for CB 
performance, whereas for BW35, it was around 37,048 g2 
for PB performance and 33,455  g2 for CB performance. 
The estimated phenotypic variance was similar across 
models, thus we present variances instead of their ratio to 
phenotypic variance. Estimates of rpc and of the additive 
genetic covariance were larger for BW35 than for BW7 
(Fig.  2). For BW7, the estimate of the additive genetic 
variance was smaller for PB performance than for CB 
performance, except with PED_BOA (Fig. 3). For BW35, 
estimates of the additive genetic variance and heritabili-
ties were consistently larger for PB performance. Differ-
ences in estimates between models, were roughly similar 
for BW7 and BW35. For the sake of brevity, in the fol-
lowing, the description of results applies to both traits, 
unless stated otherwise. We will refer to PED and PED_
BOA as pedigree-based models, and to GEN and GEN_
BOA as genotype-based models. In addition, we will refer 
to PED and GEN as models that ignore breed-of-origin, 
and to PED_BOA and GEN_BOA as models that con-
sider breed-of-origin.

Pedigree versus genomic relationship information
Estimates of rpc were larger with genotype-based mod-
els than with pedigree-based models, particularly 
for BW7 (Fig.  2). However, estimates of the additive 
genetic covariance were smaller with genotype-based 
models than with pedigree-based models, except for 
BW7 and GEN_BOA versus PED_BOA. For PB per-
formance, estimates of the additive genetic variance 
were smaller with genotype-based models than with 
pedigree-based models. For CB performance, estimates 
of the additive genetic variance were similar with geno-
type-based models and pedigree-based models, except 
for BW7 and GEN_BOA versus PED_BOA, for which 
the additive genetic variance was larger with GEN_
BOA (Fig. 3). Because of these differences in estimates 
of additive genetic variance, the product of estimates of 
additive genetic standard deviations in the denominator 
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of rpc was smaller with genotype-based models than 
with pedigree-based models. Estimates of the maternal 
variance of PB performance were larger with genotype-
based models than with pedigree-based models, while 
for CB performance, estimates of maternal variance 
were similar for both types of models (Fig. 3).

Ignoring versus considering breed‑of‑origin
Estimates of rpc from models that ignored or considered 
breed-of-origin were similar (Fig.  2). With pedigree-
based models, estimates of the additive genetic covari-
ance were smaller when breed-of-origin was considered, 
whereas with genotype-based models, estimates were 
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similar. For PB performance, there were almost no differ-
ences in estimates of additive genetic variance and mater-
nal variance (Fig. 3) between models that considered or 
ignored breed-of-origin. However, for CB performance, 
models that considered breed-of-origin had a larger esti-
mate of maternal variance than models that did not. With 
pedigree-based models, the estimate of additive genetic 
variance of CB performance was smaller when breed-of-
origin was considered than when it was not. However, 
with genotype-based models the estimate of additive 
genetic variance of CB performance was similar between 
models that considered or ignored breed-of-origin.

Likelihoods and standard errors
For both traits, model GEN had the largest likelihood, 
followed by GEN_BOA, PED, and PED_BOA (Table  3). 
Likelihoods were larger for genotype-based methods 
than for pedigree-based methods, while considering 
breed-of-origin unexpectedly reduced likelihoods com-
pared to ignoring breed-of-origin. In addition to the best 
fit, model GEN also gave the smallest standard error of 
estimates of rpc , followed by GEN_BOA, PED, and PED_
BOA (Fig. 2; Table 4). In general, the standard errors of 
estimates or rpc were smaller with genotype-based meth-
ods than with pedigree-based methods. The standard 
errors of estimates of variance components of CB perfor-
mance were slightly larger with models that considered 
breed-of-origin compared to models that did not, while 
there were no differences in standard errors for estimates 
of variance components of PB performance (Fig.  3 and 
see Additional file 1).

Discussion
This study aimed at comparing models that estimate PB 
and CB genetic parameters of body weight in broiler 
chicken. We were particularly interested in the estima-
tion of rpc , because the value of rpc allows breeders to 
determine whether the use of CB information in the 
breeding program will increase genetic gain of CB perfor-
mance, compared to a situation where only PB informa-
tion is used. Our results showed that, for our population, 
rpc estimates were 5 to 25% larger with genotype-based 

models than with pedigree-based models. Moreover, rpc 
estimates were similar (max. 7% difference) with models 
that consider breed-of-origin and for models that ignore 
breed-of-origin. Genotype-based models had larger like-
lihoods and estimates with smaller standard errors than 
pedigree-based models, which was in line with expec-
tations. This suggests that, although our results are not 
conclusive, rpc was underestimated with pedigree-based 
models in this study.

Estimates of rpc were between 0.64 and 0.80 for BW7 
and between 0.90 and 0.96 for BW35. To our knowledge, 
this is the first time that rpc are estimated for body weight 
in broilers. It should be noted that, in this study, PB and 
CB animals were housed in the same environment. As 
such, our estimates provide an upper bound for values of 
rpc in situations where PB animals are housed in a breed-
ing nucleus environment and CB animals in a commer-
cial herd environment. Nevertheless, our estimates are 
similar to estimates from the literature on egg production 
traits in laying hens, for which estimates of rpc ranged 
from 0.62 to 0.83 [1]. In pigs, the average estimate of rpc 
for growth-related traits was lower (~ 0.6) [3].

With an rpc larger than ~ 0.7, the accuracy of predict-
ing breeding values for CB performance is not expected 
to substantially improve when CB data instead of PB data 
is used [9]. An empirical study on pigs also showed that, 

Table 3  Likelihoods from four models for body weight measured around 7 (BW7) and 35 days (BW35)

The likelihoods are those reported by MTG2. The largest likelihoods per trait are in italic. Models used a relationship matrix based on pedigree (PED), based on 
pedigree ignoring dams of CB animals (PED_BOA), based on marker genotypes (GEN), or based on marker alleles with sire origin (GEN_BOA)

Model BW7 BW35

Likelihood Relative to PED Likelihood relative to PED

PED − 50,303.6064 − 83,374.8368

PED_BOA − 50,324.9275 − 21.321 − 83,397.1397 − 22.303

GEN − 50,143.4092 160.197 − 83,116.5065 258.330

GEN_BOA − 50,254.9253 48.681 − 83,275.2876 99.549

Table 4  Estimates of  the  purebred-crossbred genetic 
correlation ( rpc ) and their standard errors for body weight 
measured around 7 (BW7) and 35 days (BW35), from four 
models

The standard errors are those reported by MTG2. The smallest standard errors 
per trait are in italic. Models used a relationship matrix based on pedigree (PED), 
based on pedigree ignoring dams of CB animals (PED_BOA), based on marker 
genotypes (GEN), or based on marker alleles with sire origin (GEN_BOA)

Model BW7 BW35

Estimate Standard error Estimate Standard error

PED 0.69 0.11 0.91 0.05

PED_BOA 0.64 0.12 0.90 0.05

GEN 0.80 0.08 0.96 0.03

GEN_BOA 0.79 0.08 0.95 0.04
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with an rpc of about 0.90, replacing PB data with CB data 
did not improve prediction accuracy [33]. However, these 
results cannot be extrapolated directly to the current 
study, because differences in accuracy also depend on 
the number of phenotypic records available from the PB 
and CB populations and on the strength of relationships 
between the reference population and selection candi-
dates [9, 19, 33]. In addition, information on PB perfor-
mance may be more valuable than information on CB 
information, because the former may have been meas-
ured on the selection candidates themselves, whereas the 
latter can only be measured on relatives. Nevertheless, 
we expect that the use of CB instead of PB data will not 
substantially increase the accuracy of predicted breed-
ing values for CB body weight in the current dataset, due 
to the high rpc . A detailed investigation of the benefit of 
using CB instead of PB data for the accuracy of predicted 
breeding values will be investigated in a follow-up study.

Heritability estimates ranged from 0.09 to 0.20 for BW7 
and from 0.21 to 0.30 for BW35. To our knowledge, herit-
ability estimates for body weight at 7 days of age (BW7) 
have not been reported before. Our heritability estimates 
for BW35 were similar to those reported by Koerhuis and 
Thompson [34], Mulder et al. [35] and Maniatis et al. [36]. 
In contrast, our heritability estimates for BW35 were 
lower than those reported by Kapell et al. [37] and Rekaya 
et  al. [38]. Estimates of the ratio of maternal to pheno-
typic variance ( m2 ) ranged from 0.13 to 0.22 for BW7 and 
from 0.02 to 0.10 for BW35. These results match with 
the general belief that maternal effects decrease with 
age. Estimates of m2 for BW35 from the literature ranged 
from 0.02 to 0.05 [34, 36–38] and were somewhat smaller 
than our estimates, which may be due to the use of mod-
els that consider breed-of-origin in our study, where part 
of the genetic variance that is not captured moves to the 
non-genetic maternal variance.

Pedigree versus genomic relationship information
Estimates of rpc were larger with genotype-based than 
with pedigree-based models, but the estimate of addi-
tive genetic covariance was often smaller with genotype-
based models than with pedigree-based models, so the 
difference in rpc estimates was the result of differences in 
both additive genetic variances and covariance. The esti-
mate of the additive genetic variance of PB performance 
was slightly larger with pedigree-based than with geno-
type-based models, while the estimate of the maternal 
variance of PB performance was smaller with pedigree-
based models. First, the difference in variance estimates 
for PB performance may be due in part to bias in the 
genomic relationships that are estimated with mark-
ers [39]. To account for sources of bias when G is used, 
Goddard et  al. [40] proposed to regress G towards A . 

However, for our data, this procedure neither changed 
the relationships in G substantially, nor changed the 
estimates of variance components (results not shown). 
Furthermore, in contrast to PB performance, the addi-
tive genetic variance of CB performance was similar with 
pedigree-based and genotype-based models. Thus, we 
chose not to regress G towards A . Second, the estimate 
of maternal variance may be more accurate with geno-
type-based than with pedigree-based models because 
genotype-based models may be more efficient at disen-
tangling non-genetic maternal effects from the maternal 
component of an individual’s additive genetic effect [41, 
42]. However, in contrast to PB performance, estimates 
of the additive genetic and maternal variances for CB 
performance were similar with pedigree-based and gen-
otype-based models. Thus, it remains unclear why the 
differences in estimates of variances for PB performance 
between genotype-based and pedigree-based models 
were not observed for CB performance.

The effect of considering breed‑of‑origin of alleles
For PB performance, estimates of variance components 
from models that ignored or considered breed-of-origin 
of alleles were similar, which is not surprising, because 
relationships between PB animals are the same regardless 
of whether breed-of-origin is considered or not. How-
ever, for CB performance, the estimate of the maternal 
variance was much larger with models that considered 
breed-of-origin. In these models, only alleles inherited 
from the sires were used to describe the variation in rela-
tionships between CB offspring. Thus, the genetic part of 
these models only captured the additive genetic variance 
of CB performance that is caused by the PB sire line. As a 
result, the non-genetic maternal effect absorbed most of 
the genetic variance caused by the BC dams. In contrast, 
with models that ignore breed-of-origin, alleles inher-
ited from dams describe additional genetic covariation 
between CB offspring. Thus, the genetic components of 
these models also capture some of the additive genetic 
variance caused by the BC dams and, as a result, the vari-
ance explained by the maternal effect was smaller with 
models that ignored breed-of-origin than with models 
that considered breed-of-origin.

In spite of the differences in estimates of maternal 
variance between GEN and GEN_BOA, the estimate of 
additive genetic variance in CB performance ( σ 2

a,CB ) was 
similar between GEN and GEN_BOA. Thus, we hypoth-
esized that either (1) the contribution of alleles that 
originated from the sire line to σ 2

a,CB is equal to the con-
tribution of alleles that originated from the BC dams, or 
(2) the relationships between the sires and BC dams con-
tributed little to the estimate of σ 2

a,CB (because the sires 
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and BC dams were distantly related) and the paternal 
relationships dominated the estimate of σ 2

a,CB.
To test the first hypothesis, we analysed CB perfor-

mance with a univariate model that fitted random sire 
and random dam effects separately, each with their own 
BOA matrix. This model yielded two estimates of σ 2

a,CB , 
one for the sire line and one for the BC dams, which 
showed that the contribution of the BC dams to the 
estimate of σ 2

a,CB was larger than the contribution of the 
sire line (see Additional file 2). The first hypothesis was 
therefore rejected. To test the second hypothesis, we 
compared estimates of σ 2

a,CB from the aforementioned 
univariate BOA approach with estimates from a univari-
ate GEN approach using only CB performance (GEN_
CB). With GEN_CB, the estimate of σ 2

a,CB also depends 
on genetic covariances between sires and dams because 
GEN_CB merges alleles from both lines into a single G 
matrix. However, we observed that the average of the 
σ 2
a,CB estimates of the sire line and BC dams from the 

BOA approach was close to the estimate of σ 2
a,CB with 

GEN_CB (8389 vs 8410; see Additional file  2), which 
suggests that relationships between sires and dams con-
tributed little to the likelihood or to the estimate of σ 2

a,CB 
with GEN_CB. Indeed, there was almost no variance in 
genomic relationships between sires and dams and, as 
a result, relationships between sires and between dams 
dominated the estimate of σ 2

a,CB with GEN_CB. Similar 
to σ 2

a,CB , the estimate of the additive genetic covariance 
between PB and CB performance was the same with GEN 
and GEN_BOA. Hence, the estimate of additive genetic 
covariance with GEN is probably dominated by varia-
tion in relationships between sires and between dams. Of 
these, we believe that paternal relationships dominated 
the estimate of σ 2

a,CB because the model included a non-
genetic maternal effect, which is strongly confounded 
with the maternal part of the genetic covariance between 
full sibs. Hence, covariances in the BC dams that are 
informative for σ 2

a,CB originated mainly from more dis-
tant relationships, which have a smaller impact on the 
likelihood than, e.g., paternal half-sib relationships. In 
addition, the standard error of the estimate of σ 2

a,CB was 
larger when using dam alleles than when using sire alleles 
(see Additional file 2), which suggests that paternal rela-
tionships dominated the estimate of σ 2

a,CB.

Model usefulness
This study focused on the estimation of variance compo-
nents and rpc using different models based on estimated 
standard errors and model fit. However, it should be 
noted that the model with the best fit does not necessar-
ily yield the most accurate predicted breeding values [43], 
which shall be investigated in a follow-up study. Never-
theless, results showed that genotype-based models had 

a better model-fit and smaller estimated standard errors 
than pedigree-based models. Thus, genotype-based 
models may be preferred over pedigree-based models 
to estimate rpc , even when the PB and CB animals are 
closely related. The benefit of genotype-based models 
may be slightly larger when the PB and CB animals are 
less related or when pedigree information is difficult to 
obtain. However, reported standard errors of estimates 
should be used with care. For example, the assumption 
in model GEN that all alleles in the CB animals originate 
from the same line is incorrect, which can lead to unreli-
able estimates of standard errors.

Models that consider breed-of-origin of alleles had 
smaller likelihoods than models that ignore it, which is 
somewhat unexpected for GEN versus GEN_BOA. With 
GEN, relationships between PB and CB animals are 
based on alleles from both the sires and dams and alleles 
of the dams in the PB and CB animals are assumed to 
have the same origin. Thus, the PB–CB relationships in 
G may be less accurate than the PB–CB relationships in 
GBOA , which may decrease the likelihood of GEN. Nev-
ertheless, estimates of rpc with GEN and GEN_BOA were 
similar, which suggests that violation of model assump-
tions with GEN had only minor effects on the estimate of 
rpc . In addition, GEN may have an advantage over GEN_
BOA, because the assignment of the BOA is probably 
not without error, which may affect estimates of variance 
components.

The GEN_BOA model that we used in this study does 
not explicitly fit a genetic component for the maternal 
alleles in the CB animals and, hence, does not allow for a 
covariance of allele effects from the dams with those from 
the sire line. In addition, we were not able to estimate rpc 
between the A(BC) crossbreds and BC dams, because 
phenotypes of BC dams were not available. A more com-
plete model would use phenotypes and phased genotypes 
from the A(BC) crossbreds and its three parental lines 
(A, B and C), model these phenotypes as four separate 
traits, and allow covariances between these traits [44]. 
Although such a model is more sophisticated and com-
plete, we do not expect that it would result in different 
estimates of rpc between the CB and its sire line, because 
the parental lines were genetically distant.

In spite of differences in standard errors and likeli-
hoods between models, we were not able to establish 
which estimates were closest to the true values (i.e., the 
genetic correlation at the causal loci) because this value 
is unknown. Gianola et al. [45] showed that estimates of 
genetic correlations using marker information may not 
necessarily reflect the true genetic correlation at causal 
loci because of imperfect linkage disequilibrium between 
markers and QTL. However, simulation studies have sug-
gested that genotype-based models result in unbiased 
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estimates of genetic correlations when relationships at 
causal loci are accurately predicted by the markers [46]. 
Further research is needed to establish whether these 
results also apply to estimation of rpc and which of the 
models presented in this study yields the most accurate 
estimate of rpc.

Conclusions
This work presents the first comparison of estimated 
rpc and variance components of body weight in broil-
ers, using pedigree-based and genotype-based models, 
where the breed-of-origin of alleles was either ignored or 
considered. Estimates of rpc ranged from 0.64 to 0.80 for 
BW7 and from 0.90 to 0.96 for BW35. Genotype-based 
models resulted in larger estimates of rpc than pedigree-
based models and are preferred for estimating rpc because 
they resulted in smaller standard errors of estimates and 
had better model fit than pedigree-based models. Con-
sidering breed-of-origin of alleles did not affect estimates 
of rpc , probably because the parental breeds of the CB 
animals were distantly related but could result in differ-
ent estimates of rpc when the parental breeds are more 
closely related, or when the amount of data is limited.

Additional files

Additional file 1. Estimates of variance components and purebred-cross-
bred genetic correlations of body weight around 7 (BW7) and 35 days 
(BW35) for four models. Description: Estimates of variance components 
are presented for each purebred and crossbred trait. Column A indicates 
the parameter, and column B indicates the model used.

Additional file 2. Estimates of variance components for CB performance 
of BW35 from models that either fit a single G matrix (GEN_CB), or that 
separately fit a genetic sire component and a genetic dam component 
with two BOA matrices.
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