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Abstract 

Background:  In settings with social interactions, the phenotype of an individual is affected by the direct genetic 
effect (DGE) of the individual itself and by indirect genetic effects (IGE) of its group mates. In the presence of IGE, herit-
able variance and response to selection depend on size of the interaction group (group size), which can be modelled 
via a ‘dilution’ parameter (d) that measures the magnitude of IGE as a function of group size. However, little is known 
about the estimability of d and the precision of its estimate. Our aim was to investigate how precisely d can be esti-
mated and what determines this precision.

Methods:  We simulated data with different group sizes and estimated d using a mixed model that included IGE and 
d. Schemes included various average group sizes (4, 6, and 8), variation in group size (coefficient of variation (CV) rang-
ing from 0.125 to 1.010), and three values of d (0, 0.5, and 1). A design in which individuals were randomly allocated 
to groups was used for all schemes and a design with two families per group was used for some schemes. Parameters 
were estimated using restricted maximum likelihood (REML). Bias and precision of estimates were used to assess their 
statistical quality.

Results:  The dilution parameter of IGE can be estimated for simulated data with variation in group size. For all 
schemes, the length of confidence intervals ranged from 0.114 to 0.927 for d, from 0.149 to 0.198 for variance of 
DGE, from 0.011 to 0.086 for variance of IGE, and from 0.310 to 0.557 for genetic correlation between DGE and IGE. To 
estimate d, schemes with groups composed of two families performed slightly better than schemes with randomly 
composed groups.

Conclusions:  Dilution of IGE was estimable, and in general its estimation was more precise when CV of group size 
was larger. All estimated parameters were unbiased. Estimation of dilution of IGE allows the contribution of direct 
and indirect variance components to heritable variance to be quantified in relation to group size and, thus, it could 
improve prediction of the expected response to selection in environments with group sizes that differ from the aver-
age size.
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Introduction
Most livestock species are housed in groups in which 
individuals interact socially and can influence each oth-
er’s phenotype. Thus, from a genetics perspective, the 
phenotype of an individual is influenced by the direct 
genetic effect (DGE) of the individual itself and by the 
indirect genetic effects (IGE) of the other individuals 
(group mates) [1–3]. Theory-based research has demon-
strated that IGE affect the rate and direction of response 
to selection [1, 4]. Furthermore, in the presence of IGE, 
heritable variance and response to selection depend on 
the number of individuals that interact (referred to as 
group size) [1, 4]. The dependency of the magnitude of 
IGE on group size [5–7] has been modelled using a func-
tion of group size and a ‘dilution’ parameter (d) [6, 7]. 
Estimation of d is particularly important for species for 
which the sizes of the groups vary fundamentally and for 
traits that are recorded over time (such as gain, feed effi-
ciency, or longevity), for which group size may change 
over time. For instance, in layer chickens, the average 
group size can vary from 5 to 40 [8, 9]. For layer breed-
ing programs, group size will remain constant over time, 
apart from mortality. However, in pig breeding (with 
an average group size of 8 to 15 [10]), group size can 
vary more because barn and pen sizes, both within and 
between farms, depend on e.g. choices of the farmer and 
economic factors. In such a situation, animals from the 
same genetic line appear in a mix of group sizes within 

and across farms and, thus, it is necessary to investigate 
the relationship between IGE and group size for proper 
estimation of variance components, including for IGE, 
and consequently for proper interpretation of response 
to selection in a breeding program. Thus, when group 
size varies, a statistical model that takes the relation-
ship between the magnitude of IGE and group size into 
account is required [6, 7].

Three statistical models have been proposed to model 
the relationship between IGE and group size [6, 7, 11]. In 
the current study, we used the model of Bijma [6] because 
it is easier to implement and interpret, since it involves 
only one parameter for the degree of dilution, while the 
model proposed by Hadfield and Wilson [7] involves the 
estimation of additional covariance parameters. Moreo-
ver, the model developed by Anacleto et al. [11], which is 
a non-linear IGE model and uses adaptive Bayesian com-
putational techniques to estimate the model parameters, 
is more suitable for modelling infectious diseases [11].

In the model of Bijma [6], the dilution parameter d can 
range from 0 to 1 in its Eq. 3: aIi,n =

aIi,2

(n−1)d
 , where aIi,n is 

the IGE of individual i in a group of n members, and aIi,2 is 
the IGE of i in a group of two members. When there is no 
dilution (d = 0), IGE are independent of group size and 
when d = 1 (full dilution), IGE are inversely proportional 
to the size of the group. Generally, the magnitude of d can 
be trait- and population-specific [6]. Ignoring d results in 
the overestimation of both the total heritable variance 
(σ 2

TBV) , which is equal to σ 2
aD

+ 2(n− 1)σaDI + (n− 1)2σ 2
aI

 , 
(see Table 1 for a notation key), and of the potential of a 
population to respond to selection in larger groups [6, 12]. 
With dilution (d), the total heritable variance is: 
σ 2
aD

+ 2(n− 1)1−dσaDI + (n− 1)2−2dσ 2
aI

 [6]. With incom-
plete dilution (d < 1), the total heritable variance increases 
with group size, while with complete dilution (d = 1), the 
total genetic variance does not depend on group size and 
will, therefore, be the same for all group sizes [6].

Several studies have investigated estimation of IGE 
[12–19] and the contribution of IGE to heritable vari-
ance, either in real or simulated data with a constant 
group size (see review by Bijma [20]). However, knowl-
edge about the impact of varying group sizes on estima-
bility of genetic parameters and the dilution parameter 
(d) is limited.

Here, we used the model proposed by Bijma [6] to 
simulate data with varying group sizes and to estimate 
d and other parameters in the model such as the genetic 
variances of DGE and IGE and the genetic correlation 
between DGE and IGE. To investigate how precisely d 
can be estimated and what determines this precision, 
we used simulated schemes that differed in variability of 
group-size, quantified by the coefficient of variation (CV), 
and in average group size. Two designs for allocation of 

Table 1  Notation of parameters and effects

Symbol Meaning

i, j Focal individual, group mate of focal individual

Pi Phenotype of individual i

DGE, IGE Direct genetic effect, indirect genetic effect

T, ng, n, n̄ Total number of individuals, number of groups, group size, 
average group size

PDi
, PIi Direct phenotypic effect of i, indirect effect of i

aDi
, aIi Direct genetic effect of i, indirect genetic effect of i

EDi
, EIi Direct non-genetic effect of i, indirect non-genetic effect of i

σ 2
aD
, σ 2

aI
Variance of DGE among individuals, variance of IGE among 

individuals

σ 2
ED
, σ 2

EI
Direct non-genetic variance, indirect non-genetic variance

σaDI , raDI Covariance between DGE and IGE, genetic correlation 
between direct and indirect effects

σEDI , rEDI Non-genetic direct–indirect covariance, non-genetic correla-
tion between direct and indirect effects

σ 2
PD
, σ 2

PI
Direct phenotypic variance, indirect phenotypic variance

σ 2
TBV

Total heritable variance

h
2
D
, h2I

Direct heritability, indirect heritability

SE Standard error

d Dilution

CV Coefficient of variation
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individuals to groups were tested: (1) a random design 
and (2) a two-family design. For the random design, 
individuals were randomly allocated to groups. The two-
family design, in which each group was composed of two 
families, was used to investigate if it yielded more pre-
cise estimates of d than the random design, as was pre-
viously shown for estimates of the variance of IGE with 
fixed group sizes [21, 22]. In addition, we hypothesized 
that estimates would be more precise for schemes with 
larger CV of group size, since the impact of d on the phe-
notype is larger with larger CV of group size (see “Meth-
ods” section).

Methods
Simulation
A population with two discrete generations was simulated 
using R [23]. The base population included 50 sires and 200 
dams all unrelated. To generate the second generation, sires 
and dams from the base population were mated at random. 
Each sire was mated to four dams and each dam produced 
40 full-sib offspring, resulting in 8000 simulated individuals. 
Both direct and indirect effects had a genetic and a non-
genetic component. The sex of each individual was ran-
domly assigned with equal probability. The DGE and IGE of 
each individual in the base population were sampled from a 

bivariate normal distribution: BVN
([

0
0

]

,

[

σ 2
aD

σaDI
σaDI σ 2

aI

])

 

(see Table 1 for a notation of parameters and effects). DGE 
and IGE of the individuals in the second generation were 
calculated as: aD = 1

2aDsire +
1
2aDdam

+MSD and 
aI =

1
2aIsire +

1
2aIdam +MSI , where aDsire and aIsire are the 

DGE and IGE of the sire, aDdam
 and aIdam are the DGE and 

IGE of the dam, and MSD and MSS are the direct and indi-
rect Mendelian sampling components, which were sampled 

from BVN
(

0
0
, 12

[

σ 2
aD

σaDI
σaDI σ 2

aI

])

 . Direct and indirect non-

genetic components were similarly sampled from 

BVN

([

0
0

]

,

[

σ 2
ED

σEDI
σEDI σ 2

EI

])

 . Both generations were 

included in the pedigree but phenotypic values were only 
generated for the second generation.

Bijma [6] proposed to model the dilution of IGE as: 
aIi,n =

aIi,2

(n−1)d
 , where aIi,n is the IGE of individual i in a 

group of n members, aIi,2 is the IGE of i in a group of two 
members, and d is the degree of dilution. When d = 0, 
IGE does not depend on group size, and when d = 1, IGE 
is inversely proportional to the number of group mates 
[6]. The degree of d can be estimated from data with var-
ying group size and IGE can be estimated as a function of 
average group size (n̄) as: aI,n̄ =

(

n̄−1
n−1

)d
aI [6]. As 

explained in the next paragraph, in the simulation, both 

indirect genetic and non-genetic effects were scaled by 
(

n̄−1
n−1

)d
.

The phenotype of each individual in the second gen-
eration consisted of a direct effect (PDi) and the sum of 
the indirect effects (PIj ) of each of its group mates [1]. 
Finally, the phenotype of each individual used for sub-
sequent estimation of variance components was com-
puted by scaling the indirect genetic and non-genetic 
effects depending on group size and summing all effects 
as follows:

where 
(

n̄−1
n−1

)d
∑n−1

j �=i aIj and 
(

n̄−1
n−1

)d
∑n−1

j �=i EIj are the sum 
of the indirect genetic and indirect non-genetic effects, 
respectively, over the n − 1 group mates (j) of the focal 
individual i. Details about parameters values used in the 
simulation are shown in a section below.

Simulated schemes
In total, 18 schemes were simulated (Table 2) with differ-
ent average group sizes (4, 6, and 8) and variation in 
group size (CV = coefficient of variation, ranging from 
0.125 to 1.010). For investigating the estimability of d, 
group size must vary because d is irrelevant if there is no 
variation in group size. We chose CV as the measure of 
variation in group size that affects the precision of the 
estimate of d because we hypothesized that d can be esti-
mated more precisely if the variance of 

(

n̄−1
n−1

)d
 is larger, 

which occurs when n varies more relative to its average 
(i.e. the CV).

Parameter values for simulated schemes
For all simulated schemes, three values of d (0, 0.5, and 
1) were evaluated (Table  3). Parameter values σ 2

aI
 and 

σ 2
EI

 were defined for the average group size, as was pro-
posed in Eq.  7 in Bijma [6], in which σ 2

aI
 and σ 2

EI
 were 

scaled by 
(

n̄−1
n−1

)d
 . For a fair comparison between 

schemes with different average group sizes but the 
same value of d, the indirect effects for a given group 
size should be comparable across schemes. In other 
words, when d > 0 , the values assigned to σ 2

aI
 and σ 2

EI
 

were different for schemes that differed in average 
group size and were calculated using the scaling factor 
(

n̄−1
n−1

)2d
 , which determines the change in total variance 

due to IGE with a change in group size (an example is 
shown below). This scaling was applied to avoid having 
large σ 2

aI
 and σ 2

EI
 for schemes with a large average group 

(1)

Pi = aDi +

(

n̄− 1

n− 1

)d n−1
∑

j �=i

aIj + EDi +

(

n̄− 1

n− 1

)d n−1
∑

j �=i

EIj ,
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size. Table  3 lists the values that were assigned to the 
indirect genetic and non-genetic variances and shows 
that the scaled variances were the same across schemes 

that had the same value for d but different average 
group sizes. In other words, the schemes with the same 
value for d are comparable, since the same dilution was 
applied both between and within the schemes. For 
example, consider scheme 1 (3, 4, 5) and scheme 7 (4, 6, 
8), for d = 0.5 (note that both schemes include groups 
of size 4). Scheme  1 has σ 2

aI,n̄
= 0.1 for a group of 

n = n̄ = 4 . Therefore, we chose the value of σ 2
aI,n̄

 for 
scheme  7 such that, for n = 4 , the σ 2

aI
 is also equal to 

0.1. The resulting value for scheme  7 was σ 2
aI,n̄

= 0.06 , 
such that σ 2

aI
(n = 4) = 0.06 ∗

(

6−1
4−1

)(2∗0.5)
= 0.1, which 

is the required value (Table  3) and Additional file  1: 
Table  S1. For each value of d, values of σ 2

aI
 and σ 2

EI
 for 

the schemes with n̄ = 4 were considered to be the base 
values (Table 3, and Additional file 1: Table S1). For all 
schemes, raDI was set to 0.

A moderate heritability (both direct and indirect herita-
bility, h2D = h2I = 0.3 ) was used (Table 3). Direct heritabil-
ity is defined as: h2D = σ 2

aD
/σ 2

PD
= σ 2

aD
/

(

σ 2
aD

+ σ 2
ED

)

 and 
indirect heritability as: h2I = σ 2

aI
/σ 2

PI
= σ 2

aI
/(σ 2

aI
+ σ 2

EI
) . 

Direct phenotypic variance (σ 2
PD
) was set to 1, resulting in 

a direct genetic variance of σ 2
aD

= h2D = 0.3 . The indirect 
phenotypic variance (σ 2

PI
) was set to 13σ

2
PD

= 0.33 for all 
schemes with d = 0. With d > 0 , depending on the aver-
age group size, values for σ2PI differed (Table  3). Table  3 
shows that when d = 0 , σ 2

PI
 remains constant, whereas for 

d > 0 , σ 2
PI

 decreased with group size. Thus, schemes are 
only comparable within each dilution parameter but 
schemes with different dilution parameters are not com-
parable. For each scheme, 50 replicates were simulated 
and, thus, the reported estimates were the average over 50 
replicates.

Table 2  Schemes used to simulate data

For some schemes, a few individuals were removed if they could not make up a 
group for the group sizes of that scheme

For the schemes in italics (14, 16 and 18), the two-family designs were also 
tested

n group size, ng number of groups, CV coefficient of variation and n̄ average 
group size

*One individual was removed; **three individuals were removed; ***four 
individuals were removed
a  For each scheme, three dilution parameters were evaluated
b  The 8000 individuals were divided into either two or three subsets depending 
on the number of group sizes in a scheme and the subsets were divided by the 
group size, resulting in the number of groups

Schemea n ng
b CV n̄

1 3, 4, 5 889, 667, 533 0.250 4

2 3, 5 1335, 799 0.354 4

3 2, 4, 6 1333, 666, 445 0.500 4

4 2, 6 2002, 666 0.707 4

5 5, 6, 7 534, 445, 380 0.167 6

6 5, 7* 799, 572* 0.236 6

7 4, 6, 8 666, 444, 334 0.333 6

8 4, 8 1000, 500 0.471 6

9 2, 6, 10 1333, 444, 267 0.667 6

10 2, 10 2000, 400 0.943 6

11 7, 8, 9** 380, 333, 297** 0.125 8

12 7, 9 572, 444 0.177 8

13 6, 8, 10 446, 333, 266 0.250 8

14 6, 10*** 666, 400*** 0.353 8

15 4, 8, 12 666, 334, 222 0.500 8

16 4, 12 1001, 333 0.707 8

17 2, 8, 14 1334, 334, 190 0.750 8

18 2, 14 2005, 285 1.010 8

Table 3  Parameter values used for simulation

Parameter values used for the simulated schemes with three average group sizes n̄ = 4, 6, or 8 and three values of d = 0, 0.5, or 1

Parameter d = 0 d = 0.5 d = 1

n̄ = 4 n̄ = 6 n̄ = 8 n̄ = 4 n̄ = 6 n̄ = 8 n̄ = 4 n̄ = 6 n̄ = 8

σ 2
aD

0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300

σ 2
aI

0.100 0.100 0.100 0.100 0.060 0.043 0.100 0.036 0.018

σ 2
ED

0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700

σ 2
EI

0.230 0.230 0.230 0.230 0.138 0.099 0.230 0.083 0.042

raDI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

σ 2
TBV

1.200 2.800 5.200 1.200 1.800 2.410 1.200 1.200 1.200

h
2
D
= h

2
I

0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300

σ 2
PD

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

σ 2
PI

0.330 0.330 0.330 0.330 0.198 0.142 0.330 0.119 0.060
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Group assignment
In the basic scenario, individuals were assigned randomly 
to groups. Thus, group mates were unrelated, except by 
chance, each family contributed individuals to many 
groups and each group contained members of multiple 
families. As an alternative, we also considered groups that 
were composed of members of two full-sib families, to 
investigate whether this improved the quality of the esti-
mates (bias and precision), as was previously shown for 
the variance of IGE in schemes with constant group size 
[21, 22]. Distribution of the 8000 individuals from a fam-
ily of size 40 across two-family groups was possible only 
for simulated schemes 14, 16 and 18 (Table 2). In these 
three schemes, each group consisted of members of two 
randomly selected full-sib families, each family contrib-
uting half of the group members, and each family con-
tributing to several groups. For example, for scheme  14 
with group sizes 6 and 10, the members from a given full-
sib family of 40 individuals were allocated to five groups 
of size 6 (three members of the specific family per group) 
and to five groups of size 10 (five members of the specific 
family per group) (Additional file 2: Figure S1). However, 
for these three schemes, the number of groups shown in 
Table 2 for random designs and the number of groups for 
the two-family design do not match. Therefore, in order 
to make the comparison between the two-family design 
and the random design as fair as possible, they both 
consisted of 500 groups of a given size (i.e. 500 groups 
of 6 plus 500 groups of 10). The number of individuals 
(T = 8000) and families (full-sib family size of 40) were 
kept the same.

Estimation of variance components
Genetic parameters (variance and covariance compo-
nents) and the degree of dilution in the simulated data 
were estimated using the following mixed model [6]:

where y is a vector of phenotypic records, b is a vector of 
the fixed effects of the two sexes, X is the design matrix 
corresponding to the fixed effect of sex, aD is the vector 
of DGE, ZD is the design matrix corresponding to DGE, 
aI,n̄ and eI,n̄ are vectors of IGE and indirect non-genetic 
effects, respectively, referring to the average group size, 
ZI(d,n) and EI(d,n) are design matrices corresponding to 
IGE and indirect non-genetic effects, respectively, which 
depend on the dilution parameter (d) and on group size 
(n), and e is a vector of residuals. Elements of ZI(d,n) are 
[6]:

and ZI(d,n)

(

i, j
)

= 0 , otherwise.

(2)y = Xb+ ZDaD + ZI(d,n)aI,n̄ + EI(d,n)eI,n̄ + e,

ZI(d,n)

(

i, j
)

=

(

n̄− 1

n− 1

)d

when j was a groupmate of i,

Elements of EI(d,n) were computed the same way as 
the elements of ZI(d,n).

Direct (aD) and indirect genetic effects (aI) were 
assumed to follow a bivariate normal distribution: 
[

aD
aI

]

∼ BVN (0,C⊗ A) , where C is a 2*2 direct–indi-

rect genetic (co)variance matrix 
[

σ 2
aD

σaDI
σaDI σ 2

aI

]

 , and A is 

the additive genetic relationship matrix calculated from 
the pedigree. Residual effects were assumed to be nor-
mally distributed as: e ∼ N (0, Iσe).

Note that when group size is constant, fitting indirect 
non-genetic effects (the EI(d,n)eI,n̄ term) is equivalent 
to fitting a random group effect [24], but this is not the 
case when group size varies. Since our simulated data 
included different group sizes and due to the depend-
ency of the group variance on group size in model (2) 
(see formula 9a in Bijma [6]), this can only be captured 
by including indirect non-genetic effects in the model. 
The above mixed model was fitted with the DMU soft-
ware using REML [25].

Estimation of the dilution of IGE
To estimate d, the likelihood was computed for a set of 
values of d to identify its maximum. Thus, for each rep-
licate, the dilution of IGE was estimated for different 
values of d, in steps of 0.04. The intervals for d were suf-
ficiently large to avoid choosing the best d at the border 
of the interval. In other words, when the best d was on 
the border of the interval, the interval was expanded. 
Then, the best value for d was chosen based on the 
maximum likelihood.

Bias and precision of the estimated parameters
To assess whether the estimates of the (co)variance com-
ponents and of d were biased, differences between the 
true simulated values and means of estimates across 50 
replicates were evaluated. To measure the precision of 
the estimates of (co)variances and genetic correlations, 
their standard errors were used to calculate the 95% con-
fidence interval (parameter ± SE*1.96 rather than ± SE 
such that the same measure of confidence intervals was 
used for all parameters, including d). The longer the 
length of the 95% confidence interval was, the lower 
was the precision of the estimates and vice versa. Since 
for d, the SE was not obtained directly from DMU, the 
95% confidence intervals for d were obtained from log-
likelihood values and a Chi square statistic test with one 
degree of freedom.
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Results
Bias and precision of parameter estimates
Estimates of both d and (co)variances were unbiased, 
irrespective of the CV and average group size (Additional 
file  3: Figure S2, Additional file  4: Figure S3 and Addi-
tional file 5: Figure S4). For all schemes, the true values of 
the parameters were within ± 2 SE of the mean estimated 
values.

Figure 1 shows the lengths of the confidence intervals 
for all parameters (dilution, variances of DGE and IGE, 
and the genetic correlation between DGE and IGE) for 
different group sizes (schemes) as a function of the CV 
of group size. The schemes were compared within each 
d for three average group sizes (4, 6, and 8). Estimates, 
standard errors, and confidence intervals of d are in 
Additional file 1: Tables S1 and Additional file 6 Table S2. 
For all schemes, the length of the confidence intervals 
ranged from 0.114 to 0.927 for d, from 0.149 to 0.198 for 
the variance of DGE, from 0.011 to 0.086 for the variance 
of IGE, and from 0.310 to 0.557 for genetic correlation 
between DGE and IGE.

For all simulated d within each average group size, the 
length of the confidence interval for d decreased with 
increasing CV of group size, except for schemes 17 and 
18 (2, 8, 14 vs. 2, 14) for which n̄ = 8 (Fig. 1) and Addi-
tional file 1: Table S1, for schemes 9 and 10 (2, 6, 10 vs. 
2, 10) for which n̄ = 6 , and for schemes 3 and 4 (2, 4, 6 
vs. 2, 6) for which n̄ = 4 and d < 1. For these schemes, 
there was a slight increase in the length of the confidence 
interval for d as CV increased. For example, with d = 0 
and n̄ = 8 , the length of the confidence interval increased 
from 0.114 to 0.182 when CV increased from 0.707 to 
1.010. To investigate whether this pattern is real or due to 
noise, the number of replicates was increased to 200 for 
these schemes, but the pattern remained the same. For 
the variance of DGE, we observed no clear pattern of the 
length of the confidence intervals with changes in the CV 
of group size. The precision of the estimate of the vari-
ance in IGE was expected to follow the same pattern as 
that for d, since these parameters are related and, indeed, 
in general the length of the confidence interval for the 
variance of IGE decreased as the CV increased (the same 
pattern as for d). For the genetic correlation between 
DGE and IGE, in general, a decrease in the length of the 
confidence interval with increasing CV of group size was 
also observed. However, some discrepancies in this pat-
tern were found when the CV was smaller than 0.2.

Random versus two‑family design
We had expected that, for estimating d, the two-family 
design would perform better (shorter length of the con-
fidence interval) than the random design but the two-
family design was only slightly better (Additional file  7: 

Figure S5). The two-family design performed consider-
ably better than the random design with respect to the 
precision of the estimate of the variance of IGE and of 
the genetic correlation, in agreement with results from 
previous studies with constant group size [21, 22]. For 
example, with the two-family design and d = 0, the 
length of the confidence interval for IGE was equal to 
0.054 for scheme 14 (group sizes 6 and 10) and 0.055 for 
schemes 16 (group sizes 4 and 12) and 18 (group sizes 2 
and 14), while the corresponding values for the random 
design were 0.085, 0.082, and 0.086 (Additional file 7: Fig-
ure S5).

For the variance of DGE, which design was better 
depended on d. For d = 0, the two-family design per-
formed better than the random design, whereas for d > 0, 
the random design had a smaller confidence interval for 
the estimate of the variance of DGE (Additional file  7: 
Figure S5). When d = 0, superiority of the two-family 
design over the random design was largest for the scheme 
with the lower CV (scheme  6, 10 with CV = 0.353), 
whereas with d > 0, superiority of the random design was 
largest for the scheme with the highest CV (scheme 2, 14 
with CV = 1.01).

Discussion
In this study, we investigated whether dilution (d) can 
be estimated and whether this estimation depends on 
variation in group size (CV). Other relevant genetic 
parameters such as the variances of DGE and IGE and 
the genetic correlation between DGE and IGE were also 
estimated. Our findings show that d can be estimated 
unbiasedly with varying group size and that, in general, 
the precision of the estimate of d increases with increas-
ing CV of group size. The group sizes used in this study 
for estimation of d ranged from 2 to 14, which applies 
for both chicken and pig breeding programs. However, 
we believe that our results on the estimability of dilution 
parameter also holds for group sizes larger than 14.

To our knowledge, the estimability of d and the bias 
and precision of its estimates have not been investigated 
to date. Some studies based on real data did investigate 
the dependency of IGE on group size and tested whether 
IGE become smaller when groups get larger (i.e. test-
ing whether dilution exists) [10, 12, 16]. Some of these 
studies did in fact detect a dilution effect, while others 
did not. For example, Canario et al. [12] investigated the 
effect of group size (constant group sizes ranging from 
5 to 15) on IGE for growth in pigs and found that both 
the indirect genetic and indirect litter effects decreased 
proportionally to group size. This means that the influ-
ences of pigs on the growth of their groupmates were 
diluted across more recipients in large groups compared 
to small groups. They compared several models with 
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Fig. 1  Length of confidence intervals for parameters for different group sizes. Lengths of the confidence intervals for dilution, variance of DGE, 
variance of IGE, and the genetic correlation between direct and indirect effects for different group sizes (simulated schemes) according to the CV of 
group size. Group compositions were random with respect to family
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and without a dilution effect and models that took dilu-
tion into account increased the goodness of fit of the 
statistical model. Duijvesteijn et al. [16] investigated the 
dependence of IGE on group size for androstenon level 
in a population of boars (group sizes ranging from 3 to 
11). They estimated the dilution for the IGE by comput-
ing the maximum likelihood of the model for d ranging 
from 0 to 1, with a step size of 0.25. Their results showed 
that the magnitude of IGE was not affected by group 
size, which they argued could be because of the rela-
tively small group sizes they had. The degree of dilution 
also depends critically on the biological background of 
the trait [4, 6]. For a trait such as level of androstenon, 
which is a pheromone, dilution, is expected to be negli-
gible because androstenon is spread by air in addition to 
being spread by physical contact [16]. In another study, 
Nielsen et al. [10] tested whether the IGE for growth (life 
time daily gain from birth to slaughter) in Danish pigs 
depended on group size [10]. Group sizes in their study 
ranged from 8 to 15. They found that IGE increased with 
increasing group size (i.e. they found that d was smaller 
than zero). Due to the imperfections of real data with 
varying group sizes, the studies that have investigated 
dilution are inconclusive. It is difficult to compare these 
studies because their power to estimate d is relatively 
low (e.g. the group sizes are sometimes different or the 
number of groups per group size is sometimes small). 
Therefore, before concluding that there is no dilution, it 
is necessary to be sure that it can be estimated. Our study 
shows that, given the mentioned designs and simulated 
schemes (group sizes) (see “Methods” section), it is in 
fact possible to estimate dilution.

Bijma [21] reported that more accurate parameter esti-
mates of IGE were obtained with the two-family design 
than the random design with constant group size, and 
concluded that this design is optimal or near optimal for 
the estimation of the variance due to IGE. In our study, 
the two-family design was tested only for three simulated 
schemes with an average group size of 8 and the con-
clusion is that, in general, the two-family schemes per-
formed better than random designs. However, differences 
between the two simulated schemes in terms of length of 
the confidence interval for estimates of d were small. This 
may be because family sizes and the number of groups 
were sufficiently large for estimation of d with a random 
design. For estimation of the variance of IGE and of the 
genetic correlation between DGE and IGE, superiority of 
the two-family design increased for d = 0 , which is con-
sistent with the results of [21]. For estimation of the vari-
ance of DGE, with d > 0 , the random design performed 
better than the two-family design, because each family is 
distributed across a larger number of groups, making the 

random design more optimal for estimating DGE [22], 
since there is less confounding with IGE.

In addition to the nature of the trait of interest (when 
real data is used for dilution estimation), population 
structure, trait heritability (both direct and indirect herit-
ability), genetic correlation between DGE and IGE, and 
group size may affect the estimation of dilution. In this 
study, data were simulated using a moderate indirect her-
itability (h2I = 0.3) and a zero genetic correlation between 
DGE and IGE. When indirect heritability is low, the opti-
mal family size and/or group size for precise estimation 
of dilution may be different. Generally, the lower the true 
heritability, the larger the optimal family size [26].

Implications
Estimation of d is relevant when different group sizes 
are present in the data. Different group sizes can be rel-
evant for breeding programs of several species for which 
animals are group-housed such as layers, pigs, and in 
aquaculture, where the group sizes vary due to mortality 
from diseases and involuntary culling. However, different 
group sizes are particularly relevant for pig breeding pro-
grams, in which each genetic line (breed) is typically rep-
resented on multiple farms that can have different group 
sizes, both between and within farms. In addition, in pig 
breeding programs, group sizes typically differ between 
the nucleus and commercial levels, with the larger group 
sizes at the commercial level.

Before implementing selection for social genetic effects 
in a breeding program, it is crucial to know whether or 
not dilution exists and to be able to estimate it. If, in real-
ity, dilution existed but we did not or could not estimate 
it, response to selection (genetic progress that was cre-
ated in the selection pure lines) could not be accurately 
predicted. For example, the prediction of the genetic 
progress which would be disseminated to the commer-
cial animals would be inaccurate. In other words, ignor-
ing dilution may result in reduced observed response to 
selection compared to the predicted response to selec-
tion, because an indirect genetic model without dilution 
may cause overestimation of the total heritable variance 
and response to selection in commercial animals, due to 
the improper interpretation of direct and indirect vari-
ances that contribute to the heritable variance in relation 
to group size. Therefore, to predict selection response at 
the commercial level as accurately as possible, estimation 
of the magnitude of dilution cannot be ignored.

Conclusions
Dilution of indirect genetic effects could be detected in 
simulated data with varying group size and all param-
eters could be estimated without bias. The precision of 
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the estimate of dilution was higher when the CV of group 
size was larger. For the estimation of dilution, schemes 
with groups composed of two families were slightly supe-
rior to the schemes with groups composed at random in 
terms of families.

Additional files

Additional file 1: Table S1. Simulated and estimated parameters for the 
random designs.

Additional file 2: Figure S1. Graphical representation of the two-family 
group-making. Description: This figure shows how the groups for the two-
family design (scheme 6, 10) were made. From each family with 40 full-sib 
offspring, 10 groups were made; five of the groups included 3 random 
full-sibs and the other five included 5 random full-sibs. To make the group 
size 6, the group size of 3 from one family were combined with the group 
size of 3 from another random family (e.g. here, family 1 and 2 contributed 
to a group size of 6, and family 2 and 3 contributed to another group size 
of 6). To make group size 10, the group size of 5 from one family were 
combined with the group size of 5 from another random family (e.g. 
here, family 1 and 2 contributed to a group size of 10, and family 1 and 
3 contributed to another group size of 10). With 200 full-sib families, 500 
groups of size equal to 6 and 500 groups size equal to 10 were made. Note 
that the similar pattern of two-family group-making was implemented for 
schemes 2, 14 and 4, 12.

Additional file 3: Figure S2. Description: Lower and upper confidence 
intervals for all parameters (dilution, variance of DGE, variance of IGE, and 
genetic correlation between direct and indirect effects) for different group 
sizes (schemes) with different CV and n̄ = 4 . The black horizontal lines 
show the true simulated values and the black dots show the estimates. 
The group compositions are random.

Additional file 4: Figure S3. Lower and upper confidence intervals for 
all parameters (dilution, variance of DGE, variance of IGE, and genetic 
correlation between direct and indirect effects) for different group sizes 
(schemes) with different CV and n̄ = 6 . The black horizontal lines show 
the true simulated values and the black dots show the estimates. The 
group compositions are random.

Additional file 5: Figure S4. Lower and upper confidence intervals for 
all parameters (dilution, variance of DGE, variance of IGE, and genetic 
correlation between direct and indirect effects) for different group sizes 
(schemes) with different CV and n̄ = 8 . The black horizontal lines show 
the true simulated values and the black dots show the estimates. The 
group compositions are random.

Additional file 6: Table S2. Simulated and estimated parameters for the 
random design versus the two-family design when the number of groups 
was fixed (ng = 500).

Additional file 7: Figure S5. Lengths of confidence intervals for two-
family versus random schemes. Description: The lengths of confidence 
intervals for all parameters (dilution, variance of DGE, variance of IGE, and 
genetic correlation between direct and indirect effects) for schemes 2, 
14; 4, 12; and 6, 10 (with n̄ = 8 ) where the random design was com-
pared with the two-family design. The number of groups were fixed 
(ng = 500) for different group sizes.
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