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Pedigree relationships to control inbreeding 
in optimum‑contribution selection realise more 
genetic gain than genomic relationships
Mark Henryon1,2*  , Huiming Liu3, Peer Berg3,4, Guosheng Su3, Hanne Marie Nielsen1,3, 
Gebreyohans T. Gebregiwergis4 and A. Christian Sørensen3

Abstract 

Background:  We tested the premise that optimum-contribution selection with pedigree relationships to control 
inbreeding (POCS) realises at least as much true genetic gain as optimum-contribution selection with genomic rela-
tionships (GOCS) at the same rate of true inbreeding.

Methods:  We used stochastic simulation to estimate rates of true genetic gain realised by POCS and GOCS at a 0.01 
rate of true inbreeding in three breeding schemes with best linear unbiased predictions of breeding values based on 
pedigree (PBLUP) and genomic (GBLUP) information. The three breeding schemes differed in number of matings and 
litter size. Selection was for a single trait with a heritability of 0.2. The trait was controlled by 7702 biallelic quantitative-
trait loci (QTL) that were distributed across a 30-M genome. The genome contained 54,218 biallelic markers that were 
used in GOCS and GBLUP. A total of 6012 identity-by-descent loci were placed across the genome in base popula-
tions. Unique alleles at these loci were used to calculate rates of true inbreeding. Breeding schemes were run for 10 
discrete generations. Selection candidates were genotyped and phenotyped before selection.

Results:  POCS realised more true genetic gain than GOCS at a 0.01 rate of true inbreeding in all combinations of 
breeding scheme and prediction method. POCS realised 14 to 33% more true genetic gain than GOCS with PBLUP in 
the three breeding schemes. It realised 1.5 to 5.7% more true genetic gain than GOCS with GBLUP.

Conclusions:  POCS realised more true genetic gain than GOCS because it managed expected genetic drift without 
restricting selection at QTL. By contrast, GOCS penalised changes in allele frequencies at markers that were gener-
ated by genetic drift and selection. Because these marker alleles were in linkage disequilibrium with QTL alleles, GOCS 
restricted changes in allele frequencies at QTL. This provides little incentive to use GOCS and highlights that we have 
more to learn before we can control inbreeding using genomic relationships in selective-breeding schemes. Until we 
can do so, POCS remains a worthy method of optimum-contribution selection because it realises more true genetic 
gain than GOCS at the same rate of true inbreeding.
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(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The aim of most animal-breeding schemes is to max-
imise rates of true genetic gain ( �Gtrue ) at acceptable 
rates of true inbreeding ( �Ftrue ). �Gtrue is calculated 
as the increase in true breeding value (TBV) aver-
aged across animals in a breeding population. �Ftrue is 

calculated from the average true inbreeding coefficient 
of the animals, where the true inbreeding coefficient 
of an individual is the proportion of loci in its genome 
with alleles that are identical-by-descent (IBD). Both 
�Gtrue and �Ftrue are unobservable in practice. They 
need to be predicted. The best selection method to use 
these predictions and fulfil the aim of most animal-
breeding schemes is optimum-contribution selection 
(OCS). OCS maximises rates of predicted genetic gain 
while controlling inbreeding at given rates of predicted 
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inbreeding [1, 2]. It does this by optimising the genetic 
contribution of each selection candidate to the next 
generation. One of the benefits of OCS is that it can 
optimise genetic contributions when different sources 
of information are used to predict �Gtrue and control 
�Ftrue [3]. �Gtrue is, more often than not, predicted 
using best linear unbiased prediction (BLUP) of breed-
ing values based on pedigree or genomic information, 
hereafter referred to as PBLUP and GBLUP. �Ftrue is 
predicted and controlled using pedigree or genomic 
relationships, hereafter referred to as OCS with pedi-
gree (POCS) or genomic relationships (GOCS). GOCS 
became the method-of-choice for OCS with GBLUP 
when Sonesson et al. [4] used stochastic simulation to 
recommend that the information used to predict �Gtrue 
should also be used to predict and control �Ftrue . 
Their reasoning was that GOCS predicted and con-
trolled �Ftrue more accurately when it was used with 
GBLUP, while POCS predicted and controlled �Ftrue 
more accurately with PBLUP. However, this reasoning 
did not consider �Gtrue . When we plotted �Gtrue real-
ised by Sonesson et  al. [4] against �Ftrue , we saw that 
POCS realised more �Gtrue than GOCS, even at simi-
lar �Ftrue (Fig. 1). We are generally supported by Clark 
et  al. [5], who found that, with few exceptions, POCS 
realised just as much �Gtrue as GOCS with both PBLUP 
and GBLUP, despite being compared at the same rates 
of genomic inbreeding. Comparing POCS and GOCS 
at the same rates of genomic inbreeding, rather than 
�Ftrue , would have favoured GOCS, given that GOCS 
maximises rates of predicted genetic gain while con-
trolling rates of genomic inbreeding. Our interpre-
tation of these studies led us to believe that POCS 
realises at least as much �Gtrue as GOCS at the same 
�Ftrue . We tested this premise by stochastic simulation. 
We compared �Gtrue realised by POCS and GOCS at 
�Ftrue = 0.01 (0.01�Ftrue) in three breeding schemes 
with PBLUP and GBLUP. We also simulated OCS 
with IBD relationships (IOCS) and replaced predic-
tions of breeding values with TBV as points of refer-
ence. Results that highlight the mechanisms underlying 
POCS and GOCS are presented.

Methods
Design
We used stochastic simulation to estimate �Gtrue real-
ised by POCS and GOCS at 0.01�Ftrue in three breed-
ing schemes with PBLUP and GBLUP. Put simply, we 
calibrated POCS and GOCS to realise 0.01�Ftrue and 
compared their �Gtrue . We also simulated IOCS—OCS 
with IBD relationships—and replaced predictions of 
breeding values with TBV as points of reference. Selec-
tion was for a single trait that had a heritability of 0.2 

and was controlled by 7702 biallelic quantitative-trait 
loci (QTL). The QTL were randomly distributed across 
a 30-M genome that consisted of 18 pairs of autosomal 
chromosomes. Each chromosome was 167  cM long. 
The genome contained 54,218 biallelic markers that 
were used in GOCS and GBLUP. These markers were 
randomly distributed across the genome and in link-
age disequilibrium (LD) with the QTL. A total of 6012 
IBD loci were placed evenly across the genomes of ani-
mals in base populations. Unique alleles at these loci 
were used to calculate �Ftrue and carry out IOCS. The 
number of chromosomes and LD between alleles at the 
markers were simulated to resemble those in three com-
mercial breeds of Danish pigs [6]. Breeding schemes 
were run for 10 discrete generations ( t = 1 … 10). Ani-
mals in the base populations were randomly selected 
in generation t = 1. In generations t = 2 … 10, selection 
candidates were allocated matings by OCS. All animals 
were genotyped before selection; all candidates in gen-
erations t = 2 … 10 were phenotyped for the trait under 
selection. Each combination of OCS method, breed-
ing scheme, and prediction method was replicated 200 
times. We present �Gtrue realised at 0.01�Ftrue in gen-
erations t = 4 … 10 and results that highlight the mecha-
nisms underlying POCS and GOCS.

Breeding schemes
The three breeding schemes differed in number of mat-
ings and litter size.

M25L5
Twenty-five matings were allocated to 125 selection can-
didates by OCS in generations t = 2 … 10. There was no 
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Fig. 1  Rate of true genetic gain realised by POCS and GOCS plotted 
against �Ftrue in simulated breeding schemes with two prediction 
methods (PBLUP and GBLUP). Adapted from Table 2 in Sonesson et al. 
[4]
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upper limit for the number of matings that were allocated 
to each male; males were allocated 0, 1, 2 … or 25 mat-
ings. Twenty-five females were allocated a single mating. 
The 25 sire and dam matings were paired randomly. Each 
pair (dam) produced five offspring, resulting in 25 full-
sib families and 125 offspring. Offspring were assigned as 
males or females with a probability of 0.5.

M25L20
This scheme is as for breeding scheme M25L5 with two 
exceptions. First, 25 matings were allocated to 500 candi-
dates. Second, each dam produced 20 offspring, resulting 
in 25 full-sib families and 500 offspring.

M100L5
This scheme is as for breeding scheme M25L5 with two 
exceptions. First, 100 matings were allocated to 500 can-
didates. Males were allocated 0, 1, 2 … or 100 matings 
and 100 females were allocated a single mating. Second, 
each dam produced five offspring, resulting in 100 full-
sib families and 500 offspring.

Simulation procedure
Generations − 1000 to − 1: founder population
LD between the 54,218 markers and 7702 QTL was 
established in a founder population using a Fisher-
Wright inheritance model [7, 8]. The founder population 
was simulated for 1000 discrete generations ( t = − 1000 
… − 1) with 25 males and 25 females, and an effective-
population size of 50, in each generation. In generation 
t = − 1, the founder population was in recombination-
drift-mutation-selection equilibrium. We considered the 
founder population to be in equilibrium when the num-
bers of segregating markers and QTL, the level of het-
erozygosity averaged over all segregating markers and 
QTL, and the average LD between segregating markers 
that were 0.25, 0.5, 1, 2, 5, and 10 cM apart became con-
stant across generations.

The founder population was initiated with 25 males and 
25 females in generation t = − 1000. Their 30-M genomes 
consisted of 3 × 107 monomorphic loci with wild-type 
alleles that were placed evenly across the genome at 104 
loci per cM. Every eighth locus harboured a QTL that 
controlled the trait under selection. The remaining loci 
were markers.

The males and females in subsequent generations were 
simulated by randomly sampling a sire and dam with 
replacement from the 25 males and 25 females in the 
previous generation. Bi-allelic polymorphism at each 
locus was generated with a mutation rate of 4 × 10−6 
per locus using an infinite-sites mutation model [9]. An 
additive-genetic effect for the mutant allele at each QTL 
was sampled from an exponential distribution. The sign 

of each additive-genetic effect was negative with a prob-
ability of 0.9. The additive-genetic effects of the wild-type 
alleles were zero. Selection was introduced by sampling 
25 males and 25 females that were above a 5% percen-
tile for TBV. The TBV of the i th animal in the founder 
population, ai , was calculated as ai =

∑nQTL

j=1 xijgj , where 
nQTL = 3.75 × 106 is the number of QTL across the 
genome, xij is the number of copies of the mutant allele 
that animal i inherited at the j th QTL ( xij = 0, 1, 2), and 
gj is the additive-genetic effect of the mutant allele at the 
j th QTL. We introduced selection because animal popu-
lations are always under selection, which influences LD 
between alleles.

The 54,218 markers and 7702 QTL in our three breed-
ing schemes were all segregating in generation t = − 1 
of the founder population. The additive-genetic effects 
of the mutant alleles at the 7702 segregating QTL were 
standardised so that the total additive-genetic variance 
for the trait under selection was equal to 1.0. No new 
mutations were generated after the founder population 
was simulated.

Chromosomes from the 50 animals in generation 
t = − 1 of the founder population were pooled: 18 pools 
of 100 chromosomes. Each pool consisted of 50 chromo-
some pairs of the i th chromosome ( i = 1 … 18) from 50 
founder animals. The breeding schemes were initiated 
by sampling base populations from these chromosome 
pools.

Generation 0: base populations
Each replicate combination of OCS method, breeding 
scheme, and prediction method was initiated by sampling 
a unique base population. Twenty-six males and 25 females 
were sampled in breeding schemes M25L5 and M25L20. 
Eleven males and 100 females were sampled in breeding 
scheme M100L5. The genotype of each base animal was 
sampled from the 18 pools of chromosomes in generation 
t = − 1 of the founder population. For chromosome i ( i = 1 
… 18), two chromosomes were randomly sampled with-
out replacement from the i th pool of 100 chromosomes. 
The sampled chromosomes were replaced before the next 
base animal was sampled. Base animals were assumed to 
be unrelated and non-inbred based on pedigree and IBD 
alleles. They were genotyped, but not phenotyped for the 
trait under selection.

Generation 1: random selection in base populations
Animals in the base populations were selected in gen-
eration t = 1 by randomly culling a single male. In breed-
ing schemes M25L5 and M25L20, 25 sires and 25 dams 
were selected. Each sire was mated with one dam. Each 
dam produced five offspring in breeding scheme M25L5 
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and 20 offspring in breeding scheme M25L20. In breed-
ing scheme M100L5, 10 sires and 100 dams were selected. 
Each sire was mated with 10 dams and each dam produced 
five offspring. Randomly culling a single male enabled us 
to construct genomic-relationship matrices that were pos-
itive-definite. This is explained in more detail in section 
‘Genomic and IBD-relationship matrices’.

Generations 2–10: optimum‑contribution selection
Animals were selected and allocated matings by OCS in 
generations t = 2 … 10. The phenotype of animal i , pi , was 
calculated as pi = ai + ei , where ai is the animal’s TBV 
and ei is its residual value. The TBV of animal i was cal-
culated as described for the founder population using the 
standardised additive-genetic effects of the mutant alleles 
at the 7702 QTL. Its residual value, ei , was sampled from 
ei ∼ N

(

0, σ 2
e = 4

)

.

IBD loci
The 6012 IBD loci used to calculate �Ftrue and carry out 
IOCS were placed evenly across the genome of animals in 
the base populations at two IBD loci per cM (334 loci per 
chromosome). Each base animal was assigned two unique 
alleles at each IBD locus. IBD alleles could be traced back 
from each descendant to the base animal from which it 
was derived. A descendant was IBD at an IBD locus when 
it inherited two copies of a unique allele (i.e., both alleles at 
the IBD locus descended from the same unique allele in the 
base population). IBD loci were not involved in prediction.

Optimum‑contribution selection
POCS allocated matings to selection candidates in genera-
tions t = 2 … 10 conditional on predicted breeding values 
and pedigree relationships. It did this by maximising a 
quadratic function, Ut , with respect to c:

where c is an n vector of genetic contributions to the 
next generation and the number of matings allocated 
to each candidate is a linear function of these contribu-
tions, n is the number of animals in the population traced 
back from the candidates in generation t to the base 
population, g is an n vector of PBLUP, GBLUP, or TBV, 
ω is a penalty applied to the expected average relation-
ship of the next generation, and A is an n× n pedigree-
relationship matrix. Elements of c were constrained to 
0 ≤ ci ≤ 0.5 ( i = 1 . . . n ) with ci = 0 for animals that 
were not candidates for selection in generation t . Using 
these definitions, c′g is the expected breeding value and 
c′Ac is the expected average relationship of the next gen-
eration. The penalty, ω , was constant across generations. 
It was calibrated to realise 0.01�Ftrue . We calibrated it by 
simulating 200 replicates of POCS in each combination 

(1)Ut(c) = c′g − ωc′Ac,

of breeding scheme and prediction method with an ini-
tial ω and calculating the mean �Ftrue across the repli-
cates. This process was repeated using different ω until 
the mean �Ftrue deviated from 0.01 by less than 0.0001. 
GOCS was carried out by replacing A with an n× n 
genomic-relationship matrix, G . IOCS was carried out 
by replacing A with an n× n IBD-relationship matrix, 
B . The method of POCS is described in full by Henryon 
et al. [10].

Predicted breeding values
PBLUP for the trait under selection were estimated in 
generations t = 2 … 10 by fitting an animal model to the 
phenotypes observed in generations 2 to t . The model 
was:

where y is an n vector of phenotypes, b is an h vector of 
fixed generation effects, h is the number of generations 
with phenotypes, a is an n vector of random animal 
effects, e is an n vector of residual errors, and X and Z are 
incidence matrices. The (co)variance structure was:

where I is an identity matrix, σ 2
a = 1 is the additive-

genetic variance in generation t = − 1 of the founder pop-
ulation, and σ 2

e = 4 is the residual variance that was used 
to sample phenotypes. GBLUP were estimated by replac-
ing A with the genomic-relationship matrix, G.

Genomic and IBD‑relationship matrices
Genomic‑relationship matrices
Genomic-relationship matrices used in GOCS and 
GBLUP were constructed as G = ZZ′/s , where G is an 
n× n matrix of genomic relationships, Z = M − 1(2p)′ , 
M is an n×m matrix of counts of the mutant allele for 
the n animals at the m = 54,218 markers with element 
Mij = 0, 1, or 2 for animal i at marker j ( i = 1 . . . n , j 
= 1 . . .m ), 1 is an n vector of ones, p =

(

p1, p2, . . . pm
)

 
is an m vector with pj the frequency of the mutant allele 
at marker j in the base populations, and s = 2p′(1− p) 
transforms G towards the same scale as a pedigree-rela-
tionship matrix (adapted from VanRaden [11]).

We carried out two additional steps to ensure that G 
was positive-definite. First, the allele frequencies in p 
were calculated using all animals in the base populations, 
including the single male that was culled in generation 
t = 1 of each breeding scheme. Second, all base animals 
and selection candidates, except for the culled male, were 
included in G . These steps generated linear independence 
in G because allele frequencies in p were calculated using 
an animal that was not included in G.

y = Xb+ Za + e,

(

a
e

)

∼ N

([

0
0

]

,

[

Aσ 2
a 0

0 Iσ 2
e

])

,
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IBD‑relationship matrices
The IBD-relationship matrix, B , used in IOCS was an 
n× n matrix constructed as 
Bij =

1
nIBD

∑nIBD
k=1

[

1
/

2
∑2

u=1

∑2
v=1 δuv

]

 , where element Bij 
is the IBD relationship between animals i and j 
( i = 1 . . . n , j = 1 . . . n ), nIBD = 6012 is the number of IBD 
loci, and δuv is the allele-sharing status. δuv was equal to 1 
if allele u of animal i was identical to allele v of animal j at 
IBD locus k , and 0 otherwise.

Rates of true genetic gain and true inbreeding
We present �Gtrue realised by POCS, GOCS, and IOCS 
at 0.01�Ftrue in each combination of breeding scheme 
and prediction method. �Gtrue and �Ftrue are presented 
as means (± SD) of the 200 replicates. We also scaled 
�Gtrue by setting �Gtrue realised by POCS to 100 in each 
combination of breeding scheme and prediction method.
�Gtrue in each replicate was calculated as a linear 

regression of Gt on t , where Gt is the average TBV of 
animals born in generations t = 4 … 10. �Gtrue was pre-
sented as a linear regression because Gt was linear over 
t . �Ftrue in each replicate was calculated as 1− exp(β) , 
where β is a linear regression of ln(1− Ft) on t , and Ft 
is the average coefficient of true inbreeding for animals 
born in generations t = 4 … 10 [12, 13]. These transfor-
mations were made because ln(1− Ft) , not Ft , was linear 
over t . Ft was calculated as Ft = 1

ntnIBD

∑nt
i=1

∑nIBD
j=1 δij , 

where nt is the number of animals born in genera-
tion t , nIBD = 6012 is the number of IBD loci, and δij is 
the IBD status of animal i (i = 1 . . . nt) at IBD locus j 
(

j = 1 . . . nIBD
)

 . δij was equal to 1 if animal i was homozy-
gous at IBD locus j , and 0 otherwise.

Rates of pedigree and genomic inbreeding
We present rates of pedigree inbreeding realised by 
POCS and rates of genomic inbreeding realised by GOCS 
at 0.01�Ftrue in each combination of breeding scheme 
and prediction method. Rates of pedigree and genomic 
inbreeding were calculated as for �Ftrue with Ft replaced 
by average coefficients of pedigree and genomic inbreed-
ing for animals born in generations t = 4 … 10. The coef-
ficient of genomic inbreeding for animal i was calculated 
as Gii−1.0 , where Gii is the i th diagonal element of G 
used in GOCS.

Mechanisms underlying POCS and GOCS
We present results that highlight the mechanisms under-
lying POCS and GOCS. These results are only presented 
for POCS and GOCS with PBLUP and GBLUP in breed-
ing scheme M25L5; results from breeding schemes 
M100L5 and M25L20 were similar to those from breed-
ing scheme M25L5. Two of the results—response 

frontiers and minimum �Ftrue—involved additional 
simulations. All of these results are presented as means 
(± SD) of 200 replicates.

Changes in allele frequencies at markers and QTL
We present the average absolute changes in allele fre-
quencies at markers and QTL at 0.01�Ftrue and the aver-
age increase in the frequencies of favourable alleles at the 
QTL. Changes in allele frequencies were calculated from 
generations t = 4 to t = 10 using animals born in genera-
tions t = 4 and t = 10. The frequency changes in each rep-
licate were averaged over the 54,218 markers and 7702 
QTL.

Variance in rate of identity‑by‑descent
We present the variance in rate of IBD between the 6012 
IBD loci at 0.01�Ftrue . Rate of IBD at each locus in each 
replicate was calculated as 1− exp(β) , where β is a linear 
regression of ln(1− Fit) on t , and Fit is the proportion of 
animals born in generations t = 4 … 10 that were IBD at 
locus i (i = 1 . . . 6012).

Numbers of candidates and families that were allocated 
matings
We present the number of male candidates that were 
allocated matings at 0.01�Ftrue and the numbers of half 
and full-sib families with male or female candidates that 
were allocated matings. The numbers in each replicate 
were averaged over generations t = 4 … 10. The number 
of female candidates that were allocated matings was not 
presented because 25 females were always allocated a 
single mating in breeding scheme M25L5.

Rank and rank deviations
We present the average ranks and average-rank devia-
tions of males and females that were allocated matings 
within full-sib families at 0.01�Ftrue when males and 
females within each full-sib family were ranked by pre-
dicted breeding value. The average rank of males that 
were allocated matings in each full-sib family was cal-
culated when males were ranked from 1 … nmalei , where 
nmalei is the number of males in the i th full-sib family. 
The average-rank deviation of males in each full-sib fam-
ily was calculated as the difference between their average 
rank and their average-minimum rank, where average-
minimum rank is the average rank had those males that 
were allocated matings been the highest-ranked males 
in their full-sib families. The average ranks and average-
rank deviations in each generation were averaged across 
full-sib families with males that were allocated matings. 
The generation averages in each replicate were aver-
aged over generations t = 4 … 10. The average rank and 
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average-rank deviation of females were calculated as for 
males.

Response frontiers
We present response frontiers for POCS and GOCS with 
PBLUP and GBLUP: �Gtrue plotted against �Ftrue . Differ-
ent �Ftrue were realised by applying different penalties, ω , 
in Eq. (1). Response frontiers tell us if the relative �Gtrue 
realised by POCS and GOCS at 0.01�Ftrue is also realised 
across a range of �Ftrue.

Minimum rates of true inbreeding
We present the minimum �Ftrue realised by POCS and 
GOCS when we relaxed selection for predicted breeding 
value. POCS was carried out as described previously with 
the exception that Eq. (1) was reduced to Ut(c) = −c′Ac 
for POCS. With GOCS, A was replaced by G . Minimum 
�Ftrue provides insight into the effectiveness of POCS 
and GOCS to control �Ftrue.

Software
The simulations were run using the program ADAM [14]. 
PBLUP and GBLUP were predicted using DMU version 6 
[15]. OCS was carried out by EVA [16].

Results
Rates of true genetic gain
POCS realised more �Gtrue than GOCS at 0.01�Ftrue 
in all combinations of breeding scheme and predic-
tion method. POCS realised 14  to  33% more �Gtrue 
than GOCS with PBLUP in our three breeding schemes 
(Table 1). It realised 1.5 to 5.7% more �Gtrue than GOCS 
with GBLUP and 0.3  to  1.4% more �Gtrue than GOCS 
with our reference prediction, TBV.

POCS also realised more �Gtrue than IOCS at 
0.01�Ftrue with PBLUP. With PBLUP, POCS realised 
3.7  to 6.5% more �Gtrue than IOCS in our three breed-
ing schemes (Table 1). In turn, IOCS realised 10 to 27% 
more �Gtrue than GOCS. While POCS realised more 
�Gtrue than IOCS with PBLUP at 0.01�Ftrue , IOCS real-
ised a little more �Gtrue than POCS with GBLUP and 
TBV. With GBLUP and TBV, IOCS realised 1.8  to  2.8% 
and 1.1  to 1.3% more �Gtrue than POCS. IOCS realised 
3.4 to 8.3% and 1.6 to 2.6% more �Gtrue than GOCS with 
GBLUP and TBV.

Rates of pedigree and genomic inbreeding
Pedigree relationships used by POCS underesti-
mated 0.01�Ftrue in all combinations of breeding 
scheme and prediction method. POCS underestimated 
0.01�Ftrue by 2 to 6% with PBLUP in our three breeding 
schemes (Table  1). With GBLUP and TBV, it underes-
timated 0.01�Ftrue by 10  to 26%. By contrast, genomic 

relationships used by GOCS underestimated 0.01�Ftrue 
by 20 to 39% with PBLUP, but overestimated 0.01�Ftrue 
by as much as 31% with GBLUP and TBV.

The following sections present results that highlight 
the mechanisms underlying POCS and GOCS. The 
results are presented for breeding scheme M25L5 with 
PBLUP and GBLUP.

Changes in allele frequencies at markers and QTL
POCS generated larger changes in allele frequencies at 
markers and QTL than GOCS at 0.01�Ftrue . In breed-
ing scheme M25L5 with PBLUP and GBLUP, the aver-
age absolute changes in allele frequencies generated by 
POCS at markers and QTL were about 4% larger than 
the changes generated by GOCS (Table 2). By contrast, 
POCS increased the average frequency of favourable 
alleles at QTL by 20% more than GOCS with PBLUP 
and by 4.8% more than GOCS with GBLUP.

Variance in rate of identity‑by‑descent
POCS and GOCS generated similar variances in rate of 
IBD between the 6012 IBD loci at 0.01�Ftrue . This was 
highlighted by breeding scheme M25L5 with PBLUP 
and GBLUP (Table 3).

Numbers of candidates and families that were allocated 
matings
Males
POCS allocated matings to more male candidates than 
GOCS at 0.01�Ftrue . In breeding scheme M25L5 with 
PBLUP, POCS allocated matings to 10.1% more male 
candidates than GOCS (Table  4). With GBLUP, POCS 
allocated matings to 5.9% more male candidates.

Half and full‑sib families
Selection candidates that were allocated matings by 
POCS were from more half and full-sib families than 
GOCS at 0.01�Ftrue . In breeding scheme M25L5 with 
PBLUP, POCS allocated matings to candidates from 
10.6% more half-sib and 2.3% more full-sib families 
than GOCS (Table  4). With GBLUP, POCS allocated 
matings to candidates from 10.5 and 5.0% more half 
and full-sib families.

Rank and rank deviations
POCS allocated matings to higher-ranked candidates 
within full-sib families than GOCS at 0.01�Ftrue . In 
breeding scheme M25L5 with PBLUP and GBLUP, the 
average ranks of males and females that were allocated 



Page 7 of 12Henryon et al. Genet Sel Evol           (2019) 51:39 

matings by POCS were 8.5  to  10.8% lower than those 
allocated matings by GOCS (Table 5). Not only did POCS 
allocate matings to higher-ranked candidates within full-
sib families, candidates that were allocated matings by 
POCS were always the highest-ranked males and females 
in their full-sib families. The average ranks of the males 
and females that were allocated matings by POCS did 
not deviate from their average-minimum ranks—their 
average-rank deviations were zero. With GOCS, the aver-
age ranks of the males and females deviated from their 
average-minimum ranks by about 10%.

Table 1  Rate of true genetic gain realised by POCS, GOCS, and IOCS at 0.01�Ftrue in three breeding schemes with three 
predictions methods (PBLUP, GBLUP, and TBV)

Rates of absolute and scaled true genetic gain ( �Gtrue and �Gscaled ), rates of pedigree inbreeding ( �Fpedigree ) realised by POCS, and rates of genomic inbreeding 
( �Fgenomic ) realised by GOCS are means of 200 simulation replicates. �Gscaled was calculated by setting �Gtrue realised by POCS to 100 in each combination of 
breeding scheme and prediction method. SD between the replicates ranged from 0.00114 to 0.00256 ( �Ftrue ), 0.0288 to 0.0559 ( �Gtrue ), 2.51 to 14.45 ( �Gscaled ), 
0.00743 to 0.00979 ( �Fpedigree ), and 0.00153 to 0.00270 ( �Fgenomic)

Prediction Scheme OCS �Gtrue �Gscaled �Fpedigree �Fgenomic

PBLUP M25L5 POCS 0.379 100.0 0.0098

GOCS 0.317 83.6 0.0071

IOCS 0.356 93.9

M25L20 POCS 0.570 100.0 0.0094

GOCS 0.429 75.3 0.0061

IOCS 0.544 95.4

M100L5 POCS 0.554 100.0 0.0094

GOCS 0.485 87.5 0.0080

IOCS 0.534 96.4

GBLUP M25L5 POCS 0.398 100.0 0.0088

GOCS 0.390 98.0 0.0099

IOCS 0.409 102.8

M25L20 POCS 0.703 100.0 0.0074

GOCS 0.665 94.6 0.0117

IOCS 0.720 102.4

M100L5 POCS 0.658 100.0 0.0076

GOCS 0.648 98.5 0.0127

IOCS 0.670 101.8

TBV M25L5 POCS 0.773 100.0 0.0090

GOCS 0.762 98.6 0.0101

IOCS 0.782 101.2

M25L20 POCS 1.149 100.0 0.0079

GOCS 1.143 99.5 0.0131

IOCS 1.162 101.1

M100L5 POCS 0.999 100.0 0.0080

GOCS 0.996 99.7 0.0124

IOCS 1.012 101.3

Table 2  Average absolute changes in  allele frequencies 
at markers and QTL, and average increase in the frequencies 
of  favourable QTL alleles generated by  POCS and  GOCS 
at  0.01�Ftrue in  breeding scheme M25L5 with  two 
prediction methods (PBLUP and GBLUP)

Changes in allele frequencies are means of 200 simulation replicates. SD 
between the replicates ranged from 0.00132 to 0.00159 (absolute-marker alleles 
and absolute-QTL alleles) and from 0.00078 to 0.00085 (favourable QTL alleles)

Prediction OCS Absolute-
marker alleles

Absolute-
QTL alleles

Favourable-
QTL alleles

PBLUP POCS 0.0475 0.0472 0.00428

GOCS 0.0456 0.0455 0.00356

GBLUP POCS 0.0493 0.0487 0.00459

GOCS 0.0471 0.0468 0.00438
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Response frontiers
There were two main features of our response fron-
tiers. First, POCS continued to realise more �Gtrue than 
GOCS across a range of �Ftrue . Second, both POCS 
and GOCS realised less �Gtrue as �Ftrue decreased, but 
�Gtrue realised by POCS decreased at a slower rate than 
GOCS. These two features are illustrated by the response 
frontiers for POCS and GOCS with PBLUP and GBLUP 
in breeding scheme M25L5 (Fig. 2). With PBLUP, POCS 
realised about 6% more �Gtrue than GOCS at 0.03�Ftrue , 
20% more �Gtrue at 0.01�Ftrue , and 40% more �Gtrue at 
0.006�Ftrue . With GBLUP, POCS and GOCS realised 

similar �Gtrue at �Ftrue higher than about 0.015. POCS 
realised 2% more �Gtrue than GOCS at 0.01�Ftrue and 
almost 10% more �Gtrue at about 0.006�Ftrue.

Minimum rates of true inbreeding
POCS realised higher minimum �Ftrue than GOCS when 
we relaxed selection for predicted breeding value. In 
breeding scheme M25L5, the minimum �Ftrue realised by 
POCS was 6.1% higher than the minimum �Ftrue realised 
by GOCS (mean ± SD of 200 replicates: 0.0050 ± 0.00147 
vs 0.0047 ± 0.00144).

Discussion
Our findings supported our premise that POCS realises 
at least as much �Gtrue as GOCS at the same �Ftrue . 
When we calibrated POCS and GOCS to 0.01�Ftrue , 
we found that POCS always realised more �Gtrue than 
GOCS, regardless of the breeding scheme that we simu-
lated or the information used to predict breeding val-
ues. This makes POCS an attractive method of OCS to 
use in breeding schemes, including schemes that use 
GBLUP. It also highlights that the potential for GOCS 
to trace changes in allele frequencies at markers does 
not guarantee more �Gtrue . Our findings are supported 
by the results of Sonesson et al. [4] and Clark et  al. [5], 
but not the recommendation by Sonesson et al. [4], who 
reasoned that the same information used to predict 
�Gtrue should also be used to predict and control �Ftrue . 
It would be worthwhile reassessing the recommenda-
tion by Sonesson et  al. [4], given that their reasoning 
did not consider �Gtrue and their study made GOCS the 
method-of-choice for OCS with GBLUP. While we pre-
dicted that POCS would realise at least as much �Gtrue 
as GOCS, we were surprised to find that our reference 
OCS, IOCS, realised only marginally more �Gtrue than 
POCS with GBLUP and TBV. This result provides little 
incentive to use GOCS and highlights that we have more 
to learn before we can control inbreeding using genomic 
relationships in selective-breeding schemes. Until we can 

Table 3  Variance in  rate of  IBD between  6012 IBD loci 
generated by  POCS and  GOCS at 0.01�Ftrue in  breeding 
scheme M25L5 with  two prediction methods (PBLUP 
and GBLUP)

Variances are means of 200 simulation replicates. SD between the replicates 
ranged from 5.607 × 10−6 to 7.687 × 10−6

Prediction OCS Variance

PBLUP POCS 4.52 × 10−5

GOCS 4.56 × 10−5

GBLUP POCS 4.48 × 10−5

GOCS 4.64 × 10−5

Table 4  Number of  male candidates allocated matings, 
and  numbers of  half and  full-sib families with  candidates 
allocated matings by  POCS and  GOCS at  0.01�Ftrue 
in  breeding scheme M25L5 with  two prediction methods 
(PBLUP and GBLUP)

Numbers are means of 200 simulation replicates. SD between the replicates 
ranged from 0.72 to 0.87 (males), 0.79 to 0.93 (half-sibs), and 0.50 to 0.60 (full-
sibs)

Prediction OCS Males Half-sibs Full-sibs

PBLUP POCS 19.7 17.8 21.8

GOCS 17.9 16.1 21.3

GBLUP POCS 19.9 18.9 23.0

GOCS 18.8 17.1 21.9

Table 5  Average ranks and  average-rank deviations of  males and  females allocated matings by  POCS and  GOCS 
at 0.01�Ftrue in breeding scheme M25L5 with two prediction methods (PBLUP and GBLUP)

Average ranks and average-rank deviations are means (± SD) of 200 simulation replicates

Prediction OCS RankMales DeviationMales RankFemales DeviationFemales

PBLUP POCS 1.18 ± 0.025 0 1.26 ± 0.026 0

GOCS 1.29 ± 0.056 0.13 ± 0.044 1.39 ± 0.044 0.12 ± 0.035

GBLUP POCS 1.16 ± 0.022 0 1.24 ± 0.026 0

GOCS 1.30 ± 0.052 0.13 ± 0.044 1.39 ± 0.043 0.13 ± 0.038
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do so, POCS remains a worthy method of OCS because it 
realises more �Gtrue than GOCS at the same �Ftrue.

POCS realised more �Gtrue than GOCS because it 
managed expected genetic drift without restricting 
selection at QTL. It did this by applying a penalty to 
c′Ac . c′Ac can be rewritten as c′Ac = c′LL′c , where L 
is a normed lower-triangular matrix that describes the 
expected genetic contribution that an ancestor makes to 
its descendants, and L′c is a vector of expected genetic 
contributions from candidates and ancestors to the next 
generation [17, 18]. Penalising c′Ac = c′LL′c penalised 
increases in expected genetic contributions quadrati-
cally, where the sum of squares of expected contributions 
is a function of expected genetic drift [19]. Managing 
expected genetic drift managed the variance in changes 
in allele frequencies at hypothetical neutral loci. These 
neutral loci are assumed to be unlinked to QTL alleles 
[3]. Because they were unlinked, POCS allowed the fre-
quencies of favourable alleles at QTL to be increased 
by selection. By contrast, GOCS penalised changes 
in allele frequencies at markers that were generated 
by genetic drift and selection. It applied a penalty to 
c′Gc = c′ZZ′c/s , where Z′c/2 is a vector of changes in 
allele frequency at each marker [3] and these changes 

were measured as deviations from allele frequencies in 
the base populations. Penalising c′Gc = c′ZZ′c/s penal-
ised changes in allele frequencies at markers quadrati-
cally; markers with the largest frequency changes were 
penalised hardest. Because these marker alleles were in 
LD with QTL alleles, GOCS restricted changes in allele 
frequencies at QTL. This explanation highlights the prob-
lem with GOCS in its current form: it penalises changes 
in allele frequencies at all markers when, in fact, we need 
to change allele frequencies at some markers to increase 
the frequencies of favourable alleles at QTL. So, by man-
aging expected genetic drift, POCS realises more �Gtrue 
than GOCS at the same �Ftrue because it allows selection 
to increase the frequencies of favourable alleles at QTL 
more than GOCS.

Deductive reasoning tells us that POCS also generated 
different IBD profiles across the genome than GOCS at 
0.01�Ftrue . POCS must have generated more IBD than 
GOCS in regions of the genome that harboured QTL and 
less IBD in regions that lacked QTL, given that (1) POCS 
realised more �Gtrue than GOCS, (2) POCS generated 
larger increases in the frequencies of favourable alleles 
at QTL, (3) QTL alleles were in LD with IBD alleles, 
(4) areas under IBD profiles increase at the same rate 
at the same �Ftrue , and (5) POCS and GOCS generated 
similar variances in rate of IBD between IBD loci. While 
the IBD generated by POCS was associated with QTL 
location, the IBD generated by GOCS must have been 
associated with both QTL location and marker density 
because the markers used by GOCS to predict and con-
trol �Ftrue were randomly distributed across the genome. 
GOCS presumably generated most IBD in regions of the 
genome that harboured QTL with low marker densities, 
least IBD in regions that lacked QTL with high marker 
densities, and intermediate IBD in other regions of the 
genome. We did not present IBD profiles for POCS and 
GOCS because we simulated many QTL, each with a 
small change in allele frequency. This resulted in differ-
ences in IBD between POC and GOCS at each IBD locus 
that were small and difficult to detect visually. It would 
be worthwhile carrying out simulations to test unequiv-
ocally that POCS generates more IBD than GOCS in 
regions of the genome that harbour QTL. Increasing the 
frequencies of favourable alleles at QTL while restricting 
most of the IBD to regions of the genome that harbour 
these QTL is, after all, how we want to realise �Gtrue at 
acceptable �Ftrue in animal breeding. Therefore, not 
only does POCS allow selection to increase the frequen-
cies of favourable alleles at QTL more than GOCS at the 
same �Ftrue , it is probably also more aligned with the 
objectives of animal breeding by restricting most IBD to 
regions of the genome that harbour QTL.

0

0.1

0.2

0.3

0.4

0.5

Rate of true genetic gain

POCS
GOCS

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

0.5

Rate of true inbreeding

POCS
GOCS

PBLUP

GBLUP

Fig. 2  Rate of true genetic gain realised by POCS and GOCS plotted 
against �Ftrue in breeding scheme M25L5 with two prediction 
methods (PBLUP and GBLUP)
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A direct consequence of managing expected genetic 
drift was that POCS allocated matings to different selec-
tion candidates than GOCS. There were two major differ-
ences. First, POCS allocated matings to more candidates 
from more half and full-sib families than GOCS to realise 
0.01�Ftrue . POCS did this because it could neither dif-
ferentiate between pairwise relationships within full-sib 
families—they had the same expected relationships—nor 
could it trace increases in allele frequencies at IBD loci 
that were in regions of the genome under the influence 
of genetic drift and selection. These regions were prone 
to higher �Ftrue than predicted by pedigree relation-
ships. Candidates that were allocated matings by POCS 
tended to share more QTL alleles, more genomic regions 
flanking the QTL, and more IBD alleles than predicted. 
POCS compensated for this by allocating matings at rates 
of pedigree inbreeding that were lower than 0.01�Ftrue . 
It used variation in expected relationships between fami-
lies to allocate matings to more candidates from more 
families. By contrast, GOCS allocated matings to fewer 
candidates from fewer families than POCS because it 
could differentiate between pairwise relationships and 
exploit some of the variation in IBD relationships within 
full-sib families. Realising the same �Ftrue with fewer 
breeding animals made GOCS a more effective control 
of �Ftrue than POCS and shows that GOCS does provide 
valuable information for inbreeding control—it was just 
not as effective at realising �Gtrue . Further evidence that 
GOCS controlled �Ftrue more effectively was that it real-
ised lower minimum �Ftrue than POCS when we relaxed 
selection for predicted breeding value. With no selection 
for predicted breeding value, the objective was to restrict 
increases in the frequencies of IBD alleles, which GOCS 
did more effectively than POCS. But despite GOCS being 
a more effective control of �Ftrue , POCS still realised a 
minimum �Ftrue of 0.005 with only 25 matings per gen-
eration in breeding scheme M25L5. This was well within 
the 0.005–0.01 range of �Ftrue that is considered accept-
able for breeding schemes [20]. Therefore, POCS should 
still be able to realise �Ftrue that is considered acceptable 
in most breeding schemes by allocating matings to more 
candidates from more full and half-sib families.

The second difference was that POCS allocated mat-
ings to higher-ranked candidates within full-sib families 
than GOCS at 0.01�Ftrue . Candidates that were allo-
cated matings by POCS were always the highest-ranked 
males and females in their full-sib families. Allocat-
ing matings to the highest-ranked candidates generated 
the extra �Gtrue realised by POCS as these candidates 
tended to share favourable alleles at QTL. POCS allowed 
matings to be allocated to these candidates because all 
full-sibs have the same pairwise relationships based on 
pedigree relationships; candidates from the same full-sib 

family incurred the same penalty regardless of rank. On 
the other hand, GOCS could not always allocate matings 
to the highest-ranked candidates. Just as these candidates 
tended to share QTL alleles, they also shared marker 
alleles. Allocating matings to them was penalised by 
GOCS because it generated larger changes in allele fre-
quencies at markers. So, POCS more than compensated 
for allocating matings to more candidates from more half 
and full-sib families to realise the same �Ftrue as GOCS. 
It allocated these matings to higher-ranked candidates 
within full-sib families, which increased the frequencies 
of favourable alleles at QTL and realised more �Gtrue.

Not only did POCS realise more �Gtrue than GOCS 
at 0.01�Ftrue , it also realised more �Gtrue across a range 
of �Ftrue . At �Ftrue higher than 0.01�Ftrue , POCS and 
GOCS realised similar �Gtrue . Most selection empha-
sis was on �Gtrue , and both POCS and GOCS tended to 
allocate matings to the same highly-ranked candidates 
that would have been allocated matings by truncation 
selection. At lower �Ftrue , the mechanisms that differ-
entiate POCS from GOCS became more pronounced 
and POCS realised relatively more �Gtrue than GOCS. 
POCS allocated matings to even more candidates from 
more full and half-sib families to reduce �Ftrue . Candi-
dates that were allocated matings by POCS continued 
to be the highest-ranked males and females in their full-
sib families and the frequencies of favourable alleles at 
QTL continued to increase, albeit at slower rates. On the 
other hand, GOCS penalised changes in allele frequen-
cies at markers even harder at lower �Ftrue . Candidates 
that were allocated matings by GOCS differed more for 
predicted IBD relationships and they were less likely to 
be the highest-ranked males and females in their full-sib 
families. This further restricted changes in allele frequen-
cies at QTL. That is, penalising changes in allele frequen-
cies at markers imposes increasingly larger restrictions 
on changes in allele frequencies at QTL at lower �Ftrue 
than penalising increases in expected genetic contribu-
tions. Therefore, the mechanisms that underlie POCS 
and GOCS apply across a range of �Ftrue with POCS 
realising relatively more �Gtrue than GOCS at lower 
�Ftrue because it allows  relatively larger changes in the 
frequencies of favourable alleles at QTL.

Pedigree and genomic relationships used by POCS and 
GOCS were only predictors of �Ftrue . Pedigree relation-
ships used by POCS always underestimated 0.01�Ftrue 
when we selected for predicted breeding value because 
they could not trace increases in allele frequencies at IBD 
loci that were in regions of the genome under the influ-
ence of selection. Genomic relationships used by GOCS 
did not predict �Ftrue more accurately than pedigree 
relationships, even though GOCS controlled �Ftrue more 
effectively than POCS. GOCS underestimated 0.01�Ftrue 
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with PBLUP, but overestimated 0.01�Ftrue with GBLUP 
and TBV. There are two reasons why GOCS did not pre-
dict �Ftrue more accurately than POCS. First, the marker 
alleles used to predict �Ftrue were not in complete LD 
with IBD alleles. Second, the markers were randomly dis-
tributed across the genome. Random distribution implies 
uneven control of IBD across the genome because GOCS 
could only control inbreeding using marker alleles. 
GOCS had to increase inbreeding control in regions 
of the genome with high marker densities to compen-
sate for reduced inbreeding control in regions with low 
marker densities. Observable and accurate predictors of 
�Ftrue are central to breeding schemes for two reasons. 
First, they provide a measure of risk; the risk of breeding 
schemes being adversely impacted by inbreeding depres-
sion and loss of genetic variation [3]. Second, they enable 
OCS to increase selection differentials by allocating mat-
ings to selection candidates that realise predicted rates of 
inbreeding that are close to desired �Ftrue . With no obvi-
ous relationship between �Ftrue and rates of pedigree and 
genomic inbreeding, we are unable to calibrate POCS 
and GOCS to realise the desired �Ftrue . This makes 
inbreeding control using POCS or GOCS challenging. 
Clearly, observable and accurate predictors of �Ftrue are 
needed to better manage risk and increase selection dif-
ferentials in animal breeding.

Even with accurate predictors of �Ftrue , GOCS in its 
current form is still unlikely to realise more �Gtrue than 
POCS at the same �Ftrue . In other words, accurate pre-
diction of �Ftrue is not enough to maximise �Gtrue at the 
same �Ftrue . The reason is that prediction of �Ftrue and 
inbreeding control are different concepts when maximis-
ing �Gtrue at the same �Ftrue . This was highlighted by our 
reference OCS, IOCS. IOCS realised more �Gtrue than 
GOCS at 0.01�Ftrue because it had perfect knowledge of 
�Ftrue . It controlled �Ftrue with the same IBD alleles that 
were used to calculate �Ftrue . This suggests that GOCS 
will realise more �Gtrue if genomic relationships could 
be used to predict �Ftrue more accurately. However, the 
amount of extra �Gtrue is unlikely to result in GOCS 
realising more �Gtrue than POCS, given that IOCS, at 
best, only realised marginally more �Gtrue than POCS at 
0.01�Ftrue . IOCS realised only marginally more �Gtrue 
than POCS because it penalised increases in allele fre-
quencies at IBD loci in the same way that GOCS penal-
ised changes in allele frequencies at markers. It applied a 
penalty to c′Bc = c′DD′c , where D is a matrix of counts 
of each unique allele at each IBD locus that was inherited 
by each animal, and D′c is a vector of the numbers of each 
allele at each IBD locus that were expected to be passed 
on to the next generation. Penalising c′Bc = c′DD′c 
penalised increases in the expected numbers of IBD 

alleles quadratically. This presumably generated flat IBD 
profiles across the genome and restricted changes in 
allele frequencies at QTL. Like GOCS, IOCS needed to 
increase the frequencies of some IBD alleles to increase 
the frequencies of favourable alleles at QTL. So, GOCS 
in its current form, where changes in allele frequencies at 
all markers are penalised, is unlikely to ever realise more 
�Gtrue than POCS at the same �Ftrue.

If GOCS is to realise more �Gtrue than POCS at the 
same �Ftrue , we will need to change the way that genomic 
relationships are used to control �Ftrue . Rather than 
penalise changes in allele frequencies at all markers, we 
should probably allow changes in allele frequencies at 
some markers by varying the level of inbreeding con-
trol and rate of IBD across the genome while control-
ling �Ftrue at acceptable levels. This will involve relaxing 
inbreeding control in regions of the genome that harbour 
QTL, allowing selection to increase the frequencies of 
favourable alleles at QTL. At the same time, we will need 
to increase inbreeding control to reduce genetic drift in 
regions of the genome that lack QTL. Varying the level 
of inbreeding control across the genome could be car-
ried out in GOCS by constructing genomic-relationship 
matrices that weight markers in regions of the genome 
that harbour QTL lower than markers in regions that 
lack QTL. Weighted genomic-relationship matrices have 
been used in genomic prediction [21, 22]. An alternative 
approach is to construct genomic-relationship matrices 
by fixing the frequencies of mutant alleles at markers, 
p , to desired frequencies rather than frequencies in base 
populations. This approach would cause GOCS to penal-
ise deviations from the desired allele frequencies. While 
these approaches are simple in theory, implementing 
them in practice requires that we overcome a major hur-
dle: we do not know where many, if any, of the QTL are 
located on the genome. We do not know what we want 
to change and in what direction, nor do we know which 
regions of the genome can tolerate being IBD. Overcom-
ing this hurdle will require biological information about 
the QTL that control traits under selection, traits that 
might be under selection in future, and unobserved fit-
ness traits. Unfortunately, this information is unlikely to 
become available soon. Without it, there is no guarantee 
that GOCS will realise more �Gtrue or that it will control 
IBD in regions of the genome that are susceptible to IBD. 
Therefore, GOCS should realise more ΔGtrue than POCS 
at the same ΔFtrue when we relax inbreeding control in 
regions of the genome that harbour QTL, but imple-
menting this in practice will require biological informa-
tion about QTL.
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