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the accuracy of pedigree‑based imputation 
at very low marker densities
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Abstract 

Background:  In this paper, we evaluate the performance of using family-specific low-density genotype arrays to 
increase the accuracy of pedigree-based imputation. Genotype imputation is a widely used tool that decreases the 
costs of genotyping a population by genotyping the majority of individuals on a low-density array and using statisti-
cal regularities between the low-density and high-density individuals to fill in the missing genotypes. Previous work 
on population-based imputation has found that it is possible to increase the accuracy of imputation by maximizing 
the number of informative markers on an array. In the context of pedigree-based imputation, where the informative-
ness of a marker depends only on the genotypes of an individual’s parents, it may be beneficial to select the markers 
on each low-density array on a family-by-family basis.

Results:  In this paper, we examined four family-specific low-density marker selection strategies and evaluated their 
performance in the context of a real pig breeding dataset. We found that family-specific or sire-specific arrays could 
increase imputation accuracy by 0.11 at one marker per chromosome, by 0.027 at 25 markers per chromosome and 
by 0.007 at 100 markers per chromosome.

Conclusions:  These results suggest that there may be room to use family-specific genotyping for very-low-density 
arrays particularly if a given sire or sire-dam pairing have a large number of offspring.
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(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In this paper, we evaluate the value of optimizing the 
markers that are on low-density genotyping arrays for 
pedigree-based imputation. Over the past decade, the 
use of genomic information in livestock breeding has 
increased substantially and has led to higher accuracy 
of selection, particularly on traits with a low heritabil-
ity [1], decreased generational interval for some species 
[2], and increased rate of genetic gain [3]. Many of these 
gains have been made possible due to the use of low-cost 
genotypes obtained through genotype imputation. In the 
context of animal or plant breeding programs, genotype 
imputation allows most of the individuals in the popu-
lation to be genotyped with a low-cost and low-density 
genotype array, while only a small number of individuals 

(e.g., the sires and top dams) are genotyped with a high-
density array. The markers on the low-density array are 
used to identify shared haplotypes between low-density 
and high-density genotyped individuals. The shared hap-
lotype segments are then used to fill-in missing geno-
types [3].

High imputation accuracy is key for maximizing the 
rate of genetic gain in a population; low imputation accu-
racy decreases genomic prediction accuracy, which in 
turn decreases the response to selection [4]. One of the 
primary factors that influences imputation accuracy is 
the total number of markers on a low-density genotyp-
ing array. If there are too few markers, then it may be 
challenging to identify correctly the shared haplotypes 
between low-density and high-density genotyped indi-
viduals. Having more markers increases the specificity of 
detecting shared haplotypes, but also increases the cost 
of genotyping, which potentially limits the total number 
of individuals genotyped. An alternative way to increase 
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accuracy is to keep the total number of markers constant, 
but to choose the markers to be as informative as pos-
sible [5–7].

Past work on population-based imputation has shown 
that selecting markers that have a high minor allele fre-
quency, are evenly spaced throughout the chromosome 
[7], or co-vary strongly with other markers can improve 
imputation accuracy [5]. These three factors allow a pop-
ulation-based imputation method to distinguish between 
high-density reference haplotypes and find the specific ref-
erence haplotype that the low-density individual carries. 
For example, markers with a high minor allele frequency 
are likely to segregate between haplotypes, thus allowing 
similar haplotypes to be distinguished. In contrast, mark-
ers with a low minor allele frequency may be fixed in most 
of the haplotypes in the population and thus provide lim-
ited power to discriminate between haplotypes.

The gains for optimizing the distribution of markers 
across a chromosome can be substantial, particularly at 
lower marker densities. Aliloo et  al. [5] reported a 0.1 
increase in imputation accuracy by using an optimized 
set of 3757 markers compared to a random set. The rela-
tive increase was much smaller at higher marker densi-
ties, e.g., the increase was only 0.02 at 11,773 markers 
genome-wide, which suggests that as the number of 
markers on a low-density panel increases, the value of 
any marker selection strategy decreases. It is well known 
that pedigree-based imputation algorithms have higher 
imputation accuracies than population-based imputa-
tion algorithms at low marker densities [8]. Therefore, 
the gains by using an optimized marker selection strategy 
may also occur at relatively lower marker densities.

Unlike in the context of population-based imputation 
where informative markers depend on the distribu-
tion of haplotypes in the population, in pedigree-based 
imputation, informative markers only depend on the 
four parental haplotypes. In particular, informative 
markers are markers that distinguish between each set 
of parental haplotypes. If the parents have high-density 
genotypes (potentially by being imputed themselves) 
and are phased, then the informative markers will be 
the markers that are heterozygous in the parents. To 
illustrate this, suppose there is a biallelic marker for 
which both parents are genotyped and phased. If the 
sire is AB and the dam is BB, then the marker is inform-
ative for distinguishing sire haplotypes. The resulting 
offspring will be either AB or BB. If the offspring is AB, 
we know that it inherited the A allele from the sire and 
since the sire is phased, we know which haplotype the 
offspring inherited at that marker. Alternatively, if the 
offspring is BB, we know it inherited the B allele from 
the sire and the corresponding haplotype. If both par-
ents are heterozygous at a marker (AB and AB), then 

the marker will be informative for both parents in half 
of the cases, i.e., when the offspring is either AA or BB. 
If the offspring is AB, the marker will not be informa-
tive, since we cannot determine the parent of origin for 
each allele. We illustrate these conditions in Fig. 1.

The fact that marker informativeness depends only 
on the genotypes of the parents broadens the options 
for marker selection strategies beyond optimizing the 
minor allele frequency and marker spacing only. This 
is particularly the case if multiple SNP arrays can be 
developed at low cost. For example, it is reasonable to 
expect gains in imputation accuracy if the low-density 
marker array is updated on a yearly basis to track the 
changing minor allele frequency of the sires and dams 
in the population, or if multiple panels can be devel-
oped to track the allele frequencies in specific subpopu-
lations (e.g., at a given farm or for a given breed/line). 
At the extreme, we could consider constructing family-
specific genotyping panels.

In this study, our aim was to evaluate different marker 
selection strategies in the context of pedigree-based 
imputation algorithms and to quantify the extent to 
which imputation accuracy could be increased by using 
an optimized marker selection strategy, and determine 
the marker densities required for those accuracy gains 
to be realized. To do this, we focused on three methods 
for creating a single SNP array for a population, and four 
family-specific methods. These methods place an upper 
and lower bound on the performance of any marker selec-
tion strategy because they represent the extremes: either 
a single array that was optimized for the entire popula-
tion, which represents what is currently done in practice, 
or a family-specific array, which represents the best pos-
sible imputation accuracy that can be obtained for a given 
marker density (i.e., because every marker is informative). 
Alternative strategies, which are likely to be more eco-
nomically viable, will fall between the two extremes.

Methods
Genetic data
In this study, we used genotypes for 1000 focal indi-
viduals and their ancestors from a large commercial pig 

Fig. 1  A graphical representation of informative markers for 
pedigree-based imputation
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breeding program. The focal individuals were selected 
such that they were genotyped on a high-density array 
(~ 50k markers across the 18 pig autosomes), and had five 
generations of genotyped ancestors. Some of the ances-
tors were genotyped at a lower density, but all individuals 
were imputed to high-density. Although the focal indi-
viduals were not chosen to be explicitly related, we found 
that the focal individuals were the offspring of 50 unique 
sires and 300 unique dams. In total, we extracted the gen-
otypes for 2405 animals (1000 focal individuals and 1405 
ancestors). Then, we performed several simulations in 
which the genotypes of the focal individuals were masked 
according to a low-density marker selection strategy 
(explained below) and imputed based on the un-masked 
genotypes of the ancestors using AlphaPeel. AlphaPeel 
is a pedigree-based imputation method based on multi-
locus peeling [9]. We ran AlphaPeel by using its default 
parameters.

Marker selection strategies
We evaluated two sets of marker selection strategies in 
which the markers on the low-density array were opti-
mized either for the whole population, or for a specific 
family. For all methods, we split the chromosome into 
k bins, where k is the number of low-density markers, 
and used a marker selection strategy to select a marker 
from each bin. For each marker selection strategy, we 
varied the number of low-density markers per chromo-
some between 1 and 700 in 16 increments, using 1, 2, 3, 
5, 10, 15, 25, 50, 100, 150, 200, 300, 400, 500, 600, or 700 
markers.

We evaluated three population-based marker selection 
strategies. We selected either the middle marker from 
each bin (midpoint), the marker in the bin that had the 
highest minor allele frequency (maf), or the marker that 
was both central and had a high minor allele frequency 
(combined). The centrality combined with high minor 
allele frequency was based on the method of Wu et al. [7]. 
For each marker, we calculated a score:

where di is the distance (in number of markers) between 
the marker and the centre of the bin, and pi is the minor 
allele frequency for marker i . The term ( 1− di ) gives a 
higher weight to markers that are close to the centre of 
the bin. The term 

(

pi log2 (pi)+ (1− pi) log2 (1− pi)
)

 is 
the Shannon information content of the marker based 
on the minor allele frequency and is highest for markers 
with a minor allele frequency close to 0.5 [7]. Unlike Wu 
et al. [7], we did not perform a global optimization of the 
location of each marker, but instead selected the marker 
for each bin independently.

scorei = −(1− di)
(

pi log2 (pi)+ (1− pi) log2 (1− pi)
)

,

Previous work showed that selecting two markers from 
the first and last bins on the chromosome can improve 
imputation accuracy because of the higher than normal 
recombination rate at the ends of the chromosome [6]. 
Due to the small number of markers used in our study (in 
some cases, only one marker was used), we selected only 
one marker from each bin, even for the first and last bins.

We evaluated four family-specific marker selection 
strategies. We selected the marker that was closest to the 
centre of the bin and was heterozygous in both parents 
(Het/Het), or heterozygous in one parent and homozy-
gous in the other (Het/Hom), or heterozygous in at 
least one parent (Het/Any), or heterozygous in the sire 
(Het/Sire). In the Het/Hom condition, we used k2 bins and 
separately selected markers in each bin that were inform-
ative for the sire or the dam (if the number of markers 
was odd, the sire received k+1

2  bins, and the dam received 
k−1
2  bins). If a bin did not contain an acceptable marker 

for the family-specific strategy, we used the combined 
population strategy to select the marker for that bin. This 
occurred more frequently when the number of low-den-
sity markers was large and the number of markers per bin 
was small, and in the Het/Het and Het/Hom conditions 
that had the smallest pools of acceptable markers.

For all family-specific strategies, we restricted the pool 
of potential markers to markers that were genotyped 
in the real dataset (i.e., not missing) in the offspring. In 
addition, we required that the markers be genotyped for 
the sire in the Het/Sire condition, for at least one par-
ent in the Het/Any condition, and for both the sire and 
the dam in the Het/Het and Het/Hom conditions. This 
generally produced a small reduction in the number of 
markers since most offspring were pre-selected such that 
they were genotyped at high-density, and most sires and 
many dams were genotyped at high-density. Because the 
pattern of missing data differed in each individual, we 
generated family-specific arrays separately for each indi-
vidual, even when individuals came from the same full-
sib family.

Measurement of imputation accuracy
Imputation accuracy was measured as the correlation 
between an individual’s imputed genotype and their true 
genotype, corrected for their parent average genotype:

This measure of imputation accuracy is designed specifi-
cally for pedigree-based imputation. It is equal to 0 if no 
genotype information is available on a focal individual 
(resulting in the individual being imputed as the parent 
average genotype), and to 1 if the individual is imputed 
perfectly. The goal of this metric is to assess the accuracy 

(1)
accuracy = cor(Gimputed − Gparent_average,

Gtrue − Gparent_average).
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of imputing within-family (Mendelian sampling) geno-
type variation. Based on simulations, we showed a close 
relationship between this measure of imputation accu-
racy and the accuracy of the breeding value estimates 
(see “Appendix”). In addition, this measure does not 
rely on using the population minor allele frequency (as 
opposed to correcting for major allele frequency, as in 
[4], which may not be representative of the allele frequen-
cies in specific families. In cases for which the genotypes 
of the parents were missing in the real dataset, we used 
the imputed values from AlphaPeel to calculate the par-
ent average genotype. This was done primarily to fill-in 
spontaneous missing genotypes, and to impute dams that 
were genotyped at a lower density.

Imputation accuracies were calculated separately 
for each chromosome and then averaged across all 18 
autosomes.

Results
Figure 2 presents the performance of using either a pop-
ulation-based strategy or a family-specific strategy, for 
both the (a) absolute imputation accuracy or (b) imputa-
tion accuracy relative to the combined population strat-
egy. We found that the combined strategy was the highest 
performing population strategy, followed by the maf 
strategy, and then by the midpoint strategy. The differ-
ence between the combined strategy and the maf strategy 
was less than 0.001 at above 25 markers per chromo-
some. We found that all of the family-specific strategies 
outperformed the combined strategy. In particular, we 
found that the Het/Hom strategy was the highest per-
forming strategy, followed by the Het/Any strategy, and 
the Het/Het strategy. The Het/Sire strategy performed 
better than the Het/Het strategy with less than five mark-
ers, but was worse with five or more markers.

The combined strategy gave high imputation accuracies 
across a range of marker densities. Imputation accuracy 
was equal to 0.312 at one marker per chromosome, 0.796 
at 10 markers per chromosome, 0.903 at 25 markers per 
chromosome, 0.945 at 50 markers per chromosome, and 
0.985 at 500 markers per chromosome.

Using a family-specific strategy increased imputa-
tion accuracy. When the Het/Any strategy was used, we 
obtained an accuracy of 0.424 at one marker per chro-
mosome, 0.855 at 10 markers per chromosome, 0.931 at 
25 markers per chromosome, 0.959 at 50 markers per 
chromosome, and 0.986 at 500 markers per chromosome. 
The performance of the other family-specific strategies 
was similar. The increase in imputation accuracy of the 
family-specific strategies over the combined strategy was 
highest at low marker densities (e.g., 0.11 at one marker 
per chromosome), and decreased as marker density 
increased (e.g., 0.001 at 500 markers per chromosome).

In Fig.  3a, the imputation accuracy obtained with the 
Het/Any strategy is plotted by chromosome and in Fig. 3b 
by chromosome length. We found that imputation accu-
racy decreased as the chromosome length increased, 
but that this difference was small even for large chromo-
somes. To quantify these differences in imputation accu-
racy, we used a linear model to measure the effect of the 
number of markers and chromosome length (in cM) on 
accuracy. Chromosome lengths were drawn from [10]. 
The linear model treated chromosome length as a linear 
covariate and the number of markers as a categorical var-
iable to account for the non-linear effect that number of 
markers has on accuracy. We found a significant effect of 
chromosome length on accuracy (regression coefficients 
decreased from a 0.0012 loss of accuracy per cM at two 
markers per chromosome to a 0.0001 loss of accuracy 
per cM at 100 markers per chromosome, p < 0.001) and 

Fig. 2  Imputation accuracy as a function of the number of markers per chromosome and the marker selection strategy. a Provides the absolute 
imputation accuracy (measured as correlation between the true and imputed genotypes of an individuals corrected for parent average genotype), 
while b provides comparison relative to the combined strategy
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on the interaction between the number of markers and 
chromosome length (p < 0.001). 

Discussion
In this paper, we evaluate the performance of using fam-
ily-specific low-density marker selection strategies to 
increase the accuracy of pedigree-based imputation. We 
show that using parental genotype information to select 
markers on a low-density genotype array increased impu-
tation accuracy, with the largest gains occurring at very 
low marker densities (between a 0.11 and 0.05 increase 
in accuracy for between 1 and 25 markers per chromo-
some), and with more limited gains occurring at higher 
marker densities (less than a 0.01 increase in accuracy 
at more than 100 markers per chromosome). In addi-
tion, we quantified the influence of chromosome length 
on imputation accuracy and found that increasing chro-
mosome length had a near-linear impact on imputation 
accuracy when the number of informative markers per 
chromosome was kept constant. In the remainder of the 
discussion, we will highlight the performance of each 
family-specific marker selection strategy, compare our 
results to previous studies on the optimization of the 
design of low-density arrays for population-based impu-
tation, and discuss the commercial viability of using fam-
ily-specific genotype arrays.

Performance of family‑specific marker selection strategies
Our findings show that selecting the markers on a low-
density genotype array based on parental information 
increased accuracy in all cases compared to using the 
same set of markers for every individual in the popula-
tion. We evaluated four marker selection strategies and 
found that selecting markers that were heterozygous 

in one parent and homozygous in the other (Het/Hom, 
Fig. 1a) yielded the highest imputation accuracies. Select-
ing markers that were heterozygous in both parents 
(Het/Het, Fig.  1b) resulted in much lower imputation 
accuracies than the Het/Hom strategy, which is likely due 
to markers in the Het/Het condition not being informa-
tive if the offspring are heterozygous (Fig. 1b).

In addition to the strategies presented in Fig.  1, we 
also investigated two hybrid strategies. The first one 
selected markers that were heterozygous in either par-
ent (Het/Any), and the second selected markers that were 
heterozygous in the sire (Het/Sire). We found that the 
performance of the Het/Any strategy was in between that 
of the Het/Hom and Het/Het strategies, which reflects the 
fact that the chosen markers were split between those 
that were heterozygous in one parent and homozygous 
in the other, and those that were heterozygous in both 
parents. We found that the Het/Sire condition performed 
well with a few markers per chromosome, but that the 
gain in imputation accuracy declined more rapidly com-
pared to the alternative strategies. This is likely due to the 
Het/Sire strategy placing most of its weight on finding 
markers that are informative for the sire, and thus result-
ing in few markers being informative for the dam. All the 
same, the Het/Sire strategy outperformed all of the popu-
lation-based strategies tested, making it a potentially use-
ful strategy when a single sire produces a large number of 
offspring.

We focused on the family-specific marker selection 
strategies because they concentrate all their genotyp-
ing effort on informative loci, and thus these strategies 
provide an upper bound on the imputation accuracy for 
any alternative strategy for a fixed marker density. This 
is particularly important given that the development of 
a family-specific array will not be economically viable in 

Fig. 3  Imputation accuracy by a chromosome and b chromosome length. In both panels the Het/Any strategy was used to select the markers on 
the low-density arrays
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many cases, particularly if the number of individuals per 
full-sib family is small, and the cost for developing a new 
array is high. However, there are alternative strategies 
that might be more economical, e.g., developing a new 
low-density array for each generation or each year based 
on the minor allele frequencies of sires and dams in the 
population, or using separate arrays for different breeds 
or lines. These arrays may produce a larger number of 
informative markers than a population-based array, 
but less than a family-specific array. Because of this, we 
expect these arrays to be useful if less than 100 mark-
ers per chromosome are genotyped. At higher densities, 
these strategies will likely perform similarly to using a 
single low-density array for the entire population.

Comparison to population‑based imputation
Our results align closely with those of previous reports 
on the optimization of low-density genotyping arrays for 
population-based imputation. Similar to both Aliloo et al. 
[5] and Wu et  al. [7], we found that the gains in impu-
tation accuracy for an optimized array were highest at 
low-marker densities and decreased at higher densities. 
We were also able to replicate the primary finding of Wu 
et al. [7], i.e. that simultaneously optimizing the low-den-
sity markers for both a high minor allele frequency and 
even spacing improved imputation accuracy particularly 
at low densities.

One of the primary goals of our work was to quantify 
at what marker densities it was advantageous to optimize 
the design of low-density arrays. Based on the results of 
Aliloo et al. [5], we expected that the performance of any 
specific marker selection strategy would depend on the 
number of low-density markers (with higher gains avail-
able at lower marker densities). Given that imputation 
accuracy tends to be higher with pedigree-based impu-
tation compared to population-based imputation [8], 
we expected that the gains in imputation accuracy for 
pedigree-based imputation would occur at lower densi-
ties than for population-based imputation, which was 
the case. As an example, Aliloo et al. [5] reported a 0.10 
gain in imputation accuracy using an optimized marker 
selection strategy at ~ 125 markers per chromosome. In 
contrast, the gain at 100 markers per chromosome was 
less than 0.01 between using a family-specific marker 
selection strategy or using the midpoint strategy. Larger 
gains in imputation accuracy occurred at much lower 
densities (particularly between 1 and 25 markers per 
chromosome).

Commercial feasibility of family‑based imputation
The primary question of using family-specific geno-
type arrays revolves around the cost and the complex-
ity of deploying such arrays in the context of a genetic 

improvement program. There are two primary issues: 
(1) in order for a family-specific array to be beneficial, 
the density of the array needs to be low; and (2) the use 
of a family-specific array may require the construction 
of a large number of arrays, which may be prohibitively 
expensive. We discuss both issues in more detail below.

On the question of marker densities, we showed that 
in order for a family-specific genotype array to be benefi-
cial, the underlying marker density has to be much lower 
than that traditionally used in an animal improvement 
program (< 25 markers per chromosome), and will result 
in lower absolute values of imputation accuracy than 
a traditional low or medium density array. This limits 
the use of family-specific arrays when it is acceptable to 
have imperfect genetic information, i.e., when the accu-
racy of selection can be low, or when selection decisions 
are not directly made on the genotyped individual. Such 
situations might include genotyping individuals in a non-
nucleus environment to establish a flow of phenotypic 
information to individuals in the nucleus or performing 
genetic improvement in breeding programs for which 
very low-density arrays are used to genotype a very large 
number of offspring. This might have potential in aqua-
culture [11, 12] and crop breeding [13, 14].

Regarding the question about the number of arrays, 
because family-specific genotype arrays depend on the 
genotypes of both the sire and the dam, the number of 
different arrays that are necessary to genotype individuals 
in the population may be large. This will be particularly 
the case when a single dam has a limited number of off-
spring (most notably in cattle and small ruminants, but 
also in pigs). In these cases, it may be possible to reduce 
the number of arrays needed by using a sire-specific gen-
otype array. Alternatively, there may be situations where 
a single sire-dam pair may produce a large number of 
offspring as is the case in aquaculture and crop breed-
ing, where a single array for multiple individuals could be 
developed, or where a more flexible genotyping method 
could be deployed [15].

Conclusions
Overall, in this paper we evaluate the utility of family 
information to select markers on a low-density array. 
Although we find minimal gains at the densities that are 
currently used in modern breeding programs (over 100 
markers per chromosome), the increases in accuracy at 
very low marker densities (between 1 and 25 markers per 
chromosome) were high. These results suggest that, for 
traditional animal breeding programs, the use of multi-
ple low-density panels is likely not beneficial, and that 
there is little gain in optimizing the markers selected 
for the panel, beyond selecting markers that have a high 
minor allele frequency and are evenly spaced across the 
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chromosome. However, for breeding programs for which 
the number of individuals in a full-sib family is large such 
as for some plants, aquaculture or insect species, and for 
which individuals would be genotyped at very low den-
sities, there may be value in carefully selecting which 
markers to place on a low-density array, and potential 
advantage in constructing family-specific low-density 
arrays.
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Appendix
In the animal breeding literature, there are many meas-
ures of imputation accuracy that differ in subtle ways, 
which makes it difficult to know which metric to use and 
complicates comparisons between studies. Our ultimate 
motivation is to use imputation in the context of genomic 
selection. Thus, we carried out a small simulation study 
to assess the relationship between three measures of 
imputation accuracy and the accuracy of genomic predic-
tion using the imputed genotypes.

Population
In this small study, we simulated five generations of an 
animal breeding program. We assumed that the first four 
generations were phenotyped and genotyped at high-
density. We assumed that the fifth generation was not 
phenotyped and was genotyped at low-density. Our goal 
was to impute the genotypes in the fifth generation and 
predict the breeding values for those individuals.

We assumed that each generation consisted of 1000 
individuals, which were evenly split between males and 
females. The next generation was created by randomly 

mating the 50 males and 500 females with the highest 
true breeding value. We assumed that they were geno-
typed with 50,000 markers that were evenly spaced across 
20 chromosomes of 100 cM. The initial haplotypes in the 
population were simulated by using a coalescent simula-
tor, MaCS, and ancestral population parameters derived 
for cattle (as in [9]). The remainder of the simulation was 
carried out using AlphaSimR (Gaynor et  al., personal 
communications).

We simulated breeding values and phenotypes for a 
single trait for each individual in the population. To do 
this, we assumed that all 50,000 markers on the high-
density array were quantitative trait loci with additive 
and normally distributed effects. We varied the heritabil-
ity of each trait between 0.1 and 0.9 in increments of 0.1.

Genotypes and imputation
We assumed that high-density genotypes were available 
on the first four generations, and low-density genotypes 
were available on the final fifth generation. The low-den-
sity genotypes were chosen such that they were evenly 
spaced across the chromosome, similar to the midpoint 
condition in the main study. Then, we used AlphaPeel to 
impute the genotypes of each individual in the popula-
tion. We varied the number of low-density markers per 
chromosome between 1 and 700 in 16 increments, using 
1, 2, 3, 5, 10, 15, 25, 50, 100, 150, 200, 300, 400, 500, 600, 
or 700 markers.

Imputation accuracy was assessed either by (a) the cor-
relation between an individual’s imputed genotype and 
their true genotype (rraw), (b) the correlation between an 
individual’s imputed genotype and their true genotype 
corrected for twice the population major allele frequency 
(rmaf as in [4]), or (c) the correlation between an individ-
ual’s imputed genotype and their true genotype corrected 
for twice the family major allele frequency, i.e., the parent 
average genotype (rpa, as in Eq. 1 in the main study).

Breeding value prediction
We predicted the breeding values of the last generation 
using a ridge regression model [16, 17]. The training 
population was assumed to consist of all the individuals 
in the first four generations. We predicted the breeding 
values of the final generation using either the imputed 
genotypes or the true genotypes. Prediction accuracy 
was assessed by evaluating the accuracy of the Mende-
lian sampling term, that is, the correlation between an 
individual’s true and estimated genetic deviation from 
the mean parental breeding value. The relative predic-
tion accuracy was calculated as the ratio of the imputa-
tion accuracy using imputed genotypes to the prediction 
accuracy using the true genotypes:

http://www.ecdf.ed.ac.uk
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The performance of a given measure of imputation 
accuracy was assessed by evaluating the correlation 
and the regression coefficient between each measure of 
imputation accuracy and relative prediction accuracy. If 
a measure of imputation accuracy is a good proxy for the 
resulting prediction accuracy, we expect that both the 
correlation coefficient and the regression coefficients will 
be close to 1. If the regression coefficient is greater than 
1, this suggests that the measure of imputation accuracy 
overestimates the resulting prediction accuracy. If the 
regression coefficient is less than 1, this suggests that 
the measure of imputation accuracy underestimates the 
resulting prediction accuracy.

Results and discussion
Figure  4 shows that all three measures of imputation 
accuracy correlate strongly with the relative predic-
tion accuracy, (rraw, r = 0.979, p < 0.001; rmaf, r = 0.981 
p < 0.001; rpa, r = 0.989 p < 0.001), but that rpa (b = 0.958) 
has the regression coefficient closest to 1, followed by rmaf 
(b = 2.345) and rraw (b = 5.161).

These results suggest that using either the raw individ-
ual-wise correlation or the individual-wise correlation 
corrected for twice the population allele frequency will 
overestimate the usefulness of using the imputed geno-
types for predicting the Mendelian sampling term. In 
contrast, correcting for twice the family allele frequency 
(parent average genotype) will provide a less biased esti-
mate of the relative information loss with imputed data. 
These results differ from those reported by Calus et  al. 
[4], probably because here, we focus on pedigree-based 
imputation. In the context of pedigree-based imputation, 

accrel = accimputed/acctrue accurate genotypes can be constructed by setting the 
genotypes of the offspring equal to the parent average 
genotype. This will provide high accuracy when using the 
raw correlation or when correcting for twice the popu-
lation allele frequency, but will not allow a breeder to 
distinguish between full-sibs who will be all imputed to 
the same value (i.e., the Mendelian sampling terms). In 
contrast, correcting for twice the family allele frequency 
(parent average genotype) allows a more accurate assess-
ment of the ability to distinguish between full-sibs, and 
the overall utility of the genetic information.
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