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Abstract 

Background:  Experimental intercrosses between outbred founder populations are powerful resources for mapping 
loci that contribute to complex traits i.e. quantitative trait loci (QTL). Here, we present an approach and its accom-
panying software for high-resolution reconstruction of founder mosaic genotypes in the intercross offspring from 
such populations using whole-genome high-coverage sequence data on founder individuals (~ 30×) and very low-
coverage sequence data on intercross individuals (< 0.5×). Sets of founder-line informative markers were selected for 
each full-sib family and used to infer the founder mosaic genotypes of the intercross individuals. The application of 
this approach and the quality of the estimated genome-wide genotypes are illustrated in a large F2 pedigree between 
two divergently selected lines of chickens.

Results:  We describe how we obtained whole-genome genotype data for hundreds of individuals in a cost- and 
time-efficient manner by using a Tn5-based library preparation protocol and an imputation algorithm that was 
optimized for this application. In total, 7.6 million markers segregated in this pedigree and, within each full-sib family, 
between 10.0 and 13.7% of these were fully informative, i.e. fixed for alternative alleles in the founders from the diver-
gent lines, and were used for reconstruction of the offspring mosaic genotypes. The genotypes that were estimated 
based on the low-coverage sequence data were highly consistent (> 95% agreement) with those obtained using 
individual single nucleotide polymorphism (SNP) genotyping. The estimated resolution of the inferred recombination 
breakpoints was relatively high, with 50% of them being defined on regions shorter than 10 kb.

Conclusions:  A method and software for inferring founder mosaic genotypes in intercross offspring from low-cover-
age whole-genome sequencing in pedigrees from heterozygous founders are described. They provide high-quality, 
high-resolution genotypes in a time- and cost-efficient manner. The software is freely available at https​://githu​b.com/
Carlb​orgGe​nomic​s/Strip​es.
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Background
Genotyping by next-generation sequencing has emerged 
as a rapid, high-throughput approach to obtain high-den-
sity genotypes in large populations [1, 2]. The downside 
of this approach is that confident assignment of indi-
vidual genotypes requires costly deep sequencing, which 
restricts its application for large association panels. Cost-
efficient approaches, such as reduced-representation 
sequencing (RRS; [3]) and genotype imputation from 
low-coverage sequencing data [4–7], have been devel-
oped to reduce the cost of genotyping large populations. 
While RRS reduces the cost by sequencing only a fraction 
of the genome without losing confidence in individual 
calls, the genotype imputation approach is designed for 
low-coverage sequence data and subsequent genotype 
imputation against a set of selected high-confidence hap-
lotypes either from external reference individuals or from 
haplotypes reconstructed in the low-coverage sequenced 
individuals. Compared to RRS, genotype imputation can 
provide high-confidence genome-wide genotypes at a 
similar cost, which makes it a compelling approach for a 
wide range of applications [4–8].

Several algorithms have been developed for genotype 
imputation based on low-coverage sequencing data. 
Some were developed for general pedigrees and data, 
while others were targeted for more specific applications, 
resulting in variation in their performances depending 
on how well underlying assumptions about the data are 
met. In populations with unrelated individuals, the indi-
vidual genomes are often assumed to consist of short 
mosaics of ancestral haplotypes. Examples of software 
that have been developed for genotype imputation in 
such applications include Beagle [9], MaCH [10], and 
Shapeit2 [11–13]. These software perform well for their 
intended applications but lose considerable performance 
when applied to data with ultra-low coverage (< 1×) 
from experimental populations [14]. In such populations, 
relatedness of the individuals results in the segregation of 
longer haplotypes. By developing methods that account 
for these relationships, much lower sequence coverage 
(< 0.1×) is required to resolve, for example, the founder 
genome mosaics that are inherited by the offspring from 
the mating of two inbred parents [7, 8, 15]. Multiple 
methods and software exist for analyses of such ultra-low 
coverage sequencing data in intercrosses between pairs 
of inbred founders, including FSFHap [4], LB-impute [6], 
and TIGER [7]. This principle has also been successfully 
extended to populations that are founded by multiple 
inbred parents, with implementations in software such as 
Mpimpute [16] and Reconstruct [17].

There is a dearth of alternatives for analysing data from 
populations that were bred by mating two or more out-
bred (heterozygous) founders. For such populations, both 

genotype imputation and inference of founder mosaics in 
the offspring are more challenging due to the unobserved 
phases in the pedigree founders. A software useful for 
genotype imputation in such data is STITCH [5], which 
can perform this task by using ultra-low coverage data 
in both unrelated and pedigreed populations. To recon-
struct founder mosaics for linkage and QTL mapping, 
even fewer options exist because the methods devel-
oped for inbred populations described above [6–9, 16, 
18] are not immediately applicable for such populations. 
Recently, a method was reported to perform such recon-
struction while allowing for heterozygosity of parents 
and offspring in both bi- and multiparental populations 
[14]. However, the accompanying software that imple-
ments the algorithm (magicImpute) requires a commer-
cial platform. A recent article [19] describes an algorithm 
for calling, phasing, and imputation of genotypes from 
low-coverage sequence data in pedigreed populations 
using single-locus peeling, multi-locus peeling, and 
hybrid peeling, but the performance of the accompanying 
software, AlphaPeel was not evaluated here since it was 
published after this paper was completed.

Here, we report an approach and its associated soft-
ware that facilitates cost- and time-efficient inference of 
founder mosaic genotypes in experimental crosses from 
outbred (heterozygous) founders using very low cover-
age (< 0.5×) sequencing data. Although our approach has 
several similarities to earlier methods that were devel-
oped for inbred populations from bi-parental crosses, 
and uses one of these in part of the implemented pipe-
line, it provides extensions that are essential for the effi-
cient estimation of founder mosaics in outbred crosses 
with multiple segregating founders. The properties of our 
method were illustrated by re-genotyping an F2 intercross 
[20, 21] between the Virginia lines of broiler chickens 
that were divergently selected for body weight [22–24]. 
Our results demonstrate that this method provides high-
quality genome-wide founder mosaic genotypes with 
crossover events that were estimated with greater resolu-
tion and at a lower cost than that of reduced represen-
tation approaches based on a few hundred selected and 
individually genotyped genetic markers.

Methods
When an F2 intercross population is founded by inter-
crossing multiple outbred founders from two paren-
tal lines, the population can be divided into nuclear 
families with one F2 offspring and four F0 parents. The 
genomes of the offspring in each of these nuclear full-
sib families will be mosaics of the eight haplotypes of 
the four F0 founders, as illustrated in Fig. 1. The link-
age phases in the F0 genomes are, however, unknown, 
which means that the line origin of the alleles in the 
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F2 offspring cannot be inferred with confidence in 
regions of the genome where the F0 founders are het-
erozygous (Fig.  1). Using whole-genome sequencing, 
markers can be detected where the divergent found-
ers are fixed for alternative alleles (Fig. 1). Using these 
markers only, the founder mosaic genotypes in the 
entire F2 intercross generation can be imputed effi-
ciently, one F2 full-sib nuclear family at a time. In the 
following sections, we describe in detail the approach 
that is outlined in Fig. 1. It is implemented in a freely 
available software pipeline that can be downloaded at 
https​://githu​b.com/Carlb​orgGe​nomic​s/Strip​es.

Inference of founder mosaic genotypes in intercross 
individuals from a cross between outbred founders
A more detailed, step-by-step description of the 
approach to estimate the founder mosaic genotypes out-
lined in Fig. 1 is provided below.

Step 1: Sequencing of F0 founders and F2 intercross 
individuals
Individual-based sequencing libraries were pre-
pared for the F0 and F2 individuals. Founder individu-
als were sequenced to high coverage for SNP calling 

Fig. 1  Reconstruction of the founder mosaic genotypes in an F2 individual from a multi-parent F0–F2 family with outbred (heterozygous) founders, 
using low-coverage sequence data. Informative markers (blue/yellow large font) are identified based on their fixation for alternative alleles in the 
pairs of deep-coverage sequenced F0 founders from the divergent lines (HWS1 and HWS2 vs. LWS1 and LWS2) in the family. Blue and yellow bars 
represent chromosomes that originate from the high (yellow) and low (blue) founder lines, respectively. Uninformative markers that segregate in 
at least one founder (black small font) are discarded from further analyses. The F1 individuals used as parents for the intercross (F2) offspring do not 
need to be sequenced, as they are heterozygous for all selected informative markers. The F2 individuals are sequenced to low-coverage and the 
reads are mapped to the selected informative markers. Then the founder mosaic genotypes (illustrated for one autosome by the blue and yellow 
bars) are inferred across the genome using the read mappings to the within-family informative markers using a Hidden Markov Model (HMM) 
developed for this task for inbred line crosses [7]

https://github.com/CarlborgGenomics/Stripes
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(15–30× recommended) and intercross individuals to 
low-coverage (~ 0.5× recommended).

Step 2: Selection of markers informative for line origin in each 
full‑sib family
Using the high-coverage sequence data on the F0 individ-
uals, markers fixed for alternative alleles in the divergent 
founders of each full-sib family (within-family informa-
tive markers) were identified across the genome. These 
markers are highlighted as large capital letters in yellow 
(HWS informative) and blue (LWS informative) in Fig. 1, 
and contrasted with the larger number of non-informa-
tive markers (small, black letters).

Step 3: Read calling in low‑coverage sequenced intercross 
individuals
A computationally-efficient pipeline was implemented 
for read calling at the within-family informative mark-
ers in the offspring from the low-coverage sequence data 
(Fig. 1). First, each individual fastq file was mapped to the 
reference genome using “bwa mem” with default param-
eters. Second, the bam file was indexed and filtered using 
“samtools view –bh –q30 –f 0x02” to include only reads 
for which both pairs are uniquely mapped to the refer-
ence genome. Third, bcftools was used to obtain the num-
ber of reference and alternative allele calls using “mpileup 
-Oz”. Finally, a custom python script was used to refor-
mat the obtained output to VCF format and merge the 
data from all individuals into a single file. This procedure 
was implemented in a Python snake make pipeline that is 
publicly available with our software release (https​://githu​
b.com/Carlb​orgGe​nomic​s/Strip​es/blob/maste​r/scrip​ts/
fastq​2vcf/Snake​file).

Step 4: Within‑family estimation of the founder mosaic 
genotypes in F2 individuals
The founder mosaic genotypes were identified indepen-
dently for each nuclear full-sib family, including four F0, 
two F1 and one F2 individuals, using the polymorphism 
data obtained by mapping the low-coverage reads from 
the F2 (Step 3) to the set of founder-line informative SNPs 
that were identified for the family (Step 2). Because all 
of these markers were fixed for alternative alleles in the 
founder lines, the dataset resembles that of an inbred 
population. Therefore, the founder-line mosaic geno-
types of the intercross individuals in the family can be 
estimated using existing software developed for such 
populations (Fig.  1). Our pipeline uses an adapted ver-
sion of the TIGER software [7] for this task. Full details 
regarding the model parameters and estimation proce-
dures in TIGER are in Rowan et al. [7], which describes 
the algorithm and software. In short, the algorithm con-
sists of the following steps: (i) translate the ratio of reads 

of the alternative alleles at each scored marker into one 
of six possible genotype states (HH, HU, HL, LL, LU, 
UU, where H represents one parental line, U represents 
unknown and L represents another line); (ii) estimate the 
ratio of reads to the two founders lines by averaging the 
read scores across 200 (for large chromosomes) or 50 (for 
small chromosomes) consecutive markers to calculate 
transmission and emission probabilities; and (iii) run the 
HMM to impute the genotypes at the markers along the 
chromosomes and reconstruct the founder mosaic geno-
types. Here, we used chromosome-specific HMM, which 
differed from the original TIGER [7] algorithm in which 
the same HMM was used for all chromosomes of an indi-
vidual. This modification was implemented to account 
for uneven lengths of the chromosomes in chickens and 
for uneven marker densities in the outbred population.

The complete analysis pipeline outlined in Steps 2 to 
4 was implemented in a user-friendly pipeline manager 
Snakemake [25]. A detailed tutorial with instructions on 
installation, configuration, and launching of the analysis 
on demo data is available in the Github repository (https​
://githu​b.com/Carlb​orgGe​nomic​s/Strip​es). In addition, 
an R package was developed and released that: (i) facili-
tates reformatting the founder mosaic structure into a 
recombination mosaic matrix, where every recombina-
tion in the offspring is tagged; (ii) performs initial quality 
control (QC) of the data and removal of double crossover 
events; and (iii) exports the genotype data across bins of 
the desired physical length and into R/qtl format for fur-
ther quality control and downstream linkage and/or QTL 
mapping analyses (https​://githu​b.com/Carlb​orgGe​nomic​
s/Strip​es_downs​tream​).

Test dataset: A large F2 pedigree produced from Virginia 
chicken lines divergently selected for body‑weight
Data from a reciprocal F2 intercross between chickens 
from two divergently selected lines, obtained by bidirec-
tional selection for body weight at 56  days of age (here 
referred to as the high weight selected “HWS” and low 
weight selected “LWS” lines) [22, 24, 26], were used to 
illustrate the properties of the proposed method. The 
base population for the lines was founded by crossing 
seven partially inbred lines of White Plymouth Rock 
chickens. The F1 population of the intercross was gener-
ated by mating 10 males and 17 females from the HWS 
to 8 males and 21 females from the LWS line. These F0 
founders were from HWS and LWS generation 40. To 
generate the F2, 8 males and 72 females from the F1 were 
mated [20, 21]. Our analysis included 837 pedigreed F2 
individuals with DNA available for sequence library prep-
aration, and the 56 F0 founders (nHWS = 27 and nLWS = 29) 
that contributed to these F2 individuals.

https://github.com/CarlborgGenomics/Stripes/blob/master/scripts/fastq2vcf/Snakefile
https://github.com/CarlborgGenomics/Stripes/blob/master/scripts/fastq2vcf/Snakefile
https://github.com/CarlborgGenomics/Stripes/blob/master/scripts/fastq2vcf/Snakefile
https://github.com/CarlborgGenomics/Stripes
https://github.com/CarlborgGenomics/Stripes
https://github.com/CarlborgGenomics/Stripes_downstream
https://github.com/CarlborgGenomics/Stripes_downstream
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Whole‑genome sequencing and SNP calling of pedigree 
founders
Libraries for high-coverage sequencing of the 56 F0 
founders contributing to the F2 offspring in the pedigree 
were prepared using Illumina TrueSeq and sequences 
obtained by paired-end sequencing (2 × 150  bp) on 
an Illumina HiSeq X (performed by the SciLifeLab 
SNP&SEQ Technology platform; Uppsala, Sweden). 
Mapping, SNP calling, and quality control followed the 
Broad best practices. Reads were mapped to the chicken 
reference genome (galgal5; [27]) using the Burrows-
Wheeler Aligner (BWA–MEM v. 0.7.13 [28]). Aligned 
reads were sorted and duplicate reads marked with pic-
ard (v. 2.0.1; https​://broad​insti​tute.githu​b.io/picar​d/). 
Base quality score recalibration (GATK 3.7) was carried 
out before SNP calling with HaplotypeCaller (GATK 
3.7). Variants were filtered using the following criteria, 
a minor allele frequency (MAF) higher than 0.043, and 
AC and QUAL values greater than 5 and 30, respectively, 
which resulted in a high-quality set of SNPs for further 
analyses.

Whole‑genome sequencing and SNP calling of intercross 
individuals
A Tn5-based protocol [29] for low-cost and high-
throughput preparation of individual sequencing libraries 
(~ 1€/library) was optimized for large-scale genotyping of 
the F2 intercross individuals in the pedigree. Genomic 
DNA was fragmented using tagmentation by Tn5 trans-
posase from AddGene (http://www.addge​ne.org/,pTXB1​
-Tn5; ID60240) [29]. Dual indexes were attached during 
PCR amplification and subsequent size selection was 
performed using AMPure XP beads (Beckman: A63881). 
The detailed procedure for library preparation, pooling 
and quality control is described in Zan and Carlborg [30].

Sequencing of intercross individuals was performed 
using an Illumina HiSeq  4000. First, the two largest F2 
full-sib families (n = 32) were sequenced to ~ 0.8× cov-
erage to test the quality of the prepared libraries and 
the implemented pooling strategy (Oklahoma Medical 
Research Foundation Genomics Core). The remaining F2 
individuals (n = 805) were then sequenced to ~ 0.4× cov-
erage by pooling ~ 200 multiplexed individuals per lane 
(Texas A&M Genomics and Bioinformatics Service). 
Demultiplexing of the dual indexed reads into individual 
fastq files and trimming of the adapters were done using 
bcl2fastq v2.17.1.14 (Illumina, Inc).

The low-coverage sequence data from the F2 individuals 
were mapped to the Gallus V5.0 reference genome [27] 
using the Burrows-Wheeler Aligner [28]. Only reads for 
which both pairs were uniquely mapped (mapping qual-
ity ≥ 30) were retained. Mpileup in Samtools 1.8 [31] was 
used to extract the raw information at each polymorphic 

site (depth and SNP read). A custom Python script was 
used to reformat the output such that it contained only 
information about the location of the polymorphism 
(chromosome and position), the genotype (reference and 
alternative allele call), and the read depth (https​://githu​
b.com/Carlb​orgGe​nomic​s/Strip​es). This procedure for 
calling genotypes reduced the time for computation to 
less than 1/10 of that of the GATK UnifiedGenotyper.

Assessment of imputation accuracy
First, individuals with few called SNPs (genome wide 
average < 5 SNPs/Mb) were removed from the dataset. 
This was necessary because accurate genome-wide hap-
lotype mosaic reconstruction requires a reasonably high 
marker density. Nearby double recombination events 
are biologically unlikely due to crossover interference. 
Cytological evidence suggests crossover interference to 
be absolute in regions shorter than 5 Mb on the largest 
chicken chromosomes [32]. The raw TIGER [7] recon-
structed haplotype mosaics were filtered to remove dou-
ble recombination events that were closer than 3  Mb 
since these are biologically most unlikely.

Sample mix-ups, DNA contaminations, and pedigree 
errors in the data can lead to inaccurate haplotype mosaic 
reconstruction and increase the number of inferred 
genome-wide crossover events in affected individuals. To 
filter out such individuals, we deleted samples for which 
the genome-wide genotype call rate decreased to less 
than 90% after removing short (< 3  Mb) double recom-
bination events. An alternative approach would be to 
remove individuals that were outliers in the distribution 
of genome-wide recombination events that were inferred 
using TIGER [7]. This would lead to a very similar final 
set of individuals (see Additional file 1: Figure S1).

Quality of the reconstructed line origin haplotype 
mosaics from the low-coverage whole-genome sequence 
data across chromosomes 1 to 24 was evaluated by 
comparing them to the individual genotypes of SNPs 
reported previously [21]. In total, 728 of the individuals 
that passed our quality control filtering had genotypes 
at 279 of the SNPs that were reported in Wahlberg et al. 
[21] and that were successfully mapped from the gal-
Gal3 to the galGal5 genome assembly. The markers that 
were fully informative for founder-line origin were iden-
tified in each F2 family, ranged in number from 101 to 
140 between families, and were used in this evaluation. 
For our approach, the genotypes—high weight homozy-
gous (HH), heterozygous (HL), low weight homozygous 
(LL)—were extracted from the inferred founder mosaics 
at a 1-Mb resolution. Bins with TIGER imputed recom-
bination events were excluded from the comparisons. 
The proportions of genotypes in agreement between the 
two methods per marker across individuals and across all 

https://broadinstitute.github.io/picard/
http://www.addgene.org/%2cpTXB1-Tn5
http://www.addgene.org/%2cpTXB1-Tn5
https://github.com/CarlborgGenomics/Stripes
https://github.com/CarlborgGenomics/Stripes
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markers per individual were used as measures of geno-
typing accuracy (https​://githu​b.com/Carlb​orgGe​nomic​s/
Strip​es_downs​tream​).

Results
Properties of the reported approach to infer founder 
mosaic genotypes in intercross data from outbred (het-
erozygous) founders were illustrated by generating and 
analysing data for an F2 population that was bred from 
the Virginia chicken lines divergently selected for high 
(HWS) and low (LWS) body weight.

Sequencing, marker selection, read mapping and inference 
of founder mosaic genotypes
Step 1–2: Founder sequencing and identification of markers 
that are informative within a full‑sib family
High coverage (~ 30×) individual sequence data detected 
7,608,483 SNPs among the HWS and LWS founders 
(nHWS = 27 and nLWS = 29) that contributed to the F2 
individuals. There were 213,946 SNPs that were fixed for 
alternative alleles in the sequenced individuals from the 
two founder lines and these were unevenly distributed 
across the genome (see Additional file 2: Figure S2). The 
numbers of SNPs that were informative within families, 
i.e. that were fixed for alternative alleles between the 
HWS and LWS founders of the individual nuclear F0 to 
F2 full-sib families were considerably larger, i.e. on aver-
age 840,160 SNPs per family, and were relatively evenly 
distributed across the genome. Thus, the average density 
of informative SNPs in the genome was 791 SNPs/Mb 
with, on average, 92% of the genomes being covered by 
more than 10 such SNPs per Mb in the evaluated families 
(Fig. 2) and (see Additional file 2: Figure S2).

Step 3: Low coverage sequencing of, and read mapping in, 
the F2 individuals
Sequence libraries were prepared for 837 F2 individuals 
from the intercross of the Virginia chicken lines [20, 21]. 
Individuals that failed in the library preparation (n = 34), 
or that had a low SNP coverage (< 5 SNPs/Mb; n = 14), 
were removed. The average sequence coverage for the 
remaining 789 individuals was 0.33×, which resulted 
in an average of 22.4% of the within-family informative 
SNPs (188,520, on average) having at least one mapped 
read within the F0 to F2 families.

Step 4: Genotype imputation from low‑coverage sequence 
data in the F2 offspring
Whole-genome genotypes were imputed for the 789 F2 
individuals by analysing each F0 to F2 family, in turn, with 
the software pipeline that we described above.

Quality of imputed founder mosaic genotypes
Overall, the founder mosaic genotypes that were esti-
mated with our method were in good agreement with the 
available SNP genotypes. After quality control, includ-
ing removal of individuals with (i) biologically unlikely 
numbers of recombination events, and (ii) genotypes 
resulting from inferred recombination events at locations 
that were physically too close, the agreement between 
imputed genotypes using our pipeline and the previ-
ously assayed SNP genotypes in Wahlberg et al. [21] was 
strong. On average it reached 0.95 across the genome/
individual and 0.96 per genotyped SNP across the popu-
lation (Fig. 3a, b).

Figure 4 shows the comparison of the founder mosaic 
genotypes that were estimated from the low-coverage 
sequencing data with the method described here, with 
the Haley-Knott genotype probabilities [33] from Wahl-
berg et  al. [21] for one F2 individual across chromo-
some 1. At 95.7% of the marker locations, the estimated 
founder mosaic genotype agreed well with the estimated 
genotype probabilities in Wahlberg et  al. [21]. In addi-
tion, the sequence-based imputation provided much 
denser genome coverage (Fig. 4a vs. b). As a result, esti-
mates of the locations of recombination breakpoints 
were better resolved, with 50% of them being identified 
on segments shorter than 10 kb (one example in Fig. 4c). 
The higher marker density also allowed imputation of 
genotypes in regions that were not covered by the set of 
microsatellite markers selected by Wahlberg et  al. [21]. 
This, for example, makes it possible to resolve heterozy-
gous regions that are flanked by homozygous regions that 
are agreed upon by both methods (blue in Fig. 4b). It also 
suggests longer putative double recombinant regions in 
the genome that were missed by the sparser marker set 
(yellow in Fig. 4b).

Discussion
In this paper, we describe an approach and software for 
estimating founder mosaic genotypes in experimental 
crosses between outbred (heterozygous) founders from 
very low-coverage sequencing data. Its properties are 
illustrated by generating and analysing data from an F2 
population that was produced by crossing chicken lines 
that were divergently selected for body weight from a 
common founder population.

Comparison with another genotype imputation software 
(STITCH)
We compared our approach with another genotype 
imputation software, STITCH [5]. The imputed geno-
types from STITCH [5] (run with n = 2 and K = 10), were 
relatively consistent with the available individual SNP 

https://github.com/CarlborgGenomics/Stripes_downstream
https://github.com/CarlborgGenomics/Stripes_downstream
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genotypes (0.88/0.90 agreement for markers/individuals) 
and similar to those obtained with our approach before 
removing individuals with biologically unrealistic num-
bers of double-recombination events (0.90/0.89 agree-
ment for markers/individuals). In addition to imputation 
accuracy, we evaluated the quality of the reconstructed 
founder haplotypes. As STITCH was not developed 
for direct estimation of founder mosaic haplotypes 
for QTL mapping and linkage analyses, the haplotype 
mosaic reconstruction was performed using custom 
scripts, using the single marker genotypes imputed by 
STITCH. Results showed that mosaics estimated from 
the STITCH data included an excess of recombination 
events [for an example (see Additional file 3: Figure S3)]. 
Thus, although both softwares deliver similar quality of 

imputed genotypes when pedigree and genotypes of 
founders are disregarded, when such information is avail-
able, our pipeline makes use of it to further improve gen-
otyping quality and to estimate accurate founder mosaic 
genotypes in the intercross individuals. However, our 
software does not account for more complex crossbreed-
ing structures that use more than two founder popula-
tions (such as MAGIC), thus making STITCH currently 
the best option for such datasets.

Improved quality control by using pedigree information
Accounting for available pedigree information allows 
additional quality control to be performed based on 
the inferred number of recombination events after the 
founder mosaic genotypes have been estimated. First, the 
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number of estimated crossover events across the genome 
should agree with its expectation given the length of 
the chicken linkage map [27, 34]. Second, the distances 
between inferred recombination events should be com-
patible with expectations regarding crossover interfer-
ence [32] (Fig. 3). Before conducting this quality control, 
there was good agreement (~ 0.90) between the geno-
types inferred by our approach and by STITCH using 
the low-coverage sequence data, and the individual SNP 
genotypes of Wahlberg et al. [21]. Applying filters based 
on these two expectations increased the level of agree-
ment for our approach from 0.90 to 0.95 at the individual 
level. In addition, this allowed us to identify individuals 
(n = 61 or equivalent to 7%) with extremely high esti-
mated recombination frequencies that are likely due to 
errors in either the recorded pedigree or mix-ups during 
sample preparation.

Reconstruction of high‑resolution founder mosaic 
haplotypes using low‑coverage sequencing data
Our proposed strategy to reconstruct the founder mosaic 
haplotype structure using low-coverage sequencing data 
provides more genotyping information than classical 
approaches at a considerably lower cost. The founders of 
the pedigree were sequenced to a high coverage by using 
standard approaches, while F2 individuals were pro-
cessed by a low-cost whole-genome sequencing proto-
col to facilitate low-coverage sequencing of hundreds of 
intercross individuals (< 10 €/individual, including library 
preparation and sequencing). This cost is lower than 
that of existing strategies for genotyping individuals for 
a few hundred SNPs, even when accounting for the cost 

of high-coverage sequencing of the large (n = 56) number 
of founder birds in our pedigree. In addition to the lower 
cost, there was a considerable increase in marker den-
sity, from a few hundred to several hundred thousands of 
imputed segregating sites across the genome.

Using pedigree information, founder mosaic genotypes 
can be efficiently constructed by applying approaches 
that were previously developed for recombinant inbred 
populations [7, 15]. Compared to methods that were 
developed for estimating founder mosaics from sparsely 
genotyped SNPs, such as the Haley and Knott approach 
[33], here, the high-density marker facilitated more pre-
cise estimation of recombination breakpoints, resulting 
in 50% of the recombination breakpoints being estimated 
to fall within 10-kb windows. Performance of the TIGER 
software for estimating recombination breakpoints has 
been thoroughly evaluated for inbred populations in [7], 
using simulations and experimental validation. Rowan 
et  al. [7] reported that the individual recombination 
breakpoints were, in more than 90% of the cases, resolved 
down to 2  kb at an even lower sequence coverage than 
that used in our study (0.1×). Here, we found a lower res-
olution of the estimated breakpoints because our found-
ers were from an outbred population, which resulted in a 
lower density of informative markers that were unevenly 
distributed across the genome. If required, it is possi-
ble to increase the resolution of recombination events 
by (i) also analytically tracing the makers that are fixed 
in two of the four F0 founders from one line but segre-
gating in the two F0 founders from the other line (which 
here would increase the number of informative mark-
ers by ~ 20%), or (ii) deeper sequencing, to obtain reads 
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at a larger proportion of the markers that are informa-
tive between the two founder lines (Fig.  2a) and (see 
Additional file  2: Figure S2a). However, in practice the 
proposed genotyping strategy is for linkage and QTL 
mapping of experimental crosses between outbred (het-
erozygous) founders. In this case, the resolution of the 
QTL mapping and linkage map construction is mainly 
limited by the actual number of recombination events 
in the population rather than the precision with which 
they are estimated, which makes marker coverage less of 
a concern. However, deeper sequence coverage and ana-
lytical strategies that use all types of segregating mark-
ers should be useful for future developments in which 

estimation of recombination events with high precision is 
important such as, for example, in analyses of deep inter-
cross pedigrees, which include many more recombina-
tion events.

Guidelines for choosing sequencing coverage
There was no obvious increase in the accuracy of the 
reconstructed founder mosaic genotypes after sequence 
coverage reached 0.05× (see Additional file  4: Figure 
S4). This suggests that sequencing to a lower depth than 
used here (0.4 ×) would have been sufficient to reach 
an acceptable accuracy for this population. Thus, costs 
could be reduced even more, without significant loss in 
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accuracy, by lowering the sequencing coverage. On high 
yield sequencing platforms this would, for many species, 
require more unique index combinations than the 398 
that are currently available for the Illumina sequencers.

Genetic divergence of the outbred founders is an 
important factor to be considered for determining 
sequencing depth. Here, the founders of the F2 popula-
tion were from the same base population and, therefore, 
due to the expected low genomic divergence between 
these lines (Fig. 2) and (see Additional file 2: Figure S2), 
we opted for a high (~ 30×) coverage to identify most 
of the SNPs segregating in the populations. We found 
that 0.03% of all identified SNPs were completely fixed 
for alternative alleles in the two founder lines and that 
pairs of F0 individuals that were mated to generate each 
nuclear F0, F1 and F2 family were alternate homozygotes 
for 10.0 to 13.7% of SNPs. In populations for which the 
divergence between the founder populations is larger, for 
example in crosses between wild and domesticated pop-
ulations, more divergently fixed markers are expected. 
Obtaining high sequence coverage for the founders is 
recommended, since it will benefit both the accuracy of 
the founder mosaics and resolution of the recombination 
breakpoints by revealing more of the available informa-
tive markers.

An alternative genotyping strategy based on pooled 
founder sequencing
In crosses in which the founder populations are highly 
divergent, an alternative strategy for genotyping can 
be considered to reduce sequencing costs. Rather than 
sequencing individual founders to high coverage, librar-
ies from the founders of each line could be pooled. The 
two pools, each representing one founder population, 
can then be sequenced to high coverage (~ 30×) to iden-
tify markers that are fixed (or nearly so) for alternate 
alleles in the two lines. In our F2 population, applying this 
strategy would have reduced the number of informative 
SNPs for genotype imputation from 840,160 to 213,946. 
This number of genome-wide SNPs was sufficient for 
reconstruction of high-quality founder mosaic geno-
types. However, the uneven distribution of the informa-
tive markers along the genome would likely result in gaps 
for poorly covered regions (see Additional file  1: Figure 
S1). In this regard, our population likely represents an 
extreme case, because the two selected lines (F0s) were 
from a common base population founded by crossing 
seven partially inbred lines of White Polymouth Rock. 
It is worthwhile noting that while the pooled founder 
sequencing approach is more efficient for populations 
with more divergent founders, even in populations 
with founders from closely-related lines, it is likely still 

sufficient for the purpose of building high-quality linkage 
maps and performing genome-wide QTL analyses.

Conclusions
In this paper, we propose and evaluate a new method for 
reconstruction of founder mosaic genotypes from low-
coverage genome sequencing in outbred intercrosses. 
We applied this method to an outbred chicken F2 cross 
to illustrate how it provides high-quality, high-resolution 
genotypes in a time- and cost-efficient manner.

Additional files

Additional file 1: Figure S1. Visualization of the number of crossovers in 
all F2 individuals. (a) Histogram of number of imputed crossover events for 
the 803 genotyped F2 individuals; b) Number of imputed crossover events 
in each individual, sorted by the 73 full-sib families. Individuals with low 
call rate (call Rate < 0.9) are coloured into red. 

Additional file 2: Figure S2. Distribution of the between founder line 
informative SNPs for the evaluated F0-F2 families on chromosome 1. (a) 
Line graph illustrating the number of SNPs in non-overlapping 1-Mb bins 
across chromosomes 1 to 24 (y-axis; log10 transformed). The black/tomato 
lines represent the total number of SNPs segregating in the pedigree/
the average number of informative SNPs for the 64 families in the Virgina 
chicken line F2 pedigree. (b) Histogram illustrating the average number 
of informative SNPs in the 73 full-sib families in the pedigree (x-axis; log10 
transformed). 

Additional file 3: Figure S3. Comparison of the founder mosaic in one 
F2 offspring obtained by using individual SNP-genotypes (a), to that 
obtained from our method (b) and STITCH (c) using the same low-cover-
age sequence data. 

Additional file 4: Figure S4. Illustration of relationship between sequenc-
ing coverage, SNP density and imputation accuracy. (a/b) Histograms 
of the sequencing coverage/SNP densities for the 803 genotyped F2 
individuals; (c/d) Scatter plots of individual coverage/SNP density vs impu-
tation accuracy measured as proportion of sites that has same genotype 
with the averaged genotype probabilities estimated by Wahlberg et al. 
[21] using genotypes of 434 SNPs and microsatellite markers with the 
Haley and Knott algorithm [32].
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