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Abstract 

Background: Hamiltonian Monte Carlo is one of the algorithms of the Markov chain Monte Carlo method that uses 
Hamiltonian dynamics to propose samples that follow a target distribution. The method can avoid the random walk 
behavior to achieve a more effective and consistent exploration of the probability space and sensitivity to correlated 
parameters, which are shortcomings that plague many Markov chain Monte Carlo methods. However, the perfor-
mance of Hamiltonian Monte Carlo is highly sensitive to two hyperparameters. The No-U-Turn Sampler, an extension 
of Hamiltonian Monte Carlo, was recently introduced to automate the tuning of these hyperparameters. Thus, this 
study compared the performances of Gibbs sampling, Hamiltonian Monte Carlo, and the No-U-Turn Sampler for esti-
mating genetic parameters and breeding values as well as sampling qualities in both simulated and real pig data. For 
all datasets, we used a pedigree-based univariate linear mixed model.

Results: For all datasets, the No-U-Turn Sampler and Gibbs sampling performed comparably regarding the estima-
tion of heritabilities and accuracies of breeding values. Compared with Gibbs sampling, the estimates of effective 
sample sizes for simulated and pig data with the No-U-Turn Sampler were 3.2 to 22.6 and 3.5 to 5.9 times larger, 
respectively. Autocorrelations decreased more quickly with the No-U-Turn Sampler than with Gibbs sampling. When 
true heritability was low in the simulated data, the skewness of the marginal posterior distributions with the No-U-
Turn Sampler was smaller than that with Gibbs sampling. The performance of Hamiltonian Monte Carlo for sampling 
quality was inferior to that of No-U-Turn Sampler in the simulated data. Moreover, Hamiltonian Monte Carlo could not 
estimate genetic parameters because of difficulties with the hyperparameter settings with pig data.

Conclusions: The No-U-Turn Sampler is a promising sampling method for animal breeding because of its good sam-
pling qualities: large effective sample sizes, low autocorrelations, and low skewness of marginal posterior distributions, 
particularly when heritability is low. Meanwhile, Hamiltonian Monte Carlo failed to converge with a simple univariate 
model for pig data. Thus, it might be difficult to use Hamiltonian Monte Carlo for usual complex models in animal 
breeding.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In the 1980s, Gianola and Foulley [1] and Gianola and 
Fernando [2] introduced Bayesian inference methods to 
animal breeding. Although Bayesian methods were theo-
retically powerful, they encountered difficulties in math-
ematical computation. Bayesian methods usually led to 
formulas in which multiple integrals had to be solved in 

order to obtain the marginal posterior distributions that 
are used for a complete Bayesian inference. These com-
putation problems were solved by applying Markov chain 
Monte Carlo (MCMC) methods, which could simulate 
direct draws from target posterior distributions with-
out analytically solving multiple integrals. Accordingly, 
MCMC methods were introduced to quantitative genet-
ics in the early 1990s [3, 4] and enabled the widespread 
use of Bayesian methods in animal breeding.

One of the most general MCMC methods is the Metrop-
olis–Hastings (MH) algorithm. MH simulates candidate 
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samples from arbitrary proposal distributions that are 
approximations of the target distribution, and then corrects 
for the bias by stochastically accepting or rejecting the pro-
posal to satisfy the detailed balance. In MCMC, choosing 
an appropriate proposal distribution is a critical issue to 
accelerate convergence with the smallest number of sam-
ples. However, the choice is problem-dependent. Gibbs 
sampling (GS) [5, 6] is another MCMC method and is a 
special case of MH. GS repeatedly samples from the condi-
tional distribution of one variable of the target distribution 
when all the other variables are given [7]. GS is frequently 
used in practice because a proposal distribution does not 
need to be designed and the procedure is simple to pro-
gram. However, GS cannot be applied to complex models 
in which growth curve parameters and environmental vari-
ance are under genetic control [8–10], because conditional 
distributions cannot be derived in such models.

In this context, Hamiltonian Monte Carlo (HMC) is an 
increasingly popular alternative MCMC method. HMC 
adopts Hamiltonian dynamics in physics to propose future 
states in the Markov chain. Hamiltonian dynamics in HMC 
allows the Markov chain to simulate arbitrarily long trajec-
tories in parameter space around the target distribution. 
Thus, HMC can theoretically generate samples from a wide 
range of parameter space with a high level of acceptance 
probability. However, the success of HMC is due to geo-
metric numerical integration of Hamiltonian dynamics, 
which is markedly affected by the two hyperparameters. A 
poor choice of parameters decreases the efficiency of HMC 
dramatically [11].

To mitigate the challenges of tuning the abovementioned 
hyperparameters, Hoffman and Gelman developed the No-
U-Turn Sampler (NUTS) [11]. NUTS uses a recursive algo-
rithm to automatically tune the HMC algorithm without 
requiring user intervention or costly tuning runs. NUTS 
algorithms have recently been packaged into Stan (a proba-
bilistic programming language) [12, 13] and the BGLIMM 
procedure in SAS. Stan is used in social science [14], phar-
maceutical statistics [15], and ecology among others [16].

GS is widely used to estimate genetic parameters and 
breeding values. Although HMC and NUTS are also pro-
spective methods for animal breeding, these methods have 
not yet been applied in this field. Therefore, this study com-
pared the performance of GS, HMC, and NUTS for esti-
mating genetic parameters and breeding values with both 
simulated and real pig data.

Methods
Hamiltonian Monte Carlo method
HMC is a variation of the Metropolis algorithm that uses 
Hamiltonian dynamics to create proposals. In a physical 
system, the Hamiltonian ( H ) is defined as follows:

where U(θ) and K (p) are the potential and kinetic ener-
gies, respectively. The property of the dynamics is that it 
keeps the H invariant.

When estimating a random variable θ with probability 
density function f (θ) in the HMC method, we define an 
auxiliary momentum variable p that follows a normal dis-
tribution: f (p) ∼ N (0,M) , where M is interpreted as a 
covariance matrix in statistics. The joint density function of 
f (θ,p) has the following form:

In HMC, U(θ) and K (p) are defined as U(θ) = − log f (θ) 
and K (p) = p′M

−1
p/2 , respectively. Thus, the joint den-

sity function of f (θ,p) can be rewritten as follows:

HMC generates samples (θ,p) from this joint distribu-
tion, and then we can obtain the samples from the target 
distribution by picking up only θ . According to Hamilto-
nian dynamics, the samples are moved while maintaining 
the total energy, which is described by the following two 
differential equations, a so-called Hamilton’s equation:

where t is the fictitious time. However, there is no analyt-
ical solution for Hamilton’s equation; therefore, Hamilto-
nian dynamics is usually approximated in a discrete time 
setting to enable computer implementation. The discre-
tization integration for HMC generally uses the leapfrog 
method, which provides a good approximation for Ham-
iltonian dynamics. The leapfrog method can preserve 
the two important properties for Hamiltonian dynamics, 
“reversibility” and “volume preservation,” which rely on 
the use of MCMC updates [17]. The leapfrog integration 
proceeds as follows:

H(θ,p) = U(θ)+ K (p),

f (θ,p) = exp
{

log f (θ)+ log f (p)
}

∝ exp

(

log f (θ)−
1

2
p′M

−1
p

)

.
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where ε is the integration step size and τ is the time 
( 1 ≤ τ ≤ L ). These integration steps are replicated until 
τ reaches L , which is the number of integration steps in 
the leapfrog method. For one integration step, we start 
with a half-step for p , then perform a full step for θ , using 
the new values for p . Starting from the state (θ,p) , the 
proposal state 

(

θ
∗,p∗

)

 is reached via L steps of step size 
ε in the leapfrog method. In the leapfrog method, H is 
not exactly conserved because of the integration error 
caused by the time discretization. Therefore, a Metrop-
olis correction step is necessary to ensure correct sam-
pling. In this correction step, the proposed state 

(

θ
∗,p∗

)

 
is accepted as the next state of the Markov chain with the 
following probability: 

which corresponds to the Metropolis–Hasting accept-
ance probability. If the integration errors in H remain 
small during the integration, HMC will achieve a high 
level of acceptance probability.

The difficult point of HMC is that the sampling effi-
ciency relies heavily on tunings for the two user-defined 
hyper parameters: ε and L [11]. On the one hand, a 
large value of ε leads to a low acceptance rate due to an 
increase of the integration error by the leapfrog integra-
tion. In contrast, if ε is too small, a long computation 
time will be needed to obtain the adequate trajectory 
length. On the other hand, the number of steps L affects 
sampling efficiency; if L is too small, samples generated 
by HMC show quite high autocorrelations between suc-
cessive iterations. In contrast, a large L leads to a large 
trajectory length, which may move the parameters back 
to their original states.

No‑U‑Turn Sampler
NUTS automatically selects an appropriate value for L in 
each iteration in order to maximize the distance at each 
leapfrog step and avoid random-walk behavior. Let Q be 
half the squared distance between the current position θ∗ 
and the initial position θ at each leapfrog step. The aim is 
to run leapfrog steps until θ∗ starts to move back towards 
θ , which is accomplished by the following algorithm, in 
which leapfrog steps are run until the derivative of Q with 
respect to time becomes less than 0:

p(τ + ε) = p

(

τ +
1

2
ε

)

−
1

2
ε
∂f (θ)

∂θ
(θ(τ + ε)),

α = min
{

1, exp
(

H(θ,p)−H
(

θ
∗,p∗

))}

,

∂Q

∂τ
=

∂

∂τ

(

θ
∗ − θ

)′(

θ
∗ − θ

)

2
=

(

θ
∗ − θ

)′

p < 0.

However, this algorithm does not guarantee “revers-
ibility” or convergence to the correct distribution. NUTS 
overcomes this problem by applying a doubling method 
for slice sampling [18].

Slice sampling is an MCMC method for sampling from 
a probability distribution. To obtain samples of θ from 
the target distribution f (θ) , we introduce an auxiliary 
variable u and a joint distribution f (u, θ) . This joint dis-
tribution is defined as follows:

where z = ∫π(θ)dθ and π(θ) is a kernel of f (θ) . The 
marginal distribution of f (u, θ) is as follows:

Therefore, we can sample θ from the target distribu-
tion by sampling from f (u, θ) , and then ignoring u . In 
slice sampling, these procedures are accomplished by 
alternately sampling u and θ . In the first step, we fix θ and 
sample u uniformly to satisfy u ≤ π(θ):

Then, we fix u and sample θ uniformly from the hori-
zontal sliced region S defined by:

In the slice sampling algorithm, the challenge is to find 
the bounds of S . Therefore, Neal [18] proposed a dou-
bling method in which the size of an initial segment con-
taining the current value of θ is randomly chosen and the 
segment is expanded by doubling its size until the end-
points are outside S . The expanding directions are ran-
domly chosen from forward or backward. A subset of 
candidate θ is obtained from the segment generated by 
the doubling process.

NUTS begins by introducing u with the following uni-
form distribution:

NUTS generates a finite set of all (θ,p) by repeatedly 
doubling its size. Doubling proceeds by randomly tak-
ing forward and backward leapfrog steps to satisfy time 
reversibility. The doubling process is stopped to satisfy 
the following:

f (u, θ) =

{

1
/

z if 0 ≤ u ≤ π(θ)

0 otherwise
,

∫ f (u, θ)du =
π(θ)

∫
0

1

Z
du =

π(θ)

Z
= f (θ).

p(u|θ) ∼ Uniform(0,π(θ)).

S = {θ : u ≤ π(θ)}.

p(u|θ) ∼ Uniform

(

0, exp

(

log f (θ)−
1

2
p′M

−1
p

))

.

(

θ
+ − θ

−
)′

p− < 0 or
(

θ
− − θ

+
)′

p+ < 0,
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where θ+ , p+ and θ− , p− are the leftmost and rightmost θ , 
p of all (θ,p) generated by the doubling process, respec-
tively. Here, let C be a subset of candidate (θ,p) states. In 
NUTS, C is selected from the (θ,p) generated by the dou-
bling process to satisfy the following:

The next values of 
(

θ
∗,p∗

)

 are sampled uniformly from 
C . To further improve this algorithm, Hoffman and Gel-
man [11] used the following sophisticated transition ker-
nel in each step of doubling:

where I[·] is 1 if the expression in brackets is true and 0 if 
it is false, Cnew is the subset of (θ,p) added by the last step 
of doubling, and Cold is the disjoint subset of C such that 
C = Cnew ∪ Cold and (θ,p) ∈ Cold . This transition kernel 
T  proposes a move from Cold to a random state in Cnew , 
and accepts the move with probability 

∣

∣Cnew
∣

∣

/ ∣

∣Cold
∣

∣ . In 
leapfrog steps, T  permits memory-efficient implementa-
tion and produces larger jumps on average than simple 
uniform sampling.

The efficient implementation of NUTS relies on the 
acceptance probability. When the acceptance probability 
is too high, the step size is small, resulting in many leap-
frog steps being needed to generate subset C . Hoffman 
and Gelman [11] reported that an acceptance probability 
of 0.6 was the optimal balance. NUTS can automatically 
choose a step size that achieves an acceptance probability 
around the desired level [19], which is one of the stochas-
tic optimizations. The process of tuning ε for the jth itera-
tion of a Markov chain in NUTS is as follows:

where αj is an actual acceptance probability for the jth 
iteration, δ is a desired average acceptance probabil-
ity, µ is a freely chosen point that the iterated εj shrink 
towards, γ is a free parameter that controls the amount 
of shrinkage towards µ , and j0 is a free parameter that 
dampens early exploration. Hoffman and Gelman [11] 
introduced ηj = j−κ and set κ < 1 , which give a bigger 
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weight to more recent iterates. They recommend setting 
µ = log(10ε1) and δ ≈ 0.6 . This algorithm guarantees 
that α → δ . In NUTS, ε is tuned during the predeter-
mined warm-up phase and is fixed thereafter. Because 
NUTS chooses 

(

θ
∗,p∗

)

 from multiple candidates, an 
alternative statistic to Metropolis acceptance probability 
must be defined. For each iteration, the acceptance prob-
ability is calculated as follows:

where θj and pj are the candidates, θj−1 and pj,0 are initial 
values, and Bj is the set of all states explored during the 
final doubling for the jth iteration of the Markov chain.

The sampling procedure by NUTS is summarized as 
follows:

(1) Set the initial value of θ , ε and values of δ , µ , γ , j0 , κ.
(2) Generate momentum p from the standard normal 

distribution p ∼ N (0, I).
(3) Generate auxiliary variable u from the uniform dis-

tribution u ∼ Uniform
(

0, exp
(

log f (θ)− 1
2p

′M
−1

p
))

.
(4) Generate C by using the doubling method with 

transition kernel T .
(5) Accept the proposal 

(

θ
∗,p∗

)

 with probability αj at 
the jth iteration.

(6) Update εj by dual averaging.
(7) Repeat steps (2) to (6). Note that step (6) is repeated 

only during the warm-up phase.

For a precise definition and a pseudocode of the NUTS 
algorithm, see Hoffman and Gelman [11].

Statistical model
The following univariate linear mixed model was used:

where y = n× 1 is the observation vector ( n : number 
of records), b = p× 1 is the vector of fixed effects ( p : 
number of fixed effects), a = q × 1 is the vector of direct 
additive genetic effects ( q : number of animals), and 
e = n× 1 is the vector of residuals; X and Z denote the 
incidence matrices relating the observations to the cor-
responding fixed and random effects. The likelihood of 
the model and prior distributions for a can be specified 

αj =
1
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as y|b, a, σ 2
e ∼ N

(

Xb+ Za, Iσ 2
e

)

 and a|σ 2
a ∼ N

(

0,Aσ 2
a

)

 , 
respectively, where A denotes the pedigree-based addi-
tive genetic relationship matrix, and σ 2

a  and σ 2
e  are the 

variances for a and e , respectively. The prior distribution 
for b is assumed to be a uniform distribution.

Partial derivatives for log posterior f (θ) with respect 
to each parameter are required in leapfrog procedures 
in HMC or NUTS. Here, let θ be the vector of parame-
ters b , a , σ 2

a  , and σ 2
e  . Partial derivatives of f (θ) with θ are 

expressed as follows:

Simulated data
The simulated data were generated by using QMSim 
[20]. Under an infinitesimal model, the base population 
comprised 20 males and 100 females generated from a 
historical population with linkage equilibrium. After the 
base population, the next five generations were generated 
to investigate the performance of HMC and NUTS. For 
these five generations, one male was randomly selected 
as a sire of the next generation and mated to 10 females 
to produce 10 males and 10 females. Total population 
sizes were set to 1000 with an equal number of each sex. 
The heritabilities of the simulated phenotypes were set to 
0.1, 0.3 or 0.5, and phenotypic variance was assumed to 
be 1. For each condition, five replicates were simulated. 
In the statistical analysis, the fixed effect was sex effects.

Pig data
Pig data were derived from 1521 purebred Duroc pigs 
at the National Livestock Breeding Center, Japan. Pigs 
in the first and second generations were regarded as the 
base population, and closed breeding was subsequently 
performed from the third to seventh generation. The 
pigs were selected based on average daily gain from 30 
to 105  kg, backfat thickness (BF), loin eye area (LEA), 
and intramuscular fat content. BF and LEA were meas-
ured on the left side at 9 cm from the position of half the 
body length in pigs weighing 105  kg using ultrasound 

d

db
log f (θ) =

1

σ 2
e

X′
(

y − Xb− Za
)

,

d

da
log f (θ) = −

1

σ 2
a

A−1a +
1

σ 2
e

Z′
(

y − Xb− Za
)

,

d

dσ 2
a

log f (θ) = −
q

2σ 2
a

+
a′A

−1
a

2σ 4
a

,

d

dσ 2
e

log f (θ) = −
n

2σ 2
e

+
1

2σ 4
e

(

y − Xb− Za
)′(

y − Xb− Za
)

.

(B-mode) equipment (USL-11, Kaijo-denki Co., Ltd., 
Tokyo). This study focused on 991 records of BF and 
LEA. Descriptive statistics for the BF and LEA data are 
in Table 1. In the statistical analysis, the fixed effects were 
sex effects (three classes: boar, barrow, and gilt) and gen-
eration effects (seven classes).

Heritability estimation and accuracy of estimated breeding 
values
The computing programs for GS and HMC were devel-
oped in R, and the programs for NUTS were developed 
in Stan. Developing a program for NUTS is challeng-
ing because of its very complex algorithm but it can be 
overcome by using Stan, which involves a simple pro-
gramming language. Stan is an open-source software, 
with a publicly available manual online (https ://mc-stan.
org/users /docum entat ion/). In the present study, we 
used RStan, which is the R interface for Stan. The pseu-
docode for NUTS is described in Additional file 1. Stan 
implements reverse-mode automatic differentiation to 
calculate the gradients of the model, which is required 
by the leapfrog steps of HMC and NUTS. Therefore, the 
user can implement NUTS by merely writing the analy-
sis model. In this pseudocode, we convert the additive 
relationship matrix by Cholesky decomposition to iden-
tify a matrix to describe an animal model in Stan format. 
This improves the performance of MCMC. Thus, for a 
fair comparison, we also run the Cholesky decomposi-
tion of the additive relationship matrix for GS and HMC. 
In HMC, we assumed that M = I , where I is an identity 
matrix. In Stan, we can define the value of M . When M−1 
approximates the covariance matrix of the target distri-
bution, the kinetic energy function, 12p

′M
−1

p , will reduce 
the negative impacts of strong correlations and bad scal-
ing on the efficiency of HMC and NUTS. For the default 
setting of the Stan software, M is defined as a diagonal 
metric (i.e., a diagonal matrix with positive diagonal 
entries) and the values of M are estimated during the 
warm-up phase [13].

All records were used to estimate heritabilities and 
breeding values with both simulated and pig data. The 
posterior mean and Monte Carlo standard error (MCSE) 
were calculated to evaluate the estimated heritabilities. 
The MCSE describes the uncertainty about a statistic in 

Table 1 Descriptive statistics for  growth traits in  Duroc 
pigs

BF back fat thickness, LEA loin eye area, SD standard deviation

Trait Mean SD Minimum Maximum

BF (cm) 3.17 0.56 1.76 5.04

LEA  (cm2) 34.53 3.49 25.97 51.03

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
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the sample due to sampling error. For the accuracy of 
estimated breeding values, we calculated Pearson’s cor-
relation between the true value and the estimated breed-
ing value. The regression coefficient of the true value on 
the estimated breeding value of animals was calculated to 
assess unbiasedness. The true value was assumed as the 
true breeding value in the simulated data and the pheno-
type in the pig data.

In total, 10,000 iterations were simulated to obtain mar-
ginal posterior distributions for all methods. For GS and 
HMC, the first 1000 iterations were discarded as burn-in. 
The warm-up phase was 1000 iterations for NUTS. For 
HMC, the hyperparameters were set as follows: ε = 0.01 
and L = 100 in the simulated data, and ε = 0.001 ∼ 10 
and L = 3 ∼ 200 in the pig data. For HMC, the initial 
values of θ were sampled from the uniform distribution 
Uniform(0, I) . For NUTS, we used default parameters in 
Stan.

Performance of MCMC
We presented the traceplots and marginal posterior dis-
tributions of heritability estimates to evaluate the per-
formance of MCMC samplings for all methods. The 
effective sample size (ESS) and autocorrelation between 
samples were calculated by using the R “coda” package 
[21]. For autocorrelation by using the function “acf” on R, 
the intervals between samples were set to 1, 5, 10, and 50 
(lag1, lag5, lag10, and lag50, respectively).

Results
Simulated data
The heritability estimates and predictive accuracies are 
in Table 2. Regardless of the values of true heritabilities, 
there are no differences in estimated heritabilities and 
accuracies among GS, HMC, and NUTS. The MCSE of 
NUTS was smallest for all scenarios. When the true her-
itability was 0.1, the marginal posterior distributions 
of GS and HMC were skewed compared with NUTS 
(Fig.  1). When true heritabilities were 0.3 and 0.5, the 
marginal posterior distributions for all methods were 
unimodal and bilaterally symmetrical (Figs. 2, 3).

Compared with the ESS estimates by GS, the ESS esti-
mates by HMC and NUTS were 1.7 to 2.0 and 3.2 to 22.6 
times larger, respectively (Table  3). The autocorrelation 
estimates by HMC and NUTS decreased more quickly 
than those by GS for all scenarios.

Pig data
For LEA and BF, the heritability estimates and predic-
tive accuracies of GS and NUTS were almost the same 
(Table  4). On the one hand, the MCSE of NUTS was 
smaller than that of GS for both LEA and BF. The marginal 
posterior distributions of these methods were unimodal 

and bilaterally symmetrical (Figs. 4, 5). On the other hand, 
HMC could not estimate heritability or breeding value 
because the parameters did not converge. Compared with 
the ESS estimates by GS, the ESS estimates by NUTS-Stan 
were 3.5 to 5.9 times larger (Table 5). The autocorrelation 
estimates of NUTS decreased more quickly than those of 
GS for both LEA and BF.

Discussion
Performance of HMC and NUTS
This study examined the performance of HMC and 
NUTS, which can automatically optimize key parameters 
in HMC, for estimating heritabilities and breeding val-
ues as well as the quality of MCMC sampling in a ped-
igree-based univariate animal model. On the one hand, 
for both simulated and real pig data, NUTS performed 
better than GS. Compared with those by GS, the ESS 
and the declines of autocorrelation estimates by NUTS 
were larger and faster, respectively. In particular, when 
true heritability was low in simulated data, the skew-
ness of the marginal posterior distributions of NUTS 
was smaller than that of GS. Thus, the results of the pre-
sent study indicate that NUTS is an appropriate alterna-
tive sampling method for animal breeding. On the other 
hand, HMC could not estimate parameters for real data, 
whereas the performance of HMC was better than that of 
GS for simulated data. Therefore, it might be difficult to 
set appropriate hyperparameters for HMC according to 
trait and population structure.

Computation time
R language is highly extensible and provides a myriad of 
statistical and graphical techniques. However, R language 
has poor computation time compared to Fortran, which 

Table 2 Estimates of  heritabilities and  breeding values 
in simulated data

MCSE Monte Carlo standard error, GS Gibbs sampling, HMC Hamiltonian Monte 
Carlo, NUTS No-U-Turn Sampler

True 
heritability

Method Estimate

Heritability Breeding value

Mean MCSE Correlation Regression

0.1 GS 0.10 0.005 0.52 0.99

HMC 0.11 0.004 0.52 0.99

NUTS 0.10 0.001 0.53 1.10

0.3 GS 0.32 0.004 0.68 0.91

HMC 0.31 0.002 0.68 0.93

NUTS 0.30 0.001 0.68 0.96

0.5 GS 0.51 0.004 0.79 0.98

HMC 0.52 0.003 0.79 0.97

NUTS 0.51 0.002 0.79 0.99
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is especially well suited to numeric computation and sci-
entific computing. In the present study, we developed 
the programs for GS and HMC in R but did not examine 
computation time; instead, we focused on examining the 
performance of estimating genetic parameters and breed-
ing values. In practice, the computation time of HMC 
and NUTS is greatly affected by leapfrog integration. 
In HMC, if L is large, the computation load of leapfrog 
integration is large, although the distance of parameter 
transition is also large. In NUTS, candidate parameters 
must be calculated by leapfrog integration at all steps of 
the doubling procedure. Therefore, if the number of these 

steps increases, then the computation load increases 
exponentially. In the present study, the autocorrelations 
of HMC and NUTS decreased quickly compared to GS, 
which led to fast convergence. Thus, the computation 
time for HMC and NUTS can be shortened by reducing 
the number of MCMC iterations.

Other sophisticated algorithms
Many algorithms that extend HMC have been pub-
lished. Although NUTS is the most popular algo-
rithm and is very effective for the sampling process, 
it can be slow if the evaluation of the gradient is 
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Fig. 1 Trace plots and posterior density plots for heritability. a GS, b HMC, and c NUTS. True heritability = 0.1
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computationally expensive, especially when large 
datasets are used. This problem might be solved by 
using stochastic gradient HMC [22]. Rather than 
directly computing the costly gradient, which requires 
examination of the entire dataset, stochastic gradient 
HMC uses a noisy estimate based on a small dataset, 
called minibatch, which is sampled uniformly at ran-
dom from the entire dataset; as the size of minibatch 
increases, this approximation becomes more accurate. 
Empirically, in a variety of settings, simply consider-
ing a minibatch size on the order of hundreds of data 
points is sufficient to obtain an accurate estimate [23]. 
Minibatches of this size still represent a significant 

reduction in the computational cost of the gradient. 
Another algorithm that extends HMC is Riemannian 
manifold HMC [24]. Riemannian manifold HMC uses 
Riemann geometry to adapt the mass matrix, enabling 
the algorithm to use curvature information to per-
form more efficient sampling. The sampler will auto-
matically adjust its movement through the probability 
space to better match the target distribution by using 
an appropriate metric for the manifold, thus provid-
ing highly efficient convergence and exploration of 
the target density. Hence, like NUTS, these extended 
HMC methods are also promising for the field of ani-
mal breeding.
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Fig. 2 Trace plots and posterior density plots for heritability. a GS, b HMC, and c NUTS. True heritability = 0.3
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Fig. 3 Trace plots and posterior density plots for heritability. a GS, b HMC, and c NUTS. True heritability = 0.5

Table 3 Estimated effective sample size and autocorrelation 
in simulated data

GS Gibbs sampling, HMC Hamiltonian Monte Carlo, NUTS No-U-Turn Sampler

True 
heritability

Method ESS Autocorrelation

Lag1 Lag5 Lag10 Lag50

0.1 GS 53 0.97 0.93 0.86 0.54

HMC 91 0.96 0.88 0.79 0.36

NUTS 1196 0.64 0.26 0.10 0.00

0.3 GS 204 0.93 0.78 0.62 0.08

HMC 413 0.84 0.61 0.39 − 0.06

NUTS 1192 0.64 0.28 0.11 0.00

0.5 GS 263 0.93 0.74 0.57 0.05

HMC 462 0.84 0.57 0.37 − 0.03

NUTS 833 0.72 0.38 0.18 0.05

Table 4 Estimates of  heritabilities and  breeding values 
in Duroc pig data

MCSE Monte Carlo standard error, BF back fat thickness, LEA loin eye area, GS 
Gibbs sampling, NUTS No-U-Turn Sampler

Trait Method Estimate

Heritability Breeding value

Mean MCSE Correlation Regression

LEA GS 0.56 0.006 0.82 1.60

NUTS 0.57 0.003 0.84 1.59

BF GS 0.48 0.006 0.65 1.37

NUTS 0.47 0.002 0.66 1.47
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Fig. 4 Trace plots and posterior density plots for heritability of loin eye area. a GS and b NUTS
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Fig. 5 Trace plots and posterior density plots for heritability of backfat thickness. a GS and b NUTS
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Conclusions
In our study, we compared the performance of GS, 
HMC, and NUTS for estimating genetic parameters 
and breeding values with both simulated and real pig 
data. The accuracies of NUTS were very similar to GS 
but NUTS had larger ESS estimates in the same itera-
tion and declined more quickly for autocorrelations 
then GS. In addition, when true heritability was low in 
the simulated data, the skewness of the marginal pos-
terior distributions of NUTS was smaller than that of 
GS. These results indicated that NUTS was an appro-
priate alternative sampling method for animal breed-
ing. In particular, the performance for NUTS coded 
by using the Stan software was remarkably superior 
to other methods when true heritability was low in 
the simulated data. Furthermore, Stan’s simple pro-
gramming language makes it quite practical for such 
applications. HMC could not estimate parameters for 
real data, whereas the performance of HMC was bet-
ter than that of GS for simulated data, indicating that 
HMC requires appropriate parameter settings accord-
ing to trait and population structure. Here, we applied 
HMC and NUTS to a univariate linear mixed model, 
thus future studies should investigate the possibility of 
applying HMC and NUTS to more complex models and 
big data.
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