
Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12
https://doi.org/10.1186/s12711-020-00531-z

RESEARCH ARTICLE

Deep learning versus parametric
and ensemble methods for genomic prediction
of complex phenotypes
Rostam Abdollahi‑Arpanahi1, Daniel Gianola2 and Francisco Peñagaricano1,3* 

Abstract 

Background:  Transforming large amounts of genomic data into valuable knowledge for predicting complex traits
has been an important challenge for animal and plant breeders. Prediction of complex traits has not escaped the
current excitement on machine-learning, including interest in deep learning algorithms such as multilayer perceptrons
(MLP) and convolutional neural networks (CNN). The aim of this study was to compare the predictive performance
of two deep learning methods (MLP and CNN), two ensemble learning methods [random forests (RF) and gradient
boosting (GB)], and two parametric methods [genomic best linear unbiased prediction (GBLUP) and Bayes B] using
real and simulated datasets.

Methods:  The real dataset consisted of 11,790 Holstein bulls with sire conception rate (SCR) records and genotyped
for 58k single nucleotide polymorphisms (SNPs). To support the evaluation of deep learning methods, various simula‑
tion studies were conducted using the observed genotype data as template, assuming a heritability of 0.30 with
either additive or non-additive gene effects, and two different numbers of quantitative trait nucleotides (100 and
1000).

Results:  In the bull dataset, the best predictive correlation was obtained with GB (0.36), followed by Bayes B (0.34),
GBLUP (0.33), RF (0.32), CNN (0.29) and MLP (0.26). The same trend was observed when using mean squared error of
prediction. The simulation indicated that when gene action was purely additive, parametric methods outperformed
other methods. When the gene action was a combination of additive, dominance and of two-locus epistasis, the
best predictive ability was obtained with gradient boosting, and the superiority of deep learning over the parametric
methods depended on the number of loci controlling the trait and on sample size. In fact, with a large dataset includ‑
ing 80k individuals, the predictive performance of deep learning methods was similar or slightly better than that of
parametric methods for traits with non-additive gene action.

Conclusions:  For prediction of traits with non-additive gene action, gradient boosting was a robust method. Deep
learning approaches were not better for genomic prediction unless non-additive variance was sizable.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Quantitative genetics theory was established a century
ago when Sir Ronald Fisher introduced the infinitesimal
model [1]. Theory was mainly developed in the absence

of directly observable genotypic data and persisted for
decades. However, with the advent of DNA sequenc-
ing technologies, the understanding of the genetic back-
ground of complex traits has increased. Using the large
amounts of molecular genetic data that are currently col-
lected, several studies indicated that epistasis is pervasive
in agricultural species [2–4]. However, for prediction of
complex traits, the additive model is typically a default

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence: fpenagaricano@ufl.edu
1 Department of Animal Sciences, University of Florida, Gainesville, FL, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6661-3991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-020-00531-z&domain=pdf

Page 2 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12

assumption in conventional statistical methods since
additivity is a close approximation in most cases. Nev-
ertheless, some methods free of assumptions about the
genetic architecture of loci that underlie complex traits
have been suggested for the prediction of complex phe-
notypes. These methods include machine-learning tech-
niques and genetic algorithms [5–7]. Machine-learning
methods focus on prediction without using a pre-con-
ceived model. On the other hand, conventional statistical
approaches formalize relations between variables in the
form of explicit mathematical models with parameters
that are interpretable in the context of some theory.

Machine learning is increasingly used to deal with
problems in analyzing big data and in situations where
the number of parameters is much larger than the num-
ber of observations. Machine learning has been exten-
sively applied in image processing data, audio recognition
and text mining, and the learning algorithms are model
specification free and may capture unforeseen informa-
tion from high-throughput datasets [8]. This is appealing
in genomic association studies where important sig-
nals may be clustered within genic regions composed of
upstream and downstream UTR, introns and exons. The
boundaries between genic regions are determined by pat-
terns in the nucleotide sequences. Moreover, interaction
between loci is prevalent and recombination hotspots
are not uniformly distributed across the genome. Some
advanced machine-learning algorithms such as ensemble
methods and deep learning (DL) algorithms might help
in genome-enabled prediction.

Ensemble methods, such as random forests (RF) [9] and
boosting [10], are appealing machine-learning alterna-
tives to conventional statistical methods to analyze com-
plex traits using high-density genetic markers. Indeed,
these methods have been already used in genomic pre-
diction using both real and simulated datasets [8, 11, 12].
Boosting and RF are model specification free and may
account for non-additive effects. Moreover, they are fast
algorithms, even when handling a large number of covar-
iates and interactions and can be used in both classifica-
tion and regression problems.

Deep learning (DL) is a subset of machine-learning
procedures that were originally inspired by the structure
and function of the brain and essentially describe a class
of neural networks with a large number of nodes and
layers. In genomics, DL algorithms have been applied in
many areas, largely driven by massive increases in com-
puting power and access to big data. DL algorithms such
as the multilayer perceptron (MLP) and convolutional
neural network (CNN) might be able to exploit unknown
patterns of linkage disequilibrium and of interactions
between markers. Recently, some studies have examined
DL performance in prediction of complex traits in human

and agricultural species [13–16]. Bellot et al. [13] con-
cluded that CNN was competitive to linear models for
the prediction of human complex traits, but they did not
find any trait where DL outperformed the linear models
significantly. Ma et al. [14] reported that DL performed
better than genomic best linear unbiased prediction
(GBLUP) in prediction of wheat traits. Similarly, Montes-
inos-López et al. [15] concluded that DL was better than
GBLUP when genotype × environment (G × E) interac-
tion was ignored for the prediction of wheat and maize
traits. Waldmann [16] using simulation and real pig data
found that a shallow MLP performed better than GBLUP
and Bayesian LASSO. In short, so far, the evidence does
not point to a uniformly better performance of DL meth-
ods. Actually, the performance of DL was dismal in some
instances examined in Bellot et al. [13].

Most agricultural and human traits have a multifacto-
rial inheritance, with multiple and complex relationships
among genes, and between genes with environments.
Moreover, linkage disequilibrium across the genome cre-
ates ambiguous patterns that complicate the prediction
of unobserved phenotypes. Perhaps, DL might be able
to better exploit the unknown pattern of disequilibrium
among SNPs and capture interaction effects across the
genome using large available genotypic and phenotypic
data. As such, our objective was to evaluate the predic-
tive ability of two DL methods (MLP and CNN) versus
two popular ensemble methods, namely gradient boost-
ing (GB) and RF, with two parametric methods, GBLUP
and Bayes B, used as benchmark. The context was whole-
genome prediction of real bull fertility with simulations
used to supplement the study.

Methods
Real dataset
A real dataset consisting of 11,790 US Holstein bulls
with sire conception rate (SCR) records was used. The
SCR evaluation represents the US national phenotypic
evaluation of dairy bull fertility. This evaluation of bull
fertility is based on cow field data, i.e., confirmed preg-
nancy records, and it is considered a phenotypic rather
than a genetic evaluation because the fertility estimates
include both genetic and non-genetic effects. The current
model for evaluating bull fertility considers not only fac-
tors related to the bull under evaluation, but also factors
(nuisance variables) associated with the cow that receives
the unit of semen [17]. The SCR records were obtained
from 30 consecutive evaluations provided to the US dairy
industry between August 2008 and August 2018. These
30 SCR evaluations are available at the CDCB website
(https​://www.uscdc​b.com/). The estimated genomic
heritability of SCR is 0.30 [18]. The reliabilities of the
SCR records, calculated as a function of the number of

https://www.uscdcb.com/

Page 3 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12 	

breedings, were also available. For bulls with multiple
fertility evaluations, the most reliable SCR record, i.e.,
the SCR record with the most breedings, was used in the
analyses.

Genome-wide SNP data for the US Holstein bulls were
kindly provided by the Cooperative Dairy DNA Reposi-
tory (CDDR). A total of 60,671 SNPs used for genomic
evaluation in the US dairy cattle [19] were selected for
genetic analysis. SNPs that mapped to chromosome X,
had a minor allele frequency lower than 5%, missing rate
higher than 5%, and a P-value for Hardy–Weinberg dis-
equilibrium less than 10−6 were removed from the gen-
otype data using PLINK 2.00 [20]. After quality control,
57,749 SNPs were retained for genomic prediction.

Simulation dataset
We used stochastic simulation to attain a better under-
standing of the performance of the deep learning meth-
ods under various genetic architectures. A quantitative
trait was simulated based on the observed genotypes
consisting of 57,749 SNPs from two datasets. The first
dataset was composed of the 11,790 individuals with SCR
records and the second dataset involved 80,000 geno-
typed bulls provided by CDDR. To measure the predic-
tive ability of the different methods used, two scenarios
of number of quantitative trait nucleotides (QTN) were
considered, either small (n = 100) or large (n = 1000).
QTN locations were distributed across the genome in
two different ways: (i) clustered QTN randomly sampling
one-third of QTN from the SNPs across the genome as
core QTN, with two SNPs surrounding each core QTN
also treated as QTN, and (ii) randomly located QTN
across the genome.

Two scenarios of gene action were simulated: purely
additive and a combination of additive, dominance and
two-locus epistasis effects. Hereafter, we call the latter as
“non-additive gene action”. The additive and non-additive
effects were generated as follows.

Purely additive action
The allele substitution effects ( α ) were drawn from a
standard normal distribution and each was formulated as
α = a+ d(q − p) , where a and d are additive and domi-
nance effects, respectively, and p is the allelic frequency
with q = 1− p . In order to produce a purely additive
trait, the dominance effect was set to zero. The additive
genetic values were calculated by multiplying the geno-
type codes by the QTN substitution effects and summing

over the QTN. The phenotypic value of each individual i
( yi ) was created by adding a normally distributed residual
ei ∼ N

(

0, σ 2
e

)

 to the sum over QTN (genetic values) as
shown below:

where Xik (i = 1,.., n; k = 1,…m) is an element of the inci-
dence marker matrix for additive genetic effects ( αk ) and
ei is a random residual, where σ 2

e is the residual variance.
Genotypes were coded as 0 for “aa”, 1 for “Aa”, and 2 for
“AA” to capture additive effects.

Non‑additive gene action
The simplest type of epistasis is a two-locus model in
which each locus has two alleles interacting with each
other. Epistasis was simulated only between pairs of QTL
including additive × additive (A × A), additive × domi-
nance (A × D), dominance × additive (D × A), and domi-
nance × dominance (D × D) effects. Each QTN interacted
with three surrounding QTN. The elements of the
incidence matrix (D) for modeling dominance effects
were equal to 0, 1 and 0 for genotypes “aa”, “Aa” and
“AA”, respectively. We simulated overdominance only
because incomplete dominance may be partly captured
by an additive model, which would not be the case for
overdominance.

Once the two loci involved in the interaction were
defined, an interaction matrix was created via a Hadamard
product of corresponding elements of the additive (X) or
dominance (D) genotype matrices. For instance, a coeffi-
cient of 0 was assigned if two genotypes were 0 0 or 0 -, a
coefficient of 1 if the two genotypes were 1 1, a coefficient
of 2 if the two genotypes were 1 2 or 2 1 and a coefficient of
4 if the two genotypes were 2 2. It should be noted that the
final coding for A × D or D × A interaction matrices was 0,
1 and 2, since the genotype code for the dominance matrix
was 0 and 1. The codes for the D × D interaction matrix
were 0 or 1.

Each pair of interacting loci was assigned four types of
interaction effects: (i) (A× A) aalk lk ′ , (ii) (A× D) adlk lk ′ ,
(iii) (D× A) dalk lk ′ and (iv) (D× D) ddlk lk ′ . Here, lk and lk ′
represent the k and k ′ QTN. Each type of epistatic effects
was sampled from a gamma distribution with the param-
eters shown in Table 1. The effect sign was sampled to be
positive or negative, each with probability 0.5. The pheno-
type was created by adding ei to the sum of simulated addi-
tive, dominance and epistatic QTN effects:

yi =

m
∑

k=1

Xikαk + ei,

Page 4 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12

where aalk lk ′ , adlk lk ′ , dalk lk ′ and ddlk lk ′ are the A × A,
A × D, D × A and D × D epistatic effects between QTN k
and k ′ , respectively. Parameters used for the simulation
of additive and non-additive situations are in Table 2. It
should be noted that when the number of QTN increases
from 100 to 1000, the absolute value of additive effects
at each QTN decreases. Thus, additive effects depend
on the number of QTN; however, the absolute value of
epistatic effects did not depend on the number of QTN.
Hence, by increasing the number of QTN, the total epi-
static and phenotypic variance increased, but the additive
variance was constant. Hence, the narrow sense heritabil-
ity decreased but broad sense heritability increased.

yi =

nQTN
∑

k=1

Xikαk +

nQTN
∑

k=1

Dikdk +

nQTN−1
∑

k=1

nQTN
∑

k ′=2

aalk lk ′

+

nQTN−1
∑

k=1

nQTN
∑

k ′=2

adlk lk ′ +

nQTN−1
∑

k=1

nQTN
∑

k ′=2

dalk lk ′

+

nQTN−1
∑

k=1

nQTN
∑

k ′=2

ddlk lk ′ + ei

Statistical methods
Four machine-learning algorithms, including two ensem-
ble methods (RF, GB) and two deep learning algorithms
(MLP and CNN) were evaluated. The machine-learning
algorithms were compared against two standard statisti-
cal methods known as GBLUP [21] and Bayes B [22].

Conventional statistical methods
GBLUP: BLUP is one of the most extensively used regres-
sion methods for genomic prediction [21, 22]. The statis-
tical model of GBLUP can be written as:

where y is an n-vector of phenotypes, 1 is an n-vector of
ones, µ is the population mean, gA is a vector of random
additive genomic values [ gA ∼ N

(

0,Gσ 2
g

)

 ] where G
( n× n ) is the additive genomic relationship matrix
between genotyped individuals constructed as ZZ

′

m where
Z is the matrix of centered and standardized genotypes
for all individuals and m is the number of markers, and σ 2

g
is the additive genomic variance, e is the vector of ran-
dom residual effects [ e ∼ N

(

0, Iσ 2
e

)

 ] with σ 2
e being the

residual variance, and I is the identity matrix. GBLUP
was implemented using the BGLR package [23] in the R
language/environment, version 3.6.1 [24] as a member of
reproducing kernel Hilbert space regression methods
[25]. The Gibbs sampler was run for 100,000 iterations,
with a 10,000 burn-in period and a thinning interval of 10
iterations, i.e., 9000 samples were used for inference.
Bayes B: Bayes B is a widely used genomic regression
procedure [22], and here we used it together with GBLUP
as benchmark against the machine-learning techniques
considered. The phenotype of the ith individual is
expressed as a linear regression on markers:

where i = 1 . . . n (individual), j = 1 . . .m (SNPs), yi is the
phenotypic value for individual i , µ is the mean of phe-
notypes, xij is an element of the incidence matrix ( X ) for
marker j and individual i , bj is a random effect of marker
j , and ei is a random residual. In matrix form, the model
can be written as: y = µ+ Xb+ e . Contrary to Bayesian
BLUP and Bayes A [22], Bayes B assumes a priori that all
markers do not contribute to genetic variation equally.
As noted by Gianola [26], Bayes B poses that all mark-
ers have a two-component mixture prior distribution. In
fact, a given marker has either a null effect with known
prior probability, π , or a t prior distribution with proba-
bility (1− π) , with ν degrees of freedom and scale param-
eter s2 . The inferences about model unknown parameters

y = 1µ+ gA + e,

yi = µ+

m
∑

j=1

xijbj + ei,

Table 1  Distribution of simulated QTN effects
and corresponding parameters

N: normal; μ: mean; σ: standard deviation; Γ: gamma; α: shape parameter, β: scale
parameters

Genetic effects Number of QTN/
Interaction

Distribution

100 1000

Additive 100 1000 N (μ = 0, σ = 1)

Dominance 100 1000 N (μ = 0, σ = 0.5)

Additive × Additive 294 2994 Γ (α =0.1, β = 10)

Additive × Dominance 294 2994 Γ (α =0.1, β = 10)

Dominance × Additive 294 2994 Γ ( α=0.1, β = 10)

Dominance × Dominance 294 2994 Γ (α =0.1, β = 10)

Table 2  Heritability of traits simulated under additive
or non-additive gene action

Non-additive: mixture of additive, dominance and epistatic effects

h
2
a : additive heritability; h2

d
 : dominance heritability; h2

I
 : proportion of epistatic

variation related to phenotypic variation; H2

B
 : broad sense heritability

Gene action Number of QTN h
2
a h

2

d
h
2

I
H
2

B

Purely additive 100 0.30 0.00 0.00 0.30

1000 0.30 0.00 0.00 0.30

Non-additive 100 0.10 0.10 0.50 0.70

1000 0.02 0.02 0.68 0.70

Page 5 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12 	

were obtained via Gibbs sampling from the posterior
distribution. Bayes B was implemented using the BGLR
package [23] in the R language/environment, version
3.6.1 [24]. The Gibbs sampler was run for 100,000 itera-
tions, a 10,000 burn-in period and a thinning interval of
10 iterations.

Ensemble learning algorithms
Random forests: RF is a modification of bootstrap aggre-
gating that builds a large collection of identically distrib-
uted trees, and then averages out the results. It takes B
bootstrap samples from training data [9] and randomly
selects subsets of features as candidate predictors for
splitting tree nodes. Each tree minimizes the average
loss function in the bootstrapped data and is constructed
using the following algorithm:

For b = 1, . . . ,B bootstrap samples
{

yb,Xb

}

:

1.	 Draw bootstrap samples of size Ntrain from the train-
ing dataset.

2.	 Grow a random-forest tree Tb with the bootstrapped
data, by recursively repeating the following steps for
each terminal node of the tree, until the minimum
node size is reached.

	 i.	 Draw randomly mtry out of the m SNPs.
	 ii.	 Pick the best SNP among the mtry SNPs.
	 iii.	 Split the node into two child nodes.

3.	 Output the ensemble of trees {Tb}
B
1.

The predicted value of testing set ( ̂yi ) individual with
genotype xi is calculated as ŷi = 1

B

∑B
b=1 Tb(xi) . For

details on the theory of RF, the readers are referred to
Breiman [9] and Waldmann [27].

Three hyperparameters, including number of trees
(ntree), number of features sampled in each iteration
(mtry), and number of samples in the final nodes (node-
size) must be defined by the user. We assessed vari-
ous combinations of values of ntree = (200, 500, 1000),
mtry = (500, 1000, 2000, 5000), with the default node-
size = 5. The configuration with the minimum out of-
bag (OOB) error was ntree = 500, mtry = 2000 and
nodesize = 5. The random forest package [28] in the R
language/environment, version 3.6.1 [24] was used for
implementing RF.

Boosting: Boosting is a machine-learning ensemble
method that converts weak learners into strong learners,
either for classification or regression problems in order
to reduce both bias and variance [29]. We implemented
XGBoost, which is a popular and efficient form of the
gradient boosted trees algorithm. Here, each tree learns
from its predecessors and updates the residual errors

using the entire dataset. Boosting can also account for
interactions between features, automatically select fea-
tures, and is robust with respect to outliers, missing data
and presence of irrelevant features.

Gradient boosting adds new predictors to an ensemble
machine sequentially. However, instead of changing the
weights for every incorrectly predicted phenotype at each
iteration, like AdaBoost [30], the gradient boosted tree
method attempts to fit the new predictor to the residual
errors made by the previous model. More details on the
gradient boosting are in [12, 29–32].

Three hyperparameters must be tuned in boosting:
(i) depth of tree, (ii) rate at which the gradient boosting
learns, and (iii) number of trees or iterations. The depth
of tree and learning rate were determined by five-fold
cross-validation. The number of iterations (trees) was
determined by examining if the mean squared error in
the tuning set had not decreased further during 50 sub-
sequent iterations. We bagged 80% of the training data
at each boosting iteration, and the remaining 20% were
used as out-of-bag samples. The final value for learning
rate was 0.10 and tree depth was 3. We implemented the
gradient boosted tree algorithm using the XGBoost pack-
age [32].

Deep learning algorithms
Deep learning has revolutionized fields such as com-
puter vision, machine translation, and automatic driving,
and evaluating its potential for applications in genom-
ics, medicine, and healthcare is an important area of
research. There are three common families of supervised
DL algorithms: (i) multi-layer perceptron (MLP), (ii) con-
volutional neural network (CNN) and (iii) recurrent neu-
ral network. For a description on each type of network,
its assumptions and input features see Goodfellow et al.
[33] and Pérez-Enciso and Zingaretti [34]. In this study,
we implemented MLP and CNN learning algorithms and
a brief explanation of each method is provided below.

Multi‑layer perceptron
MLP is also known as feed-forward neural network or
densely connected neural network. In MLP, the informa-
tion flows from the input layer to the output layer. The
MLP is composed of three types of layers: input layer,
hidden layers, and output layer. Figure 1a presents a dia-
gram of a three-layer MLP with five input layer units, six
hidden layer units, and one output layer unit. Here, h1,
h2,…, h6 are called hidden layer units because they are
not directly observed. A single hidden layer MLP model
can be represented in the following form:

Page 6 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12

where ŷ is the vector of predicted observations, W1 and
W2 denote the weight matrices that relate the input geno-
type matrix X of dimension n× p to the output layer of y
of dimension n× 1 through the hidden layer. The dimen-
sion of the W matrices is number of units in the (k − 1)th
layer times number of units in the kth layer, where units

ŷ = σ (XW1 + b)W2, are neurons and k is the layer number. Parameter σ is the
activation function modeling the connection between the
two consecutive layers and b is the bias (intercept) matrix
associated with W1 and W2 . In regression problems, the
activation function for connecting the last hidden layer
to the output layer is typically chosen to be linear or the
Gaussian radial basis function.

For regression problems, the loss function is usually:

Fig. 1  a Representation of a multilayer perceptron (MLP) network. Each unit is connected to the units of previous layers by a weighted linear
summation, here represented by weight matrices Wi, and an activation function. Redrawn from: http://www.texam​ple.net/tikz/examp​les/neura​
l-netwo​rk/. b Representation of a convolutional neural network (CNN). (i) The input layer consists of the SNP markers. (ii) Convolution layer consists
of k filters, which capture the information in input layer by moving filters horizontally with a stride of “s” SNPs. (iii) Pooling layer involves of filters,
combining the output of the previous convolution layer at certain locations into a single neuron. (iv) Fully connected layers connect every neuron
in previous layer to every neuron in next layer. ‘ReLU’ indicates the rectified linear unit; softReLU indicates smooth rectified linear unit; Dropout
indicates the dropout conduct layer

http://www.texample.net/tikz/examples/neural-network/
http://www.texample.net/tikz/examples/neural-network/

Page 7 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12 	

where � · �22 is the Euclidean squared norm. When the
number of predictors (m) is larger than the number of
observations (n), the MLP over-fits the data, and hence,
it is required to regularize the MLP parameters θ = {W1,
W2, b}. The regularization factors are introduced during
optimization. One typical regularization term is the ℓ2
penalty through weight decay parameters λi, which need
to be learned via some search algorithms or cross-valida-
tion. Therefore, the loss function to minimize is:

Before the implementation of MLP, some hyperparam-
eters should be defined by the user, including the num-
ber of layers, the number of units per layer, the activation
function for each layer, weight decay, learning rate, drop-
out value, batch size, number of iterations or epochs, and
the optimization algorithm. For more information see
Waldmann [16] and Pérez-Enciso and Zingaretti [34].

We determined the best set of hyperparameter values by
a grid search over a range of values using the whole real
dataset. We evaluated the optimization algorithm = [‘SGD’,
‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’],
batch size = [32, 64, 128, 256], epochs = [50, 100, 200, 500,
1000], learning rate = [0.001, 0.01, 0.1, 0.2, 0.3], weight
decay = [0.00001, 0.0001, 0.001, 0.01], dropout rate = [0.1,
0.2, 0.3, 0.4], units = [8, 16, 32, 64, 128], and layers = [1, 2,
3]. The configuration with the highest prediction accu-
racy (smaller root mean-squared error) was optimization
algorithm = ’SGD’, batch size = 32, epochs = 200, learning
rate = 0.01, weight decay = 0.00001, dropout rate = [0.1,
0.1], units = [64, 32] and hidden layers = 2. The nonlinear
activation function for the first hidden layer was the recti-
fier linear unit (“ReLU”) and for the second hidden layer it
was “softReLU”. The momentum hyperparameter was con-
sidered as 0.5. As a rule of thumb, the more data are avail-
able, the smaller dropout value is required. In general, the
total number of weights in the hidden layers should be at
most 1/2 of the training sample size. MLP was fitted with
MXNet package [35] in the R language/environment, ver-
sion 3.6.1 [24].

Convolutional neural network
Basically, a CNN [36, 37] is a specialized kind of neu-
ral network, where some spatially invariant pat-
terns among the inputs are expected, for example

L
(

y, ŷ
)

=
1

2n

n
∑

i=1

� yi − ŷ �22,

minimize

{

J (θ) =
1

2n

n
∑

�

i=1

yi − ŷi �
2
2 +�1 � W1 �

2
2

+ �2 � W2 �
2
2 +�3 � b �22

}

linkage disequilibrium between nearby SNPs in the case
of genomic data. As opposed to MLP, where hidden lay-
ers are only composed of fully connected layers, in CNN
the hidden layers consist of convolutional layers, pool-
ing layers, and fully connected layers. During the train-
ing process, a CNN algorithm is able to capture hidden
information in the inputs through application of “fil-
ters” or kernels in convolution layers. A filter is known
as a collection of input values where the weights are the
same for all input windows (e.g., SNP windows). A filter
is moved across the input matrix, and at each SNP win-
dow of the genotype matrix, the CNN computes the local
weighted sum and returns an output value. The learned
filter moves to the right side of the genotype data with a
certain window size until it explains the complete width.
Then, the filter moves to the beginning of the next row
with the same window size and repeats the process until
the entire genotype matrix is traversed. To make the fil-
ters slightly invariant to small changes in the input and,
also, for dimensionality reduction, a pooling layer is
added after each convolutional layer. The pooling layer
is usually applied to smooth out the results; it consists of
merging the filter outputs of the previous convolutional
layer by taking the mean, maximum, or minimum of all
values of those filters. Figure 1b represents a general dia-
gram of CNN in a genomic prediction context. For more
details on the application of DL in the genomic context,
see Bellot et al. [13] and Pérez-Enciso and Zingaretti [34].

The initial values of hyperparameters in our CNN were
set based on the papers by Bellot et al. [13] and Ma et al.
[14]. Given that those studies used human and plant
datasets, we applied the heuristic search of hyperpa-
rameters to find the most appropriate values in the back
propagation algorithm [38]. The CNN was built with one
input layer, one convolutional layer (16 filters), one pool-
ing layer, two fully connected layers (32 and one units,
respectively), two dropout layers and one output layer
(one unit). Other hyperparameter values used were 200
for number of epochs, 64 for batch size, 0.01 for learning
rate, 0.5 for momentum, and 0.00001 for weight decay.

The genotypic matrix was fed to the CNN as input
layer. The first convolutional layer extracted the features
from the input matrix using 16 filters each with 1 × 5
window size with a stride size of 1 × 3, followed by a max-
pooling layer with window size of 1 × 2 and a stride size
of 1 × 2. A dropout layer with a rate of 0.3 was assigned
to the max-pooling layer. The first fully connected layer
with 32 units was used after the convolutional layer with
a dropout rate of 0.3. The ReLU activation function was
applied in the convolutional layer and a softrelu func-
tion was used in the first fully connected layers. The out-
put of the first fully connected layer was then fed to the
second fully connected layer with one unit by a softrelu

Page 8 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12

activation function. The output of the second fully con-
nected layer is eventually connected to the output layer
using a linear activation function, which presents the
individual predicted phenotypic value. The CNN method
was fitted with DeepGS package [14] in the R language/
environment, version 3.6.1 [24].

Evaluation of methods
The predictive ability of the different methods in the real
dataset was assessed as the correlation between predicted
and observed phenotypes ry,ŷ and the mean squared error
of prediction (MSE) using 10 replicates of a five-fold cross
validation. In the simulated dataset, predictive ability was
evaluated as the correlation between true genotypic val-
ues and predicted genomic values, using five replications
of a five-fold cross-validation design with 10 iterations.
Training and testing sets were the same in both the real
data and the simulation datasets.

We compared learning machines using two different
types of predictor variables: (i) genotypes at causal loci,
and (ii) genotypes at SNPs. In the former case, statistical
methods were fitted using the genotypes at causal vari-
ants as predictors. In the latter case, to mimic the real
SNP data, QTN were excluded from the genotypic matrix
and genomic prediction was performed using only the
genotypes at SNPs.

It has been argued that machine-learning methods
are data hungry; hence we used a larger dataset consist-
ing of 80,000 animals to compare the six methods. Due
to the computational burden, only the most complicated
simulation scenario consisting of a complex trait with
non-additive gene action and 1000 QTN with a clustered
distribution was tested.

All analyses were successfully completed on the UF
Research Computing HiPerGator supercomputer (https​
://www.rc.ufl.edu).

Results
Real data
Figure 2 displays the predictive correlation (left panel) and
the mean squared error of prediction (MSE, right panel)
of the six prediction methods for the bull (real) dataset.
The largest predictive correlation was delivered by GB
(0.36) and Bayes B (0.34), followed by GBLUP (0.33), RF
(0.32), CNN (0.29) and MLP (0.26). Among the machine-
learning approaches, the predictive correlation of CNN
was 12% greater than for MLP, but 10% lower than for RF.
Although predictive correlation is a simple way of meas-
uring predictive ability, MSE is a preferred metric because
it considers both prediction bias and variance. In this
sense, Boosting and Bayes B delivered the lowest MSE,
followed by GBLUP, RF, CNN and MLP. Figure S1 [see
Additional file 1: Figure S1] shows the trend of MSE in the

training and validation sets over iterations for MLP; this
graph clearly shows that overfitting was not an issue.

Simulation dataset
We investigated the effect of gene action, number of
QTN and QTN distribution across the genome, and
of sample size, on the predictive ability of the different
methods considered. We used two sets of predictors: (i)
genotypes at causal loci and (ii) genotypes at marker loci.

Genotypes at causal loci
The predictive ability of different methods using only
genotypes at causal loci is shown in Fig. 3. This section
illustrates how prediction machines work in an ideal-
ized situation where all true QTN are known. When gene
action was purely additive, classical statistical methods
outperformed machine-learning methods regardless of
the number of QTN controlling the trait. Among the
machine-learning algorithms, GB (QTN = 100) and GB
and MLP (QTN = 1000) attained the best predictive per-
formance (Fig. 3a, c). Interestingly, CNN performed quite
well when QTN = 100 but it was the worst method when
QTN = 1000. When gene action was non-additive (Fig. 3b,
d), GB exhibited the highest predictive performance among
the six methods evaluated, regardless of the number of
QTN controlling the trait. The predictive performance of
the other five methods depended on the number of causal
loci: when QTN = 100, the two deep learning algorithms
delivered higher predictive correlations and lower MSE
values than either GBLUP or Bayes B; however, when the
number of QTN was large (QTN = 1000), the two classical
statistical methods outperformed both MLP and CNN, and
also RF (Fig. 3b). Notably, when QTN were distributed as
clustered, the predictive ability of all methods was greater
than when the causal loci were distributed randomly across
the genome [see Additional file 2: Figures S2, S3, and S4].

Overall, under the same gene action, when the number of
causal loci affecting the trait increased, the predictive cor-
relation decreased and MSE increased (Fig. 3 a, b). Clearly,
RF did not perform well when there was a large number of
causal loci involved, regardless of the gene action.

Genotypes at marker loci
The predictive ability of the six different learning
machines using genotypes at marker loci under differ-
ent genetic architectures is shown in Fig. 4. Regard-
less of the number and distribution of QTN, when
gene action was purely additive, Bayes B outperformed
both GBLUP and the four machine-learning meth-
ods (Fig. 4a, c). Under an additive architecture, GB
and MLP were the best machine-learning methods
when QTN = 100 and QTN = 1000, respectively. Inter-
estingly, when there were additive, dominance and

https://www.rc.ufl.edu
https://www.rc.ufl.edu

Page 9 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12 	

epistasis effects, the performance of the six methods
depended on the number of QTN controlling the trait.
When a small number of QTN was simulated, the larg-
est predictive correlation was delivered by GB followed
by Bayes B and GBLUP (Fig. 4b). However, when the
number of QTN was large, parametric methods outper-
formed machine-learning methods (Fig. 4b, d).

Notably, machine-learning algorithms were less sen-
sitive to changes in gene action than classical paramet-
ric methods. For instance, by moving from additive to
non-additive genetic architectures, the predictive abil-
ity of Bayes B decreased by about 15%, but the predic-
tive ability of CNN decreased by only 3%. Interestingly,
GB exhibited a slightly better predictive performance
in the non-additive compared to the additive genetic
architecture when the number of QTN was large.

Sample size
Predictive ability using 80k individuals and 58k SNPs
under different genetic architectures is shown in
Fig. 5. Due to the computational burden, we explored
only the most complex gene action (additive + domi-
nance + epistasis) and 1000 QTN distributed as clustered
across the genome. In all cases, the predictive perfor-
mance increased relative to the performance attained
with only 12k individuals. Interestingly, when 12k indi-
viduals were used, the parametric methods were bet-
ter than the deep learning methods. However, when the
sample size was large (n = 80k), CNN outperformed clas-
sical statistical methods in terms of predictive correlation
(0.81 vs. 0.79) but not in MSE. The gain in predictive cor-
relation via increasing sample size was more pronounced
for deep learning than for parametric methods, e.g., 12%

Fig. 2  Predictive correlation (left panel) and mean squared error of prediction (right panel) of two conventional statistical methods (GBLUP
and Bayes B) and four machine-learning methods including random forests (RF), gradient boosting (Boosting), multilayer perceptron (MLP) and
convolutional neural network (CNN) using a real dataset of sire conception rate records from US Holstein bulls. The whiskers represent 95% confidence
intervals

Page 10 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12

for CNN but only 3% for Bayes B. Similarly, the decrease
in MSE by moving from 12k to 80k individuals was 0.68
for CNN and 0.50 for Bayes B.

Discussion
Our main objective in this study was to evaluate the
performance of deep learning algorithms for predic-
tion of complex phenotypes. Sire conception rate in cat-
tle is a complex trait and previous studies have reported
both additive and non-additive effects on this trait [39,
40]. Since the genetic architecture underlying SCR is
unclear, we also investigated the performance of learning
algorithms using simulated traits under simple (purely
additive) and more complex conditions (joint effects of

additive, dominance and epistatic interactions). These
two architectures served as a ‘stress test’, since parametric
methods may not always work well with complex genetic
architectures.

Here, we used a simple additive model in GBLUP
and Bayes B for the analysis of traits with non-additive
effects. It has been reported that a statistical model com-
bining additive and epistatic effects performs better than
a simple additive model for the analysis of quantitative
traits with epistatic architecture [41]. Machine-learning
methods can capture non-additive effects without any
assumptions about gene action. Furthermore, differences
in predictive ability among machine-learning algorithms
could be observed because of the intrinsic ways in which

Fig. 3  Predictive ability of two conventional statistical methods (GBLUP and Bayes B) and four machine-learning methods including random forests
(RF), gradient boosting (Boosting), multilayer perceptron (MLP) and convolutional neural network (CNN) using genotypes at causal loci. Predictive
ability was evaluated using predictive correlation a, b and mean squared error c, d. Different numbers of causal QTN (100 or 1000) and two
scenarios of gene action, namely additive and a combination of additive, dominance and epistasis were investigated. The QTN were distributed as
clustered across the entire genome.

Page 11 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12 	

marker information is processed by various methods
[42].

Our results confirmed that the performance of predic-
tion machines depends on the genetic architecture of the
trait. Under pure additive actions, conventional statistical
methods outperformed machine-learning approaches.
However, when there was non-additive action, predic-
tive ability depended on the number of loci controlling
the trait. When the trait was controlled by a small num-
ber of loci with complex gene actions, machine-learning
algorithms performed similarly or even better than con-
ventional statistical models. Simulation results showed
that GB had some advantages over other methods under
complex gene action and with a small number of QTN

(n = 100) involved. It has been argued that, for complex
traits controlled by many genes with epistatic interaction
effects, machine-learning methods are promising and
have potential to outperform parametric statistical meth-
ods [11, 42–44]. In contrast, we found that machine-
learning methods might be suitable for the prediction of
traits with a small number of QTN with strong epistatic
effects provided that loci are clustered, as observed in
Waldmann [16].

When prediction of additive genetic values is the pri-
mary interest, there may not be any benefit from using
methods that capture interactions, as they do not con-
tribute much, if at all, to genetic variance. Neverthe-
less, when phenotypic predictions are desired, such as

Fig. 4  Predictive ability of two conventional statistical methods (GBLUP and Bayes B) and four machine-learning methods including random forests
(RF), gradient boosting (Boosting), multilayer perceptron (MLP) and convolutional neural network (CNN) using genotypes at marker loci. Predictive
ability was evaluated using predictive correlation a, b and mean squared error c, d. Different numbers of QTN (100 or 1000) and two scenarios of
gene action, namely additive and a combination of additive, dominance and epistasis were investigated. The QTN were distributed as clustered
across the genome

Page 12 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12

predicting semen fertility, machine-learning algorithms
incorporating interaction effects may perform better
than models capturing only additive effects [45]. It has
also been demonstrated that deep learning algorithms
may be useful for predicting individual genotypic value
for traits that are affected by genotype-by-environment
interactions [15].

In our simulations, when the number of QTN affect-
ing the trait increased from 100 to 1000, the predictive
performance of all methods declined. An explanation
may be that a larger sample size is needed to capture the
tiny effects of a large number of additive, dominance and
interaction effects. We had hypothesized that applica-
tion of DL for predicting complex traits controlled by a

large number of loci would require a large sample size.
Indeed, larger sample sizes improved the predictive
ability of machine-learning methods, especially GB and
CNN, under non-additive genetic architectures. How-
ever, a larger sample size did not translate into a marked
improvement in prediction accuracy of the parametric
methods. Given that the cost of genotyping and sequenc-
ing has decreased remarkably over the last decade, which
allows now to perform studies with larger sample sizes,
the identification of the most accurate and applicable
prediction machine is important.

We simulated scenarios in which QTN were either
randomly distributed across the genome or clustered in
particular genomic regions. There is growing evidence

Fig. 5  Predictive ability under two sample sizes, 12k and 80k individuals, for two conventional statistical methods (GBLUP and Bayes B) and four
machine-learning methods including random forests (RF), gradient boosting (Boosting), multilayer perceptron (MLP) and convolutional neural
network (CNN) using genotypes at causal loci. Predictive ability was evaluated using predictive correlation a and mean squared error b. The 1000
causal QTN were distributed as clustered across the genome and gene action was a combination of additive, dominance and epistasis effects

Page 13 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12 	

that supports the idea that QTN may be located in clus-
ters. For example, Wood et al. [46] found 697 significant
hits for human height distributed in 423 distinct clusters
in the human genome. Clustering of QTN in specific
genomic regions could be due to selection for particular
combinations of favorable alleles or because of sharing
common regulatory elements [47]. Notably, we found
that the performance of the different predictive machines
was better when QTN were clustered. Similarly, Bellot
et al. [13] found that significant SNPs in clusters deliv-
ered better predictive performance than significant SNPs
uniformly distributed over the genome.

Whole-genome prediction differs in a very important
way from image or speech recognition tasks [33]. Com-
plex traits are multifactorial, where environmental factors
may differ from individual to individual, and epigenetic
marks can affect performance, so that the genotype of an
individual may not provide sufficient information to pre-
dict phenotypes accurately [48]. However, there are some
similarities between genomics and other domains, for
instance genotype–phenotype associations can be viewed
as a landscape. This landscape may have extremely steep
valleys, where small perturbations in genotype give rise
to vastly different phenotypes [49]. It may also have large
plateaus, where seemingly unrelated genotypes yield an
equivalent phenotype.

There are some caveats with the application of machine
learning in genomics: (1) machine-learning and statisti-
cal methods both can be used in a prediction context,
but machine-learning methods, and DL methods in par-
ticular, are not useful for inference [50]; (2) researchers
are often more interested in the biological meaning of a
predictive model than in its predictive accuracy, and the
‘black box’ nature of machine-learning methods, espe-
cially neural networks with a large number of layers and
units, can inhibit interpretation; (3) the loss function
when studying association of genotypes with pheno-
types may present local minima and maxima, so finding
a global optimum is probably difficult; (4) as the number
of input variables increases, the number of weights to be
learned in a neural network increases exponentially, so
the chance of overfitting also increases; (5) the design of
a proper network requires considerable knowledge; for
instance, in CNN finding the appropriate hyper-parame-
ters for each of the convolutional, pooling, and fully con-
nected layers is very challenging, especially in terms of
understanding the biological significance [14].

Conclusions
We trained two conventional statistical models, GBLUP
and Bayes B, along with two tree ensemble learn-
ing methods, GB and RF, in order to compare model
predictive ability against two common deep learning

algorithms, MLP and CNN. For a complex phenotype
such as sire conception rate, the best predictive perfor-
mance was obtained using GB. We also investigated the
performance of deep learning methods in a wide range
of genetic architectures of simulated complex traits with
two different sample sizes. When the genetic architecture
of a trait was purely additive, classical parametric meth-
ods outperformed machine-learning methods. However,
when the gene action was non-additive, GB exhibited the
best predictive performance. DL algorithms worked well
in the non-additive setting provided that a large sample
size was available, but their performance was not entirely
consistent. Overall, GB is a robust method in genomic
prediction of complex traits and DL does not appear to
be a panacea for genome-enabled prediction of complex
traits.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1271​1-020-00531​-z.

 Additional file 1: Figure S1. Visualization of the performance of multi‑
layer perceptron (MLP) algorithm based on the mean squared error during
the training process.

Additional file 2: Figure S2. Predictive ability of two conventional statisti‑
cal methods (GBLUP and Bayes B) and four machine-learning methods
including random forests (RF), gradient boosting (Boosting), multi‑
layer perceptron (MLP) and convolutional neural network (CNN) using
genotypes at causal loci. Predictive ability was evaluated using predictive
correlation (a, b) and mean squared error (c, d). Different numbers of QTN
(100 or 1000) and two scenarios of gene action, namely purely additive
(left panel) and a combination of additive, dominance and epistasis (right
panel) were investigated. The QTN were randomly distributed across the
genome. Figure S3. Predictive ability of two conventional statistical meth‑
ods (GBLUP and Bayes B) and four machine-learning methods including
random forests (RF), gradient boosting (Boosting), multilayer perceptron
(MLP) and convolutional neural network (CNN) using genotypes at marker
loci. Predictive ability was evaluated using predictive correlation (a, b)
and mean squared error (c, d). Different numbers of QTN (100 or 1000)
and two scenarios of gene action, namely purely additive (left panel) and
a combination of additive, dominance and epistasis (right panel) were
investigated. The QTN were randomly distributed across the genome. Fig‑
ure S4. Predictive ability under two sample sizes, 12 k and 80 k individuals,
for two conventional statistical methods (GBLUP and Bayes B) and four
machine-learning methods including random forests (RF), gradient boost‑
ing (Boosting), multilayer perceptron (MLP) and convolutional neural net‑
work (CNN) using genotypes at marker loci. Predictive ability was evaluated
using predictive correlation (a, b) and mean squared error (c, d). The 1000
causal QTN were distributed as clustered across the genome and gene
action was a combination of additive, dominance and epistasis effects

Acknowledgements
The authors thank the Cooperative Dairy DNA Repository and the Council on
Dairy Cattle Breeding for facilitating the access to the genotypes.

Authors’ contributions
FP and RAA conceived and designed the study. RAA analyzed the data
and wrote the first draft of the manuscript. DG and FP provided critical
insights and revised the manuscript. All authors read and approved the final
manuscript.

https://doi.org/10.1186/s12711-020-00531-z
https://doi.org/10.1186/s12711-020-00531-z

Page 14 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12

Funding
This research was supported by the Florida Agricultural Experiment Station
(Gainesville, FL). The funding body did not contribute to the design of the
study or collection, analysis and interpretation of data and writing the
manuscript.

Availability of data and materials
The phenotypic data are available at the website of the Council on Dairy
Cattle Breeding (https​://www.uscdc​b.com/). The genotypic data are available
upon reasonable request to the Cooperative Dairy DNA Repository. The
simulation script is available from the corresponding author upon reasonable
request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
2 Departments of Animal Sciences and Dairy Science, University of Wisconsin-
Madison, Madison, WI, USA. 3 University of Florida Genetics Institute, University
of Florida, Gainesville, FL, USA.

Received: 24 September 2019 Accepted: 13 February 2020

References
	1.	 Fisher RA. The correlation between relatives on the supposition of Men‑

delian inheritance. Trans Roy Soc Edinb. 1918;52:399–433.
	2.	 Mackay TFC. Epistasis and quantitative traits: using model organisms to

study gene–gene interactions. Nat Rev Genet. 2014;15:22–33.
	3.	 Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH, Ayroles JF, et al.

Epistasis dominates the genetic architecture of Drosophila quantitative
traits. Proc Natl Acad Sci USA. 2012;109:15553–9.

	4.	 Forsberg SKG, Bloom JS, Sadhu MJ, Kruglyak L, Carlborg Ö. Accounting for
genetic interactions improves modeling of individual quantitative trait
phenotypes in yeast. Nat Genet. 2017;49:497–503.

	5.	 Nelson RM, Kierczak M, Carlborg Ö. Higher order interactions: detec‑
tion of epistasis using machine learning andevolutionary computation.
Methods Mol Biol. 2013;1019:499–518.

	6.	 Gianola D, Fernando RL, Stella A. Genomic-assisted prediction of genetic
value With semiparametric procedures. Genetics. 2006;173:1761–76.

	7.	 Gianola D, van Kaam JB. Reproducing kernel Hilbert spaces regression
methods for genomic assisted prediction of quantitative traits. Genetics.
2008;178:2289–303.

	8.	 Gonzalez-Recio O, Forni S. Genome-wide prediction of discrete traits
using Bayesian regressions and machine learning. Genet Sel Evol.
2011;43:7.

	9.	 Breiman L. Random forests. Mach Learn. 2001;45:5–32.
	10.	 Friedman JH. Greedy function approximation: a gradient boosting

machine. Ann Statist. 2001;29:1189–232.
	11.	 Ogutu JO, Piepho H-P, Schulz-Streeck T. A comparison of random forests,

boosting and support vector machines for genomic selection. BMC Proc.
2011;5:S11.

	12.	 González-Recio O, Jiménez-Montero JA, Alenda R. The gradient boosting
algorithm and random boosting for genome-assisted evaluation in large
data sets. J Dairy Sci. 2013;96:614–24.

	13.	 Bellot P, de los Campos G, Pérez-Enciso M. Can deep learning improve
genomic prediction of complex human traits? Genetics. 2018;210:809–19.

	14.	 Ma W, Qiu Z, Song J, Li J, Cheng Q, Zhai J, et al. A deep convolutional neu‑
ral network approach for predicting phenotypes from genotypes. Planta.
2018;248:1307–18.

	15.	 Montesinos-López A, Montesinos-López OA, Gianola D, Crossa J,
Hernández-Suárez CM. Multi-environment genomic prediction of

plant traits using deep learners with dense architecture. G3 (Bethesda).
2018;8:3813–28.

	16.	 Waldmann P. Approximate Bayesian neural networks in genomic predic‑
tion. Genet Sel Evol. 2018;50:70.

	17.	 Kuhn MT, Hutchison JL. Prediction of dairy bull fertility from field data: use
of multiple services and identification and utilization of factors affecting
bull fertility. J Dairy Sci. 2008;91:2481–92.

	18.	 Abdollahi-Arpanahi R, Morota G, Peñagaricano F. Predicting bull
fertility using genomic data and biological information. J Dairy Sci.
2017;100:9656–66.

	19.	 Wiggans GR, Cooper TA, VanRaden PM, Van Tassell CP, Bickhart DM, Son‑
stegard TS. Increasing the number of single nucleotide polymorphisms
used in genomic evaluation of dairy cattle. J Dairy Sci. 2016;99:4504–11.

	20.	 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: rising to the challenge of larger and richer datasets.
GigaScience. 2015;4:7.

	21.	 VanRaden PM. Efficient methods to compute genomic predictions. J
Dairy Sci. 2008;91:4414–23.

	22.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

	23.	 Pérez P, de los Campos G. Genome-wide regression and prediction with
the BGLR statistical package. Genetics. 2014;198:483–95.

	24.	 R Core Team. R: a language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Vienna, Austria;
2018. http://cran.r-proje​ct.org.

	25.	 de los Campos G, Gianola D, Rosa GJM. Reproducing kernel Hilbert
spaces regression: a general framework for genetic evaluation. J Anim Sci.
2009;87:1883–7.

	26.	 Gianola D. Priors in whole-genome regression: the bayesian alphabet
returns. Genetics. 2013;194:573–96.

	27.	 Waldmann P. Genome-wide prediction using Bayesian additive regres‑
sion trees. Genet Sel Evol. 2016;48:42.

	28.	 Liaw A, Wiener M. Classification and regression by randomForest. R news.
2002;2:18–22.

	29.	 Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. New
York: Springer Series in Statistics; 2001.

	30.	 Freund Y, Schapire RE. A decision-theoretic generalization of on-
line learning and an application to boosting. J Comput Syst Sci.
1997;55:119–39.

	31.	 González-Recio O, Rosa GJ, Gianola D. Machine learning methods and
predictive ability metrics for genome-wide prediction of complex traits.
Livest Sci. 2014;166:217–31.

	32.	 Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In Proceed‑
ings of the 22nd ACM SIGKDD International Conference on knowledge
discovery and data mining: 13–17 August; San Francisco. 2016. pp.
785–794.

	33.	 Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: The MIT
press; 2016.

	34.	 Pérez-Enciso M, Zingaretti LM. A guide for using deep learning for com‑
plex trait genomic prediction. Genes (Basel). 2019;10:553.

	35.	 Chen T, Li M, Li Y, Lin M, Wang N, Wang M, et al. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems.
arXiv preprint; 2015. arXiv​:1512.01274​.

	36.	 LeCun Y, Bengio Y. Convolutional networks for images, speech, and time
series. In: Michael AA, editor. The handbook of brain theory and neural
networks. Cambridge: The MIT Press; 1998. p. 255–8.

	37.	 Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to
document recognition. Proc IEEE. 1998;86:2278–324.

	38.	 Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Nature. 1986;323:533–6.

	39.	 Rezende FM, Nani JP, Peñagaricano F. Genomic prediction of bull fertility
in US Jersey dairy cattle. J Dairy Sci. 2019;102:3230–40.

	40.	 Nicolini P, Amorín R, Han Y, Peñagaricano F. Whole-genome scan reveals
significant non-additive effects for sire conception rate in Holstein cattle.
BMC Genet. 2018;19:14.

	41.	 Morgante F, Huang W, Maltecca C, Mackay TFC. Effect of genetic archi‑
tecture on the prediction accuracy of quantitative traits in samples of
unrelated individuals. Heredity (Edinb). 2018;120:500–14.

	42.	 Momen M, Mehrgardi AA, Sheikhi A, Kranis A, Tusell L, Morota G, et al.
Predictive ability of genome-assisted statistical models under various
forms of gene action. Sci Rep. 2018;8:12309.

https://www.uscdcb.com/
http://cran.r-project.org
http://arxiv.org/abs/1512.01274

Page 15 of 15Abdollahi‑Arpanahi et al. Genet Sel Evol (2020) 52:12 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	43.	 Howard R, Carriquiry AL, Beavis WD. Parametric and nonparametric statis‑
tical methods for genomic selection of traits with additive and epistatic
genetic architectures. G3 (Bethesda). 2014;4:1027–46.

	44.	 Wittenburg D, Melzer N, Reinsch N. Including non-additive genetic
effects in Bayesian methods for the prediction of genetic values based on
genome-wide markers. BMC Genet. 2011;12:74.

	45.	 Mcdowell RM. Genomic selection with deep neural networks. Master’s
Thesis. Ames: Iowa state university; 2016.

	46.	 Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining
the role of common variation in the genomic and biological architecture
of adult human height. Nat Genet. 2014;46:1173–86.

	47.	 Gonen S, Battagin M, Johnston SE, Gorjanc G, Hickey JM. The potential
of shifting recombination hotspots to increase genetic gain in livestock
breeding. Genet Sel Evol. 2017;49:55.

	48.	 Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine learning in genomic
medicine: a review of computational problems and data sets. Proc IEEE.
2016;104:176–97.

	49.	 Hart JR, Zhang Y, Liao L, Ueno L, Du L, Jonkers M, et al. The butterfly effect
in cancer: a single base mutation can remodel the cell. Proc Natl Acad Sci
USA. 2015;112:1131–6.

	50.	 Xu C, Jackson SA. Machine learning and complex biological data.
Genome Biol. 2019;20:76.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

	Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Methods
	Real dataset
	Simulation dataset
	Purely additive action
	Non-additive gene action

	Statistical methods
	Conventional statistical methods
	Ensemble learning algorithms
	Deep learning algorithms

	Multi-layer perceptron
	Convolutional neural network
	Evaluation of methods

	Results
	Real data
	Simulation dataset
	Genotypes at causal loci
	Genotypes at marker loci

	Sample size

	Discussion
	Conclusions
	Acknowledgements
	References

