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Abstract 

Background:  Transforming large amounts of genomic data into valuable knowledge for predicting complex traits 
has been an important challenge for animal and plant breeders. Prediction of complex traits has not escaped the 
current excitement on machine-learning, including interest in deep learning algorithms such as multilayer perceptrons 
(MLP) and convolutional neural networks (CNN). The aim of this study was to compare the predictive performance 
of two deep learning methods (MLP and CNN), two ensemble learning methods [random forests (RF) and gradient 
boosting (GB)], and two parametric methods [genomic best linear unbiased prediction (GBLUP) and Bayes B] using 
real and simulated datasets.

Methods:  The real dataset consisted of 11,790 Holstein bulls with sire conception rate (SCR) records and genotyped 
for 58k single nucleotide polymorphisms (SNPs). To support the evaluation of deep learning methods, various simula‑
tion studies were conducted using the observed genotype data as template, assuming a heritability of 0.30 with 
either additive or non-additive gene effects, and two different numbers of quantitative trait nucleotides (100 and 
1000).

Results:  In the bull dataset, the best predictive correlation was obtained with GB (0.36), followed by Bayes B (0.34), 
GBLUP (0.33), RF (0.32), CNN (0.29) and MLP (0.26). The same trend was observed when using mean squared error of 
prediction. The simulation indicated that when gene action was purely additive, parametric methods outperformed 
other methods. When the gene action was a combination of additive, dominance and of two-locus epistasis, the 
best predictive ability was obtained with gradient boosting, and the superiority of deep learning over the parametric 
methods depended on the number of loci controlling the trait and on sample size. In fact, with a large dataset includ‑
ing 80k individuals, the predictive performance of deep learning methods was similar or slightly better than that of 
parametric methods for traits with non-additive gene action.

Conclusions:  For prediction of traits with non-additive gene action, gradient boosting was a robust method. Deep 
learning approaches were not better for genomic prediction unless non-additive variance was sizable.
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Background
Quantitative genetics theory was established a century 
ago when Sir Ronald Fisher introduced the infinitesimal 
model [1]. Theory was mainly developed in the absence 

of directly observable genotypic data and persisted for 
decades. However, with the advent of DNA sequenc-
ing technologies, the understanding of the genetic back-
ground of complex traits has increased. Using the large 
amounts of molecular genetic data that are currently col-
lected, several studies indicated that epistasis is pervasive 
in agricultural species [2–4]. However, for prediction of 
complex traits, the additive model is typically a default 
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assumption in conventional statistical methods since 
additivity is a close approximation in most cases. Nev-
ertheless, some methods free of assumptions about the 
genetic architecture of loci that underlie complex traits 
have been suggested for the prediction of complex phe-
notypes. These methods include machine-learning tech-
niques and genetic algorithms [5–7]. Machine-learning 
methods focus on prediction without using a pre-con-
ceived model. On the other hand, conventional statistical 
approaches formalize relations between variables in the 
form of explicit mathematical models with parameters 
that are interpretable in the context of some theory.

Machine learning is increasingly used to deal with 
problems in analyzing big data and in  situations where 
the number of parameters is much larger than the num-
ber of observations. Machine learning has been exten-
sively applied in image processing data, audio recognition 
and text mining, and the learning algorithms are model 
specification free and may capture unforeseen informa-
tion from high-throughput datasets [8]. This is appealing 
in genomic association studies where important sig-
nals may be clustered within genic regions composed of 
upstream and downstream UTR, introns and exons. The 
boundaries between genic regions are determined by pat-
terns in the nucleotide sequences. Moreover, interaction 
between loci is prevalent and recombination hotspots 
are not uniformly distributed across the genome. Some 
advanced machine-learning algorithms such as ensemble 
methods and deep learning (DL) algorithms might help 
in genome-enabled prediction.

Ensemble methods, such as random forests (RF) [9] and 
boosting [10], are appealing machine-learning alterna-
tives to conventional statistical methods to analyze com-
plex traits using high-density genetic markers. Indeed, 
these methods have been already used in genomic pre-
diction using both real and simulated datasets [8, 11, 12]. 
Boosting and RF are model specification free and may 
account for non-additive effects. Moreover, they are fast 
algorithms, even when handling a large number of covar-
iates and interactions and can be used in both classifica-
tion and regression problems.

Deep learning (DL) is a subset of machine-learning 
procedures that were originally inspired by the structure 
and function of the brain and essentially describe a class 
of neural networks with a large number of nodes and 
layers. In genomics, DL algorithms have been applied in 
many areas, largely driven by massive increases in com-
puting power and access to big data. DL algorithms such 
as the multilayer perceptron (MLP) and convolutional 
neural network (CNN) might be able to exploit unknown 
patterns of linkage disequilibrium and of interactions 
between markers. Recently, some studies have examined 
DL performance in prediction of complex traits in human 

and agricultural species [13–16]. Bellot et  al. [13] con-
cluded that CNN was competitive to linear models for 
the prediction of human complex traits, but they did not 
find any trait where DL outperformed the linear models 
significantly. Ma et  al. [14] reported that DL performed 
better than genomic best linear unbiased prediction 
(GBLUP) in prediction of wheat traits. Similarly, Montes-
inos-López et al. [15] concluded that DL was better than 
GBLUP when genotype × environment (G × E) interac-
tion was ignored for the prediction of wheat and maize 
traits. Waldmann [16] using simulation and real pig data 
found that a shallow MLP performed better than GBLUP 
and Bayesian LASSO. In short, so far, the evidence does 
not point to a uniformly better performance of DL meth-
ods. Actually, the performance of DL was dismal in some 
instances examined in Bellot et al. [13].

Most agricultural and human traits have a multifacto-
rial inheritance, with multiple and complex relationships 
among genes, and between genes with environments. 
Moreover, linkage disequilibrium across the genome cre-
ates ambiguous patterns that complicate the prediction 
of unobserved phenotypes. Perhaps, DL might be able 
to better exploit the unknown pattern of disequilibrium 
among SNPs and capture interaction effects across the 
genome using large available genotypic and phenotypic 
data. As such, our objective was to evaluate the predic-
tive ability of two DL methods (MLP and CNN) versus 
two popular ensemble methods, namely gradient boost-
ing (GB) and RF, with two parametric methods, GBLUP 
and Bayes B, used as benchmark. The context was whole-
genome prediction of real bull fertility with simulations 
used to supplement the study.

Methods
Real dataset
A real dataset consisting of 11,790 US Holstein bulls 
with sire conception rate (SCR) records was used. The 
SCR evaluation represents the US national phenotypic 
evaluation of dairy bull fertility. This evaluation of bull 
fertility is based on cow field data, i.e., confirmed preg-
nancy records, and it is considered a phenotypic rather 
than a genetic evaluation because the fertility estimates 
include both genetic and non-genetic effects. The current 
model for evaluating bull fertility considers not only fac-
tors related to the bull under evaluation, but also factors 
(nuisance variables) associated with the cow that receives 
the unit of semen [17]. The SCR records were obtained 
from 30 consecutive evaluations provided to the US dairy 
industry between August 2008 and August 2018. These 
30 SCR evaluations are available at the CDCB website 
(https​://www.uscdc​b.com/). The estimated genomic 
heritability of SCR is 0.30 [18]. The reliabilities of the 
SCR records, calculated as a function of the number of 

https://www.uscdcb.com/
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breedings, were also available. For bulls with multiple 
fertility evaluations, the most reliable SCR record, i.e., 
the SCR record with the most breedings, was used in the 
analyses.

Genome-wide SNP data for the US Holstein bulls were 
kindly provided by the Cooperative Dairy DNA Reposi-
tory (CDDR). A total of 60,671 SNPs used for genomic 
evaluation in the US dairy cattle [19] were selected for 
genetic analysis. SNPs that mapped to chromosome X, 
had a minor allele frequency lower than 5%, missing rate 
higher than 5%, and a P-value for Hardy–Weinberg dis-
equilibrium less than 10−6 were removed from the gen-
otype data using PLINK 2.00 [20]. After quality control, 
57,749 SNPs were retained for genomic prediction.

Simulation dataset
We used stochastic simulation to attain a better under-
standing of the performance of the deep learning meth-
ods under various genetic architectures. A quantitative 
trait was simulated based on the observed genotypes 
consisting of 57,749 SNPs from two datasets. The first 
dataset was composed of the 11,790 individuals with SCR 
records and the second dataset involved 80,000 geno-
typed bulls provided by CDDR. To measure the predic-
tive ability of the different methods used, two scenarios 
of number of quantitative trait nucleotides (QTN) were 
considered, either small (n = 100) or large (n = 1000). 
QTN locations were distributed across the genome in 
two different ways: (i) clustered QTN randomly sampling 
one-third of QTN from the SNPs across the genome as 
core QTN, with two SNPs surrounding each core QTN 
also treated as QTN, and (ii) randomly located QTN 
across the genome.

Two scenarios of gene action were simulated: purely 
additive and a combination of additive, dominance and 
two-locus epistasis effects. Hereafter, we call the latter as 
“non-additive gene action”. The additive and non-additive 
effects were generated as follows.

Purely additive action
The allele substitution effects ( α ) were drawn from a 
standard normal distribution and each was formulated as 
α = a+ d(q − p) , where a and d are additive and domi-
nance effects, respectively, and p is the allelic frequency 
with q = 1− p . In order to produce a purely additive 
trait, the dominance effect was set to zero. The additive 
genetic values were calculated by multiplying the geno-
type codes by the QTN substitution effects and summing 

over the QTN. The phenotypic value of each individual i 
( yi ) was created by adding a normally distributed residual 
ei ∼ N

(

0, σ 2
e

)

 to the sum over QTN (genetic values) as 
shown below:

where Xik (i = 1,.., n; k = 1,…m) is an element of the inci-
dence marker matrix for additive genetic effects ( αk ) and 
ei is a random residual, where σ 2

e  is the residual variance. 
Genotypes were coded as 0 for “aa”, 1 for “Aa”, and 2 for 
“AA” to capture additive effects.

Non‑additive gene action
The simplest type of epistasis is a two-locus model in 
which each locus has two alleles interacting with each 
other. Epistasis was simulated only between pairs of QTL 
including additive × additive (A × A), additive × domi-
nance (A × D), dominance × additive (D × A), and domi-
nance × dominance (D × D) effects. Each QTN interacted 
with three surrounding QTN. The elements of the 
incidence matrix (D) for modeling dominance effects 
were equal to 0, 1 and 0 for genotypes “aa”, “Aa” and 
“AA”, respectively. We simulated overdominance only 
because incomplete dominance may be partly captured 
by an additive model, which would not be the case for 
overdominance.

Once the two loci involved in the interaction were 
defined, an interaction matrix was created via a Hadamard 
product of corresponding elements of the additive (X) or 
dominance (D) genotype matrices. For instance, a coeffi-
cient of 0 was assigned if two genotypes were 0 0 or 0 -, a 
coefficient of 1 if the two genotypes were 1 1, a coefficient 
of 2 if the two genotypes were 1 2 or 2 1 and a coefficient of 
4 if the two genotypes were 2 2. It should be noted that the 
final coding for A × D or D × A interaction matrices was 0, 
1 and 2, since the genotype code for the dominance matrix 
was 0 and 1. The codes for the D × D interaction matrix 
were 0 or 1.

Each pair of interacting loci was assigned four types of 
interaction effects: (i) (A× A) aalk lk ′ , (ii) (A× D) adlk lk ′ , 
(iii) (D× A) dalk lk ′ and (iv) (D× D) ddlk lk ′ . Here, lk and lk ′ 
represent the k and k ′ QTN. Each type of epistatic effects 
was sampled from a gamma distribution with the param-
eters shown in Table 1. The effect sign was sampled to be 
positive or negative, each with probability 0.5. The pheno-
type was created by adding ei to the sum of simulated addi-
tive, dominance and epistatic QTN effects:

yi =

m
∑

k=1

Xikαk + ei,
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where aalk lk ′ , adlk lk ′ , dalk lk ′ and ddlk lk ′ are the A × A, 
A × D, D × A and D × D epistatic effects between QTN k 
and k ′ , respectively. Parameters used for the simulation 
of additive and non-additive situations are in Table 2. It 
should be noted that when the number of QTN increases 
from 100 to 1000, the absolute value of additive effects 
at each QTN decreases. Thus, additive effects depend 
on the number of QTN; however, the absolute value of 
epistatic effects did not depend on the number of QTN. 
Hence, by increasing the number of QTN, the total epi-
static and phenotypic variance increased, but the additive 
variance was constant. Hence, the narrow sense heritabil-
ity decreased but broad sense heritability increased.

yi =

nQTN
∑

k=1

Xikαk +

nQTN
∑

k=1

Dikdk +

nQTN−1
∑

k=1

nQTN
∑

k ′=2

aalk lk ′

+

nQTN−1
∑

k=1

nQTN
∑

k ′=2

adlk lk ′ +

nQTN−1
∑

k=1

nQTN
∑

k ′=2

dalk lk ′

+

nQTN−1
∑

k=1

nQTN
∑

k ′=2

ddlk lk ′ + ei

Statistical methods
Four machine-learning algorithms, including two ensem-
ble methods (RF, GB) and two deep learning algorithms 
(MLP and CNN) were evaluated. The machine-learning 
algorithms were compared against two standard statisti-
cal methods known as GBLUP [21] and Bayes B [22].

Conventional statistical methods
GBLUP: BLUP is one of the most extensively used regres-
sion methods for genomic prediction [21, 22]. The statis-
tical model of GBLUP can be written as:

where y is an n-vector of phenotypes, 1 is an n-vector of 
ones, µ is the population mean, gA is a vector of random 
additive genomic values [ gA ∼ N

(

0,Gσ 2
g

)

 ] where G 
( n× n ) is the additive genomic relationship matrix 
between genotyped individuals constructed as ZZ

′

m  where 
Z is the matrix of centered and standardized genotypes 
for all individuals and m is the number of markers, and σ 2

g  
is the additive genomic variance, e is the vector of ran-
dom residual effects [ e ∼ N

(

0, Iσ 2
e

)

 ] with σ 2
e  being the 

residual variance, and I is the identity matrix. GBLUP 
was implemented using the BGLR package [23] in the R 
language/environment, version 3.6.1 [24] as a member of 
reproducing kernel Hilbert space regression methods 
[25]. The Gibbs sampler was run for 100,000 iterations, 
with a 10,000 burn-in period and a thinning interval of 10 
iterations, i.e., 9000 samples were used for inference. 
Bayes B: Bayes B is a widely used genomic regression 
procedure [22], and here we used it together with GBLUP 
as benchmark against the machine-learning techniques 
considered. The phenotype of the ith individual is 
expressed as a linear regression on markers:

where i = 1 . . . n (individual), j = 1 . . .m (SNPs), yi is the 
phenotypic value for individual i , µ is the mean of phe-
notypes, xij is an element of the incidence matrix ( X ) for 
marker j and individual i , bj is a random effect of marker 
j , and ei is a random residual. In matrix form, the model 
can be written as: y = µ+ Xb+ e . Contrary to Bayesian 
BLUP and Bayes A [22], Bayes B assumes a priori that all 
markers do not contribute to genetic variation equally. 
As noted by Gianola [26], Bayes B poses that all mark-
ers have a two-component mixture prior distribution. In 
fact, a given marker has either a null effect with known 
prior probability, π , or a t prior distribution with proba-
bility (1− π) , with ν degrees of freedom and scale param-
eter s2 . The inferences about model unknown parameters 

y = 1µ+ gA + e,

yi = µ+

m
∑

j=1

xijbj + ei,

Table 1  Distribution of  simulated QTN effects 
and corresponding parameters

N: normal; μ: mean; σ: standard deviation; Γ: gamma; α: shape parameter, β: scale 
parameters

Genetic effects Number of QTN/
Interaction

Distribution

100 1000

Additive 100 1000 N (μ = 0, σ = 1)

Dominance 100 1000 N (μ = 0, σ = 0.5)

Additive × Additive 294 2994 Γ (α =0.1, β = 10)

Additive × Dominance 294 2994 Γ (α =0.1, β = 10)

Dominance × Additive 294 2994 Γ ( α=0.1, β = 10)

Dominance × Dominance 294 2994 Γ (α =0.1, β = 10)

Table 2  Heritability of  traits simulated under  additive 
or non-additive gene action

Non-additive: mixture of additive, dominance and epistatic effects

h
2
a : additive heritability; h2

d
 : dominance heritability; h2

I
 : proportion of epistatic 

variation related to phenotypic variation; H2

B
 : broad sense heritability

Gene action Number of QTN h
2
a h

2

d
h
2

I
H
2

B

Purely additive 100 0.30 0.00 0.00 0.30

1000 0.30 0.00 0.00 0.30

Non-additive 100 0.10 0.10 0.50 0.70

1000 0.02 0.02 0.68 0.70
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were obtained via Gibbs sampling from the posterior 
distribution. Bayes B was implemented using the BGLR 
package [23] in the R language/environment, version 
3.6.1 [24]. The Gibbs sampler was run for 100,000 itera-
tions, a 10,000 burn-in period and a thinning interval of 
10 iterations.

Ensemble learning algorithms
Random forests: RF is a modification of bootstrap aggre-
gating that builds a large collection of identically distrib-
uted trees, and then averages out the results. It takes B 
bootstrap samples from training data [9] and randomly 
selects subsets of features as candidate predictors for 
splitting tree nodes. Each tree minimizes the average 
loss function in the bootstrapped data and is constructed 
using the following algorithm:

For b = 1, . . . ,B bootstrap samples 
{

yb,Xb

}

:

1.	 Draw bootstrap samples of size Ntrain from the train-
ing dataset.

2.	 Grow a random-forest tree Tb with the bootstrapped 
data, by recursively repeating the following steps for 
each terminal node of the tree, until the minimum 
node size is reached.

	 i.	 Draw randomly mtry out of the m SNPs.
	 ii.	 Pick the best SNP among the mtry SNPs.
	 iii.	 Split the node into two child nodes.

3.	 Output the ensemble of trees {Tb}
B
1.

The predicted value of testing set ( ̂yi ) individual with 
genotype xi is calculated as ŷi = 1

B

∑B
b=1 Tb(xi) . For 

details on the theory of RF, the readers are referred to 
Breiman [9] and Waldmann [27].

Three hyperparameters, including number of trees 
(ntree), number of features sampled in each iteration 
(mtry), and number of samples in the final nodes (node-
size) must be defined by the user. We assessed vari-
ous combinations of values of ntree = (200, 500, 1000), 
mtry = (500, 1000, 2000, 5000), with the default node-
size = 5. The configuration with the minimum out of-
bag (OOB) error was ntree = 500, mtry = 2000 and 
nodesize = 5. The random forest package [28] in the R 
language/environment, version 3.6.1 [24] was used for 
implementing RF.

Boosting: Boosting is a machine-learning ensemble 
method that converts weak learners into strong learners, 
either for classification or regression problems in order 
to reduce both bias and variance [29]. We implemented 
XGBoost, which is a popular and efficient form of the 
gradient boosted trees algorithm. Here, each tree learns 
from its predecessors and updates the residual errors 

using the entire dataset. Boosting can also account for 
interactions between features, automatically select fea-
tures, and is robust with respect to outliers, missing data 
and presence of irrelevant features.

Gradient boosting adds new predictors to an ensemble 
machine sequentially. However, instead of changing the 
weights for every incorrectly predicted phenotype at each 
iteration, like AdaBoost [30], the gradient boosted tree 
method attempts to fit the new predictor to the residual 
errors made by the previous model. More details on the 
gradient boosting are in [12, 29–32].

Three hyperparameters must be tuned in boosting: 
(i) depth of tree, (ii) rate at which the gradient boosting 
learns, and (iii) number of trees or iterations. The depth 
of tree and learning rate were determined by five-fold 
cross-validation. The number of iterations (trees) was 
determined by examining if the mean squared error in 
the tuning set had not decreased further during 50 sub-
sequent iterations. We bagged 80% of the training data 
at each boosting iteration, and the remaining 20% were 
used as out-of-bag samples. The final value for learning 
rate was 0.10 and tree depth was 3. We implemented the 
gradient boosted tree algorithm using the XGBoost pack-
age [32].

Deep learning algorithms
Deep learning has revolutionized fields such as com-
puter vision, machine translation, and automatic driving, 
and evaluating its potential for applications in genom-
ics, medicine, and healthcare is an important area of 
research. There are three common families of supervised 
DL algorithms: (i) multi-layer perceptron (MLP), (ii) con-
volutional neural network (CNN) and (iii) recurrent neu-
ral network. For a description on each type of network, 
its assumptions and input features see Goodfellow et al. 
[33] and Pérez-Enciso and Zingaretti [34]. In this study, 
we implemented MLP and CNN learning algorithms and 
a brief explanation of each method is provided below.

Multi‑layer perceptron
MLP is also known as feed-forward neural network or 
densely connected neural network. In MLP, the informa-
tion flows from the input layer to the output layer. The 
MLP is composed of three types of layers: input layer, 
hidden layers, and output layer. Figure 1a presents a dia-
gram of a three-layer MLP with five input layer units, six 
hidden layer units, and one output layer unit. Here, h1, 
h2,…, h6 are called hidden layer units because they are 
not directly observed. A single hidden layer MLP model 
can be represented in the following form:
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where ŷ is the vector of predicted observations, W1 and 
W2 denote the weight matrices that relate the input geno-
type matrix X of dimension n× p to the output layer of y 
of dimension n× 1 through the hidden layer. The dimen-
sion of the W matrices is number of units in the (k − 1)th 
layer times number of units in the kth layer, where units 

ŷ = σ (XW1 + b)W2, are neurons and k is the layer number. Parameter σ is the 
activation function modeling the connection between the 
two consecutive layers and b is the bias (intercept) matrix 
associated with W1 and W2 . In regression problems, the 
activation function for connecting the last hidden layer 
to the output layer is typically chosen to be linear or the 
Gaussian radial basis function.

For regression problems, the loss function is usually:

Fig. 1  a Representation of a multilayer perceptron (MLP) network. Each unit is connected to the units of previous layers by a weighted linear 
summation, here represented by weight matrices Wi, and an activation function. Redrawn from: http://www.texam​ple.net/tikz/examp​les/neura​
l-netwo​rk/. b Representation of a convolutional neural network (CNN). (i) The input layer consists of the SNP markers. (ii) Convolution layer consists 
of k filters, which capture the information in input layer by moving filters horizontally with a stride of “s” SNPs. (iii) Pooling layer involves of filters, 
combining the output of the previous convolution layer at certain locations into a single neuron. (iv) Fully connected layers connect every neuron 
in previous layer to every neuron in next layer. ‘ReLU’ indicates the rectified linear unit; softReLU indicates smooth rectified linear unit; Dropout 
indicates the dropout conduct layer

http://www.texample.net/tikz/examples/neural-network/
http://www.texample.net/tikz/examples/neural-network/
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where � · �22 is the Euclidean squared norm. When the 
number of predictors (m) is larger than the number of 
observations (n), the MLP over-fits the data, and hence, 
it is required to regularize the MLP parameters θ = {W1, 
W2, b}. The regularization factors are introduced during 
optimization. One typical regularization term is the ℓ2 
penalty through weight decay parameters λi, which need 
to be learned via some search algorithms or cross-valida-
tion. Therefore, the loss function to minimize is:

Before the implementation of MLP, some hyperparam-
eters should be defined by the user, including the num-
ber of layers, the number of units per layer, the activation 
function for each layer, weight decay, learning rate, drop-
out value, batch size, number of iterations or epochs, and 
the optimization algorithm. For more information see 
Waldmann [16] and Pérez-Enciso and Zingaretti [34].

We determined the best set of hyperparameter values by 
a grid search over a range of values using the whole real 
dataset. We evaluated the optimization algorithm = [‘SGD’, 
‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’], 
batch size = [32, 64, 128, 256], epochs = [50, 100, 200, 500, 
1000], learning rate = [0.001, 0.01, 0.1, 0.2, 0.3], weight 
decay = [0.00001, 0.0001, 0.001, 0.01], dropout rate = [0.1, 
0.2, 0.3, 0.4], units = [8, 16, 32, 64, 128], and layers = [1, 2, 
3]. The configuration with the highest prediction accu-
racy (smaller root mean-squared error) was optimization 
algorithm = ’SGD’, batch size = 32, epochs = 200, learning 
rate = 0.01, weight decay = 0.00001, dropout rate = [0.1, 
0.1], units = [64, 32] and hidden layers = 2. The nonlinear 
activation function for the first hidden layer was the recti-
fier linear unit (“ReLU”) and for the second hidden layer it 
was “softReLU”. The momentum hyperparameter was con-
sidered as 0.5. As a rule of thumb, the more data are avail-
able, the smaller dropout value is required. In general, the 
total number of weights in the hidden layers should be at 
most 1/2 of the training sample size. MLP was fitted with 
MXNet package [35] in the R language/environment, ver-
sion 3.6.1 [24].

Convolutional neural network
Basically, a CNN [36, 37] is a specialized kind of neu-
ral network, where some spatially invariant pat-
terns among the inputs are expected, for example 
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minimize

{

J (θ) =
1

2n

n
∑

�

i=1

yi − ŷi �
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linkage disequilibrium between nearby SNPs in the case 
of genomic data. As opposed to MLP, where hidden lay-
ers are only composed of fully connected layers, in CNN 
the hidden layers consist of convolutional layers, pool-
ing layers, and fully connected layers. During the train-
ing process, a CNN algorithm is able to capture hidden 
information in the inputs through application of “fil-
ters” or kernels in convolution layers. A filter is known 
as a collection of input values where the weights are the 
same for all input windows (e.g., SNP windows). A filter 
is moved across the input matrix, and at each SNP win-
dow of the genotype matrix, the CNN computes the local 
weighted sum and returns an output value. The learned 
filter moves to the right side of the genotype data with a 
certain window size until it explains the complete width. 
Then, the filter moves to the beginning of the next row 
with the same window size and repeats the process until 
the entire genotype matrix is traversed. To make the fil-
ters slightly invariant to small changes in the input and, 
also, for dimensionality reduction, a pooling layer is 
added after each convolutional layer. The pooling layer 
is usually applied to smooth out the results; it consists of 
merging the filter outputs of the previous convolutional 
layer by taking the mean, maximum, or minimum of all 
values of those filters. Figure 1b represents a general dia-
gram of CNN in a genomic prediction context. For more 
details on the application of DL in the genomic context, 
see Bellot et al. [13] and Pérez-Enciso and Zingaretti [34].

The initial values of hyperparameters in our CNN were 
set based on the papers by Bellot et al. [13] and Ma et al. 
[14]. Given that those studies used human and plant 
datasets, we applied the heuristic search of hyperpa-
rameters to find the most appropriate values in the back 
propagation algorithm [38]. The CNN was built with one 
input layer, one convolutional layer (16 filters), one pool-
ing layer, two fully connected layers (32 and one units, 
respectively), two dropout layers and one output layer 
(one unit). Other hyperparameter values used were 200 
for number of epochs, 64 for batch size, 0.01 for learning 
rate, 0.5 for momentum, and 0.00001 for weight decay.

The genotypic matrix was fed to the CNN as input 
layer. The first convolutional layer extracted the features 
from the input matrix using 16 filters each with 1 × 5 
window size with a stride size of 1 × 3, followed by a max-
pooling layer with window size of 1 × 2 and a stride size 
of 1 × 2. A dropout layer with a rate of 0.3 was assigned 
to the max-pooling layer. The first fully connected layer 
with 32 units was used after the convolutional layer with 
a dropout rate of 0.3. The ReLU activation function was 
applied in the convolutional layer and a softrelu func-
tion was used in the first fully connected layers. The out-
put of the first fully connected layer was then fed to the 
second fully connected layer with one unit by a softrelu 
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activation function. The output of the second fully con-
nected layer is eventually connected to the output layer 
using a linear activation function, which presents the 
individual predicted phenotypic value. The CNN method 
was fitted with DeepGS package [14] in the R language/
environment, version 3.6.1 [24].

Evaluation of methods
The predictive ability of the different methods in the real 
dataset was assessed as the correlation between predicted 
and observed phenotypes ry,ŷ and the mean squared error 
of prediction (MSE) using 10 replicates of a five-fold cross 
validation. In the simulated dataset, predictive ability was 
evaluated as the correlation between true genotypic val-
ues and predicted genomic values, using five replications 
of a five-fold cross-validation design with 10 iterations. 
Training and testing sets were the same in both the real 
data and the simulation datasets.

We compared learning machines using two different 
types of predictor variables: (i) genotypes at causal loci, 
and (ii) genotypes at SNPs. In the former case, statistical 
methods were fitted using the genotypes at causal vari-
ants as predictors. In the latter case, to mimic the real 
SNP data, QTN were excluded from the genotypic matrix 
and genomic prediction was performed using only the 
genotypes at SNPs.

It has been argued that machine-learning methods 
are data hungry; hence we used a larger dataset consist-
ing of 80,000 animals to compare the six methods. Due 
to the computational burden, only the most complicated 
simulation scenario consisting of a complex trait with 
non-additive gene action and 1000 QTN with a clustered 
distribution was tested.

All analyses were successfully completed on the UF 
Research Computing HiPerGator supercomputer (https​
://www.rc.ufl.edu).

Results
Real data
Figure 2 displays the predictive correlation (left panel) and 
the mean squared error of prediction (MSE, right panel) 
of the six prediction methods for the bull (real) dataset. 
The largest predictive correlation was delivered by GB 
(0.36) and Bayes B (0.34), followed by GBLUP (0.33), RF 
(0.32), CNN (0.29) and MLP (0.26). Among the machine-
learning approaches, the predictive correlation of CNN 
was 12% greater than for MLP, but 10% lower than for RF. 
Although predictive correlation is a simple way of meas-
uring predictive ability, MSE is a preferred metric because 
it considers both prediction bias and variance. In this 
sense, Boosting and Bayes B delivered the lowest MSE, 
followed by GBLUP, RF, CNN and MLP. Figure S1 [see 
Additional file 1: Figure S1] shows the trend of MSE in the 

training and validation sets over iterations for MLP; this 
graph clearly shows that overfitting was not an issue.

Simulation dataset
We investigated the effect of gene action, number of 
QTN and QTN distribution across the genome, and 
of sample size, on the predictive ability of the different 
methods considered. We used two sets of predictors: (i) 
genotypes at causal loci and (ii) genotypes at marker loci.

Genotypes at causal loci
The predictive ability of different methods using only 
genotypes at causal loci is shown in Fig.  3. This section 
illustrates how prediction machines work in an ideal-
ized situation where all true QTN are known. When gene 
action was purely additive, classical statistical methods 
outperformed machine-learning methods regardless of 
the number of QTN controlling the trait. Among the 
machine-learning algorithms, GB (QTN = 100) and GB 
and MLP (QTN = 1000) attained the best predictive per-
formance (Fig. 3a, c). Interestingly, CNN performed quite 
well when QTN = 100 but it was the worst method when 
QTN = 1000. When gene action was non-additive (Fig. 3b, 
d), GB exhibited the highest predictive performance among 
the six methods evaluated, regardless of the number of 
QTN controlling the trait. The predictive performance of 
the other five methods depended on the number of causal 
loci: when QTN = 100, the two deep learning algorithms 
delivered higher predictive correlations and lower MSE 
values than either GBLUP or Bayes B; however, when the 
number of QTN was large (QTN = 1000), the two classical 
statistical methods outperformed both MLP and CNN, and 
also RF (Fig. 3b). Notably, when QTN were distributed as 
clustered, the predictive ability of all methods was greater 
than when the causal loci were distributed randomly across 
the genome [see Additional file 2: Figures S2, S3, and S4].

Overall, under the same gene action, when the number of 
causal loci affecting the trait increased, the predictive cor-
relation decreased and MSE increased (Fig. 3 a, b). Clearly, 
RF did not perform well when there was a large number of 
causal loci involved, regardless of the gene action.

Genotypes at marker loci
The predictive ability of the six different learning 
machines using genotypes at marker loci under differ-
ent genetic architectures is shown in Fig.  4. Regard-
less of the number and distribution of QTN, when 
gene action was purely additive, Bayes B outperformed 
both GBLUP and the four machine-learning meth-
ods (Fig.  4a, c). Under an additive architecture, GB 
and MLP were the best machine-learning methods 
when QTN = 100 and QTN = 1000, respectively. Inter-
estingly, when there were additive, dominance and 

https://www.rc.ufl.edu
https://www.rc.ufl.edu
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epistasis effects, the performance of the six methods 
depended on the number of QTN controlling the trait. 
When a small number of QTN was simulated, the larg-
est predictive correlation was delivered by GB followed 
by Bayes B and GBLUP (Fig.  4b). However, when the 
number of QTN was large, parametric methods outper-
formed machine-learning methods (Fig. 4b, d).

Notably, machine-learning algorithms were less sen-
sitive to changes in gene action than classical paramet-
ric methods. For instance, by moving from additive to 
non-additive genetic architectures, the predictive abil-
ity of Bayes B decreased by about 15%, but the predic-
tive ability of CNN decreased by only 3%. Interestingly, 
GB exhibited a slightly better predictive performance 
in the non-additive compared to the additive genetic 
architecture when the number of QTN was large.

Sample size
Predictive ability using 80k individuals and 58k SNPs 
under different genetic architectures is shown in 
Fig.  5. Due to the computational burden, we explored 
only the most complex gene action (additive + domi-
nance + epistasis) and 1000 QTN distributed as clustered 
across the genome. In all cases, the predictive perfor-
mance increased relative to the performance attained 
with only 12k individuals. Interestingly, when 12k indi-
viduals were used, the parametric methods were bet-
ter than the deep learning methods. However, when the 
sample size was large (n = 80k), CNN outperformed clas-
sical statistical methods in terms of predictive correlation 
(0.81 vs. 0.79) but not in MSE. The gain in predictive cor-
relation via increasing sample size was more pronounced 
for deep learning than for parametric methods, e.g., 12% 

Fig. 2  Predictive correlation (left panel) and mean squared error of prediction (right panel) of two conventional statistical methods (GBLUP 
and Bayes B) and four machine-learning methods including random forests (RF), gradient boosting (Boosting), multilayer perceptron (MLP) and 
convolutional neural network (CNN) using a real dataset of sire conception rate records from US Holstein bulls. The whiskers represent 95% confidence 
intervals
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for CNN but only 3% for Bayes B. Similarly, the decrease 
in MSE by moving from 12k to 80k individuals was 0.68 
for CNN and 0.50 for Bayes B.

Discussion
Our main objective in this study was to evaluate the 
performance of deep learning algorithms for predic-
tion of complex phenotypes. Sire conception rate in cat-
tle is a complex trait and previous studies have reported 
both additive and non-additive effects on this trait [39, 
40]. Since the genetic architecture underlying SCR is 
unclear, we also investigated the performance of learning 
algorithms using simulated traits under simple (purely 
additive) and more complex conditions (joint effects of 

additive, dominance and epistatic interactions). These 
two architectures served as a ‘stress test’, since parametric 
methods may not always work well with complex genetic 
architectures.

Here, we used a simple additive model in GBLUP 
and Bayes B for the analysis of traits with non-additive 
effects. It has been reported that a statistical model com-
bining additive and epistatic effects performs better than 
a simple additive model for the analysis of quantitative 
traits with epistatic architecture [41]. Machine-learning 
methods can capture non-additive effects without any 
assumptions about gene action. Furthermore, differences 
in predictive ability among machine-learning algorithms 
could be observed because of the intrinsic ways in which 

Fig. 3  Predictive ability of two conventional statistical methods (GBLUP and Bayes B) and four machine-learning methods including random forests 
(RF), gradient boosting (Boosting), multilayer perceptron (MLP) and convolutional neural network (CNN) using genotypes at causal loci. Predictive 
ability was evaluated using predictive correlation a, b and mean squared error c, d. Different numbers of causal QTN (100 or 1000) and two 
scenarios of gene action, namely additive and a combination of additive, dominance and epistasis were investigated. The QTN were distributed as 
clustered across the entire genome.
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marker information is processed by various methods 
[42].

Our results confirmed that the performance of predic-
tion machines depends on the genetic architecture of the 
trait. Under pure additive actions, conventional statistical 
methods outperformed machine-learning approaches. 
However, when there was non-additive action, predic-
tive ability depended on the number of loci controlling 
the trait. When the trait was controlled by a small num-
ber of loci with complex gene actions, machine-learning 
algorithms performed similarly or even better than con-
ventional statistical models. Simulation results showed 
that GB had some advantages over other methods under 
complex gene action and with a small number of QTN 

(n = 100) involved. It has been argued that, for complex 
traits controlled by many genes with epistatic interaction 
effects, machine-learning methods are promising and 
have potential to outperform parametric statistical meth-
ods [11, 42–44]. In contrast, we found that machine-
learning methods might be suitable for the prediction of 
traits with a small number of QTN with strong epistatic 
effects provided that loci are clustered, as observed in 
Waldmann [16].

When prediction of additive genetic values is the pri-
mary interest, there may not be any benefit from using 
methods that capture interactions, as they do not con-
tribute much, if at all, to genetic variance. Neverthe-
less, when phenotypic predictions are desired, such as 

Fig. 4  Predictive ability of two conventional statistical methods (GBLUP and Bayes B) and four machine-learning methods including random forests 
(RF), gradient boosting (Boosting), multilayer perceptron (MLP) and convolutional neural network (CNN) using genotypes at marker loci. Predictive 
ability was evaluated using predictive correlation a, b and mean squared error c, d. Different numbers of QTN (100 or 1000) and two scenarios of 
gene action, namely additive and a combination of additive, dominance and epistasis were investigated. The QTN were distributed as clustered 
across the genome
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predicting semen fertility, machine-learning algorithms 
incorporating interaction effects may perform better 
than models capturing only additive effects [45]. It has 
also been demonstrated that deep learning algorithms 
may be useful for predicting individual genotypic value 
for traits that are affected by genotype-by-environment 
interactions [15].

In our simulations, when the number of QTN affect-
ing the trait increased from 100 to 1000, the predictive 
performance of all methods declined. An explanation 
may be that a larger sample size is needed to capture the 
tiny effects of a large number of additive, dominance and 
interaction effects. We had hypothesized that applica-
tion of DL for predicting complex traits controlled by a 

large number of loci would require a large sample size. 
Indeed, larger sample sizes improved the predictive 
ability of machine-learning methods, especially GB and 
CNN, under non-additive genetic architectures. How-
ever, a larger sample size did not translate into a marked 
improvement in prediction accuracy of the parametric 
methods. Given that the cost of genotyping and sequenc-
ing has decreased remarkably over the last decade, which 
allows now to perform studies with larger sample sizes, 
the identification of the most accurate and applicable 
prediction machine is important.

We simulated scenarios in which QTN were either 
randomly distributed across the genome or clustered in 
particular genomic regions. There is growing evidence 

Fig. 5  Predictive ability under two sample sizes, 12k and 80k individuals, for two conventional statistical methods (GBLUP and Bayes B) and four 
machine-learning methods including random forests (RF), gradient boosting (Boosting), multilayer perceptron (MLP) and convolutional neural 
network (CNN) using genotypes at causal loci. Predictive ability was evaluated using predictive correlation a and mean squared error b. The 1000 
causal QTN were distributed as clustered across the genome and gene action was a combination of additive, dominance and epistasis effects
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that supports the idea that QTN may be located in clus-
ters. For example, Wood et al. [46] found 697 significant 
hits for human height distributed in 423 distinct clusters 
in the human genome. Clustering of QTN in specific 
genomic regions could be due to selection for particular 
combinations of favorable alleles or because of sharing 
common regulatory elements [47]. Notably, we found 
that the performance of the different predictive machines 
was better when QTN were clustered. Similarly, Bellot 
et  al. [13] found that significant SNPs in clusters deliv-
ered better predictive performance than significant SNPs 
uniformly distributed over the genome.

Whole-genome prediction differs in a very important 
way from image or speech recognition tasks [33]. Com-
plex traits are multifactorial, where environmental factors 
may differ from individual to individual, and epigenetic 
marks can affect performance, so that the genotype of an 
individual may not provide sufficient information to pre-
dict phenotypes accurately [48]. However, there are some 
similarities between genomics and other domains, for 
instance genotype–phenotype associations can be viewed 
as a landscape. This landscape may have extremely steep 
valleys, where small perturbations in genotype give rise 
to vastly different phenotypes [49]. It may also have large 
plateaus, where seemingly unrelated genotypes yield an 
equivalent phenotype.

There are some caveats with the application of machine 
learning in genomics: (1) machine-learning and statisti-
cal methods both can be used in a prediction context, 
but machine-learning methods, and DL methods in par-
ticular, are not useful for inference [50]; (2) researchers 
are often more interested in the biological meaning of a 
predictive model than in its predictive accuracy, and the 
‘black box’ nature of machine-learning methods, espe-
cially neural networks with a large number of layers and 
units, can inhibit interpretation; (3) the loss function 
when studying association of genotypes with pheno-
types may present local minima and maxima, so finding 
a global optimum is probably difficult; (4) as the number 
of input variables increases, the number of weights to be 
learned in a neural network increases exponentially, so 
the chance of overfitting also increases; (5) the design of 
a proper network requires considerable knowledge; for 
instance, in CNN finding the appropriate hyper-parame-
ters for each of the convolutional, pooling, and fully con-
nected layers is very challenging, especially in terms of 
understanding the biological significance [14].

Conclusions
We trained two conventional statistical models, GBLUP 
and Bayes B, along with two tree ensemble learn-
ing methods, GB and RF, in order to compare model 
predictive ability against two common deep learning 

algorithms, MLP and CNN. For a complex phenotype 
such as sire conception rate, the best predictive perfor-
mance was obtained using GB. We also investigated the 
performance of deep learning methods in a wide range 
of genetic architectures of simulated complex traits with 
two different sample sizes. When the genetic architecture 
of a trait was purely additive, classical parametric meth-
ods outperformed machine-learning methods. However, 
when the gene action was non-additive, GB exhibited the 
best predictive performance. DL algorithms worked well 
in the non-additive setting provided that a large sample 
size was available, but their performance was not entirely 
consistent. Overall, GB is a robust method in genomic 
prediction of complex traits and DL does not appear to 
be a panacea for genome-enabled prediction of complex 
traits.
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 Additional file 1: Figure S1. Visualization of the performance of multi‑
layer perceptron (MLP) algorithm based on the mean squared error during 
the training process. 

Additional file 2: Figure S2. Predictive ability of two conventional statisti‑
cal methods (GBLUP and Bayes B) and four machine-learning methods 
including random forests (RF), gradient boosting (Boosting), multi‑
layer perceptron (MLP) and convolutional neural network (CNN) using 
genotypes at causal loci. Predictive ability was evaluated using predictive 
correlation (a, b) and mean squared error (c, d). Different numbers of QTN 
(100 or 1000) and two scenarios of gene action, namely purely additive 
(left panel) and a combination of additive, dominance and epistasis (right 
panel) were investigated. The QTN were randomly distributed across the 
genome. Figure S3. Predictive ability of two conventional statistical meth‑
ods (GBLUP and Bayes B) and four machine-learning methods including 
random forests (RF), gradient boosting (Boosting), multilayer perceptron 
(MLP) and convolutional neural network (CNN) using genotypes at marker 
loci. Predictive ability was evaluated using predictive correlation (a, b) 
and mean squared error (c, d). Different numbers of QTN (100 or 1000) 
and two scenarios of gene action, namely purely additive (left panel) and 
a combination of additive, dominance and epistasis (right panel) were 
investigated. The QTN were randomly distributed across the genome. Fig‑
ure S4. Predictive ability under two sample sizes, 12 k and 80 k individuals, 
for two conventional statistical methods (GBLUP and Bayes B) and four 
machine-learning methods including random forests (RF), gradient boost‑
ing (Boosting), multilayer perceptron (MLP) and convolutional neural net‑
work (CNN) using genotypes at marker loci. Predictive ability was evaluated 
using predictive correlation (a, b) and mean squared error (c, d). The 1000 
causal QTN were distributed as clustered across the genome and gene 
action was a combination of additive, dominance and epistasis effects
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