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Abstract 

Background: Traits recorded on animals that are raised in groups can be analysed with the social effects animal 
model (SAM). For multiple traits, this model specifies the genetic correlation structure more completely than the 
animal model (AM). Our hypothesis was that by using the SAM for genetic evaluation of average daily gain (ADG) and 
backfat thickness (BF), a high rate of improvement in feed conversion ratio (FCR) might be achieved, since unfavour‑
able genetic correlations between ADG and BF reported in a Duroc pig line could be partially avoided. We estimated 
genetic and non‑genetic correlations between BF, ADG and FCR on 1144 pigs using Bayesian methods considering 
the SAM; and responses to selection indexes that combine estimates of indirect (IGE) and direct (DGE) genetic effects 
for ADG and BF by stochastic simulation.

Results: Estimates of the ratio of the variance of DGE to the phenotypic variance were 0.31, 0.39 and 0.25 and those 
of the total genetic variance to the phenotypic variance were 0.63, 0.74 and 0.93 for ADG, BF and FCR, respectively. 
In spite of this, when the SAM was used to generate data and for the genetic evaluations, the average economic 
response was worse than that obtained when BV predictions from the AM were considered. The achieved economic 
response was due to a direct reduction in BF and not to an improvement in FCR.

Conclusions: Our results show that although social genetic effects play an important role in the traits studied, their 
proper consideration in pig breeding programs to improve FCR indirectly is still difficult. The correlations between IGE 
and DGE that could help to overcome the unfavourable genetic correlations between DGE did not reach sufficiently 
high magnitudes; also, the genetic parameters estimates from the SAM have large errors. These two factors penalize 
the average response under the SAM compared to the AM.
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Background
Since feed represents the largest cost of pig production, 
improving feed efficiency would result in a high eco-
nomic benefit [1]. For this reason, breeding programs 
either directly or indirectly focus on improving this trait. 
Traditionally, indirect improvement in feed efficiency has 
been achieved by improving growth rate while reduc-
ing backfat thickness (BF) [2], but reaching such a joint 

objective can be difficult because these traits are under 
antagonist genetic control [3, 4]. The major challenge in 
breeding programs that address feed efficiency directly is 
that individual feed intake needs to be recorded. When 
animals are raised in group pens, this trait can be meas-
ured only by using electronic feeders, which assumes 
a significant investment and greatly increases the pro-
duction costs in the breeding program. In this context, 
when animals are housed in groups, feed efficiency traits, 
as with any other performance trait, can be affected by 
social interactions; a concept that was first introduced by 
Griffing 1976 [5]. The social effects animal model (SAM) 
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assumes that a trait is controlled by two genetic effects: 
the direct genetic effect (DGE) due to genes that have 
a direct effect on the performance of the animal itself, 
and indirect genetic effect (IGE) due to genes of its pen 
mates that act on the animal that is recorded [6]. By using 
the SAM, Nielsen et al. [7] and Ragab et al. [8] reported 
a better predictive ability for growth traits in pigs com-
pared to that of a model without IGE.

In this study, our aim was to explore whether the 
expected response in feed conversion ratio (FCR), as a 
result of indirect selection for average daily gain (ADG) 
and BF when using the SAM for genetic evaluation, is 
improved compared to that achieved when using the 
traditional animal model (AM). In this analysis, we 
accounted for the uncertainty regarding the genetic 
and non-genetic parameters that are required to con-
duct the evaluation of the selection candidates. For 
the Duroc population considered in this study, we have 
already reported genetic correlation estimates between 
performances (ADG and BF) and feed efficiency traits 
(FCR) using the AM and SAM [9]. Based on these esti-
mates, some advantages for the use of the SAM would 
be expected for indirect genetic improvement of FCR 
because it enables different selection pressures to be 
placed on direct versus indirect genetic effects for traits 
with unfavourable genetic correlations, thereby partially 
avoiding the estimated antagonist genetic relationship 
under the traditional animal model.

Methods
Animals
Performance during the growing period was recorded on 
1144 Duroc pigs in 10 batches from 2007 to 2017 at the 
Center of Porcine Evaluation (Monells, Girona, Spain) 
using IVOG feeding stations (Insentec, Markenesse, The 
Netherland) with one single-space electronic feeder per 
pen. Herrera-Cáceres et al. [9] described the Duroc line 
used in this study in detail. The population under study 
was housed in 97 pens and pen size varied from 7 to 
15 animals, with an average pen size of 12.0 ±  1.5 ani-
mals. Age of the animals at the beginning and the end of 
the fattening period was 70 ± 6 days and 177 ± 9 days, 
respectively.

Description of traits
For this study, average daily gain (ADG, kg), feed conver-
sion ratio (FCR, kg/kg), and backfat thickness (BF, mm) 
were computed at 180 days of age, as described by Her-
rera-Cáceres et al. [9]. Basic statistics for these traits are 
in Table 1.

Statistical model
A multi-trait linear model was fitted to ADG, BF, and 
FCR. The same systematic effects were considered for the 
three traits: batch, age at the end of the fattening period 
(covariate), and number of pigs per pen (covariate). In 
addition, pen, litter, and genetic effects were included. 
The genetic component of the model was accounted for 
by fitting direct and indirect genetic effects separately [6], 
as in the SAM. This three-trait model is represented by 
the following equation:

where y1 , y2 and y3 are the vectors of observations for the 
first (ADG), second (BF) and third (FCR) trait, respec-
tively, b is a vector of systematic effects with incidence 
matrix X ; p is a vector of pen effects with incidence 
matrix Zp ; l is a vector of litter effects with incidence 
matrix Zl ; d is a vector of direct genetic effects with inci-
dence matrix Zd , and s is a vector of indirect genetic 
effects with incidence matrix Zs . The elements of Zs are 
1 for records from animals that share the same pen and 0 
otherwise; e is a vector of residuals.

The prior distributions of pen, litter and residual effects 
were: p |P0 ∼ N

(
0,P0 ⊗ Ip

)
 , l|L0 ∼ N (0,L0 ⊗ Il) , and 

e|R0 ∼ N (0,R0 ⊗ Ir) , where Ip,Il and Ir are identity 
matrices of appropriate dimensions, P0, L0 and R0 are 
3  ×  3 covariance matrices for the three traits, and ⊗ 
denotes the Kronecker product. All factors were assumed 
to be independent, except direct and indirect genetic 
effects, for which the assumed prior distribution was: 
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Table 1 Descriptive statistics for growing Duroc pigs

Trait Abbreviation Number of observations Min Mean Max SD

Average daily gain, kg/day ADG 1144 0.22 0.82 1.07 0.09

Backfat thickness, mm BF 1144 6.44 18.19 32.74 4.40

Feed conversion ratio, kg/kg FCR 1144 2.07 2.77 3.89 0.24
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[
d
s

]
|G0 ∼ MVN(0,G0 ⊗ A) , where A is the numerator 

relationship matrix between individuals and G0 is the 
covariance matrix, containing the following elements:

where σ 2
di

 are the direct genetic variances for each trait 
i = 1, 2 and 3; σ 2

si
 are the indirect genetic variances for 

each trait i = 1, 2 and 3; and the off-diagonal elements 
represent covariances, either between direct and indirect 
genetic effects within, σdi,si , or across traits, σdi,sj ; or for 
the same genetic effect across traits, i.e. direct genetic 
effects ( σdi,dj ) or indirect genetic effects ( σsi,sj).

Variance components were estimated by using Bayes-
ian procedures. Flat priors were used for the systematic 
effects ( b ) and for all variance components previously 
described, i.e. P0 , L0 , G0 and R0 . Marginal posterior dis-
tributions of the variance components were sampled 
using the Gibbs sampling algorithm, with the gibbs2f90 
program [10]. Chains of 1,000,000 samples were run and 
the first 100,000 iterations were discarded in order to 
allow the algorithm to converge to the posterior distri-
butions. Then, one sample every 10 iterations was saved. 
Convergence of the Markov chains was assessed by vis-
ual inspection of the trace plots. Additional file 1: Figure 
S1 contains the trace plots of the Markov chains for the 
genetic correlations and heritabilities of the three traits. 
Then, marginal posterior distributions of the genetic 
parameters (ratios of variances and correlations) and 
genetic responses under different evaluation procedures 
and economic conditions were characterized based on 
the saved samples of the joint posterior distribution of 
the variance components.

To characterize the marginal posterior distribution 
of response to selection (RS) stochastic simulation was 
used. Each replicate of the stochastic simulation was 
defined by three arguments: (a) the variance components 
used for generating the data, which was based on a saved 
sample from the posterior distibutions, (b) the genetic 
evaluation procedure, i.e. SAM or AM, and (c) the selec-
tion index used to rank candidates. The last two argu-
ments define the relevant scenarios in our study, with the 
uncertainty of RS due to the uncertainty about the vari-
ance components being evaluated based on changes in 
the first argument across the different replicates.

Due to computational time constraints, we did not use 
all saved samples from the joint posterior distribution 
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of the variance components. Instead, we used a random 
subset of 1000 vectors from the joint distribution to 
characterize the marginal posterior distributions of the 
expected genetic responses under different scenarios. For 
a particular replicate within a given scenario, the simula-
tion to evaluate RS started by taking one sample from the 
posterior distribution of the variance components. Based 
on these variance components, new ADG, BF and FCR 
records were generated using a SAM that was similar to 
the model used for the analysis of the Duroc data, i.e. 
with random litter, pen, DGE and IGE effects, along with 
litter size, parity order, and batch effects as systematic 
factors. The simulations were conducted assuming an 
infinitesimal model [11], i.e., breeding values were sam-
pled from a multivariate normal distribution.

For the genetic evaluation, only BF and ADG records 
were considered, using either the SAM or the AM. For 
the SAM, predictions of breeding values were obtained 
by solving the mixed model equations with variance com-
ponents equal to those used in the simulation (best linear 
unbiased prediction (BLUP)). For the AM, predictions 
of breeding values were obtained by solving the mixed 
model equations associated with the AM, with variance 
components equal to those obtained in a previous resid-
ual maximum likelihood (REML) step (REML-BLUP) on 
the data generated in that replicate. The programs used 
to obtain the predictions of breeding values were blupf90 
and remlf90 [10].

Within each scenario, the complete procedure was 
repeated for each one of the 1000 samples of the poste-
rior variance components retained. The simulated data-
sets mimicked the management of a pig selection nucleus 
of 400 sows and 20 boars, where mating between close 
relatives, i.e. with common grand-parents, was avoided. 
Reproduction was organized in four batches per genera-
tion, but the genetic evaluations and selection process 
were performed using the first two batches of each gen-
eration. The other two batches generated information 
for genetic evaluation in the next generation. Each batch 
comprised approximately 2500 selection candidates (50% 
females) in pens of eight animals, litters were processed 
by order, thus, in general, each pen included animals 
from more than one litter; in general, less than 25% of the 
pens were formed by animals from a single litter. The best 
200 females from the batch were selected and the males 
were selected within sire families, thus the best offspring 
from each sire family was selected. Given that candi-
dates were generated in two batches the average ratio off-
spring/sow was 12.5

The alternative scenarios to evaluate RS were defined 
by the different indexes used to rank the animals. The 
objective was to reduce BF while increasing ADG, 
but with different assigned weights. When the genetic 



Page 4 of 10Herrera‑Cáceres and Sánchez  Genet Sel Evol           (2020) 52:53 

evaluation relied on REML-BLUP predictions from the 
AM, selection indexes were defined by assigning alterna-
tive weights to predictions of breeding values for ADG 
and BF (Table  2). When the SAM was used to evalu-
ate animals (BLUP), two sets of weights were consid-
ered in the selection index, one to define the strength 
on one trait versus the other (ADG or BF) and the other 
to control the strength on DGE or IGE (Table  2). Thus, 
the resulting total number of scenarios assessed was the 
combination of these two and reached 25 (Table 2). The 
following equation defines the selection index value for 
individual i:

where ̂ADGDGEi , ̂ADGIGEi , B̂FDGEi , and B̂FIGEi are pre-
dicted breeding values of DGE and IGE for ADG and 
BF of individual i ; WDGE and WIGE are economic weights 
for DGE and IGE, respectively, the number 7 represents 
the number of pen mates (n-1), i.e. the IGE of individual 
i is exerted over seven pen mates; and WADG and WBF 
are economic weights for ADG and BF, respectively. In 
order to evaluate the accuracy of the selection index, we 
calculated the correlations between true and predicted 
breeding values of the traits included in the index and the 
correlations between true and predicted indexes values 
for all scenarios.

As stated above, during data generation, ADG, BF and 
FCR records were obtained in the first two batches in 
each generation; ADG and BF information was used to 
take selection decisions while FCR was used just to assess 
the correlated response after selection for the proposed 
indexes. In addition, three profit traits (€), B1, B2 and B3, 
were derived based on three profit functions that repre-
sent three Spanish or European markets: B1 was based 
on a market without any constraint on BF; B2 repre-
sents a lean meat production market in which a penalty 
is applied if BF is outside the 6 to 10 mm range; and B3 
represents a fat meat production market, in which a pen-
alty is applied if BF is outside the 10 to 20 mm range. The 
general equation used to compute these profit traits was:

where Bi is the profit for individual i , FBWi is the live 
body weight at the end of the fattening period (assumed 
constant = 110 kg) of individual i , PBW  is the price per 
kg (1.164 €/kg), Ppl is the price of a piglet (35 €/piglet), 
FCRi is the FCR of individual i , IBWi is the initial body 
weight (assumed constant = 20  kg) of individual i , Pfd 

(2)

Îi = WADG ∗

(
WDGE ∗ ̂ADGDGEi

+WIGE ∗ 7 ∗ ̂ADGIGEi

)

−WBF ∗

(
WDGE ∗ B̂FDGEi +WIGE ∗ 7 ∗ B̂FIGEi

)
,

(3)

Bi =(FBWi ∗ PBW )−
(
Ppl + FCRi ∗ (FBWi − IBWi)

∗Pfd + Pfx ∗
FBWi − IBWi

ADGi

)
− PenaltyBFi

is the price of feed (0.252 €/kg), Pfx is the fixed cost for 
daily maintenance of pigs on the farm (0.09 €/d), and 
PenaltyBFi is the penalty that is applied based on BF. 
In both scenarios with penalties on BF (B2 and B3), the 
penalization is based on a price reduction per BF mm 
outside of the valid limits (0.012 €/mm). The assumed 
production costs and the prices needed to define the 
profit function were based on the Spanish market [12].

The simulation was run for five generations and 
responses for the three biological traits and the three 
profit traits were defined as linear regression coefficients 
of the average phenotype of traits across selection candi-
dates in a given generation on generation number. One 
thousand regression coefficients were obtained for each 
trait and scenario, one for each sample from the joint 
posterior distribution of the variance components in 
the SAM. Thus, each regression coefficient can be inter-
preted as a sample from the marginal posterior distribu-
tion of the RS for that trait for a given scenario. Based 
on this procedure, we can characterize the expected RS 
as well as the uncertainty of this expectation, the latter 
being a consequence of errors in the estimates of vari-
ance components.

The simulation process was implemented in a software 
pipeline that combined own Fortran90 code for data 
generation and R code to edit the data and to compose 
parameter files needed to run the genetic evaluation pro-
grams (remlf90 or blupf90) and to create the list of the 
selected males and females, which was then read by the 
Fortran90 program for us as parents of the next genera-
tion. This complete pipeline package is available upon 
request.

The complete procedure, i.e. based on simulations 
using samples of the posterior distribution of the vari-
ance components from the SAM, was repeated for 
samples from the posterior distribution of variance com-
ponents obtained from the AM. The AM had the same 
factors and prior structure as the SAM, except that a sin-
gle additive genetic effect was fitted for each trait instead 
of both DGE and IGE. Thus, the genetic covariance 
matrix under this model was a 3 × 3 matrix. The simu-
lated data for assessment of RS was based on an AM that 
fitted litter, pen, and additive genetic effects as random 
factors, and litter size, parity order, and batch as system-
atic effects. The genetic evaluation conducted for each 
generation was based on the same AM that generated the 
data by setting the variance components to those used for 
generating the data (BLUP). In this assessment, which did 
not fit social genetic effects, the same scenarios as those 
considered when data were generated with the SAM but 
the evaluation was conducted with the AM were assessed 
(Table 2).
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Results
For the three biological traits, we estimated genetic 
parameters using the SAM (see Table  3). Estimates of 
heritability ( h2 ) for ADG, BF, and FCR were moderate to 
high, 0.31 ±  0.09, 0.39 ±  0.10 and 0.25 ±  0.07, respec-
tively. The ratios of total breeding value variance and 
total phenotypic variance ( T 2 ) were clearly larger than h2 
for all three traits, which shows the importance of IGE 
for these traits. Another argument in favour of using 
the SAM to fit our dataset is that the deviance informa-
tion criteria (DIC) value [13] associated with this model 
was clearly lower, than for the AM, i.e., 7268.53 versus 
7524.59. For each trait, the genetic correlation between 
DGE and IGE (Table  3) was not statistically different 
from zero because the marginal posterior probabili-
ties of the genetic correlation being higher than 0 were 
not greater than 0.95 or smaller than 0.05. Estimates of 

genetic correlations of DGE between traits (Table 3) were 
similar to those obtained with the AM (parameter esti-
mates based on the AM are in Additional file 2: Table S1). 
The estimated genetic correlations were positive between 
ADG and BF and between BF and FCR, whereas the 
estimated correlation between ADG and FCR was not 
statistically different from 0. With the SAM, the only 
estimated genetic correlation between IGE that could be 
considered as statistically different from 0 was between 
ADG and BF (0.59 ±  0.26). For the genetic correlations 
between IGE and DGE, only the correlation between 
DGE of FCR and IGE of ADG was statistically different 
from 0 (0.70 ± 0.25).

Table  4 shows the estimates of RS for ADG, BF, and 
FCR, and for B1, B2, and B3. In total, 25 scenarios were 
assessed based on different economic weights assigned 
to the traits in the selection index (ADG and BF) and to 
the genetic effects (DGE and IGE). In general, estimates 
of correlated responses in FCR were not statistically dif-
ferent from 0 for any scenario, i.e. the posterior proba-
bility of the response being positive or negative was less 
than 0.9 (positive response) or less than 0.1 (negative 
response). There were only two exceptions to this general 
pattern, which was when all the weight was allocated to 
the IGE ( WIGE = 100%), with a distribution of the weight 
across traits of WADG = 75%– WBF = 25% and WADG = 
100%– WBF = 0%, in these cases unfavourable positive 
responses (i.e. 0.07) were predicted. For responses in 
profit, only the profit in the lean meat production mar-
ket resulted in favourable responses that were statisti-
cally different from 0, primarily for the scenarios with 
an economic weight of at least 50% on BF. Among these 
scenarios, the two best ones were when the same weight 
was assigned to ADG and BF and the weight on genetic 
effects were WDGE = 100%– WIGE = 0% and WDGE = 
75%– WIGE = 25% (2.35 and 2.24 €/pig, respectively). 

Table 2 Economic weights assigned in the selection index 
to average daily gain (ADG) and backfat thickness (BF)

a The five scenarios with the classic animal model. Index for AM: 
Îj = WADG ∗ ÂDGj −WBF ∗ B̂Fj
b The 25 scenarios with the animal model including direct (DGE) and indirect  
(IGE) genetic effects are obtained by combining each element of the column  
WDGE −WIGE (%)—weights on the DGE or the IGE—with the weights in the column  
to its left. Index for SAM: Îj = WADG ∗

(
WDGE ∗ ÂDGDGEj +WIGE ∗ 7 ∗ ÂDGIGEj

)
−WBF∗ 

(
WDGE ∗ B̂FDGEj +WIGE ∗ 7 ∗ B̂FIGEj

)

Five scenarios 
 AMa

25 scenarios  SAMb

WADG −WBF (%) WADG −WBF (%) WDGE −WIGE 
(%)

Economic values 0–100 0–100 0–100

25–75 25–75 25–75

50–50 50–50 50–50

75–25 75–25 75–25

100–0 100–0 100–0

Table 3 Posterior mean (posterior SD) of direct heritability, total heritability, genetic correlations, and variances of direct 
and indirect genetic effects (diagonal)

Estimates obtained using the multi‑trait social animal model
a ADG: average daily gain, BF: backfat thickness, FCR: feed conversion ratio, DGE: direct genetic effect, IGE: indirect genetic effect, h2 : ratio of direct genetic effect 
variance to total phenotypic variance, T2 : ratio of the total breeding value variation and the total phenotypic variance, σ 2

Phe
 : the total phenotypic variance

*Probability of being higher than 0 was higher than 0.95 or lower than 0.05

Trait h
2

T
2

σ
2

Phe
Genetic effect
of traits

ADGDGE ADGIGE BFDGE BFIGE FCRDGE FCRIGE

ADGa 0.31 (0.09) 0.63 (0.22) 0.75 (0.05) ADGDGE 0.24 (0.08) − 0.29 (0.25) 0.52 (0.17)* − 0.19 (0.34) − 0.03 (0.22) − 0.35 (0.32)

ADGIGE 4 × 10−3 (1 × 10−3) 0.24 (0.29) 0.59 (0.26)* 0.70 (0.25)* 0.18 (0.36)

BF 0.39 (0.10) 0.74 (0.27) 11.84 (0.84) BFDGE 4.69 (1.24) − 0.09 (0.36) 0.33 (0.19)* − 0.34 (0.31)

BFIGE 0.04 (0.02) − 0.07 (0.38) 0.33 (0.38)

FCR 0.25 (0.07) 0.93 (0.43) 4.44 (0.44) FCRDGE 1.10 (0.34) − 0.17 (0.37)

FCRIGE 0.03 (0.02)
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Table 4 Posterior mean (posterior SD) of the responses to selection for 25 indexes

Data were simulated using variance component samples from the marginal posterior distribution of the social animal model and the responses were obtained in five 
generations of selection evaluating candidates using the social animal model
a ADG: average daily gain, BF: backfat thickness, FCR: feed conversion ratio, WADG −WBF : proportion of economic weight assigned to ADG and BF in the selection 
index, WDGE −WIGE : proportion of economic weight assigned to direct (DGE) and indirect (IGE) genetic effects of traits in the selection index, B1: economic benefit in 
a non‑BF‑constrained market, B2: economic benefit with BF penalty out of the range 6 to 10 mm, B3: economic benefit with BF penalty out of the range 10 to 20 mm, 
ρ(I, Î) : correlation between predicted 

(
Î
)
 and true value ( I  ) of the index

*Probability of being higher than 0 was higher than 0.95 or lower than 0.05

WADG −WBF , %a 0–100 25–75 50–50 75–25 100–0

WDGE −WIGE , % 0–100 0–100 0–100 0–100 0–100

ADG, kg − 0.01 (0.02) 0.00 (0.02) 0.01 (0.02) 0.02 (0.02) 0.02 (0.02)

BF, mm − 0.88 (1.24) − 0.56 (1.26) 0.74 (0.97) 1.50 (0.97)* 1.54 (0.99)*

FCR, kg/kg − 0.04 (0.05) − 0.02 (0.06) 0.03 (0.05) 0.07 (0.05)* 0.07 (0.05)*

B1, € 0.71 (1.26) 0.44 (1.32) − 0.62 (1.26) − 1.28 (1.16) − 1.31 (1.13)

B2, € 1.53 (1.82) 0.93 (1.93) − 1.62 (1.42) − 3.26 (1.67)* − 3.34 (1.71)*

B3, € 0.46 (1.37) 0.17 (1.43) − 1.30 (1.22) − 2.64 (1.52)* − 2.72 (1.54)*

ρ(I, Î) 0.54 (0.08) 0.54 (0.08) 0.54 (0.09) 0.58 (0.08) 0.57 (0.08)

WADG −WBF , % 0–100 25–75 50–50 75–25 100–0

WDGE −WIGE , % 25–75 25–75 25–75 25–75 25–75

ADG, kg − 0.03 (0.02)* − 0.02 (0.02) 0.01 (0.02) 0.04 (0.02)* 0.04 (0.02)*

BF, mm − 2.02 (0.99)* − 1.83 (1.03)* 0.02 (0.75) 1.84 (0.88)* 2.01 (0.89)*

FCR, kg/kg − 0.03 (0.05) − 0.02 (0.05) 0.03 (0.05) 0.05 (0.05) 0.05 (0.05)

B1, € 0.20 (1.25) 0.09 (1.26) − 0.54 (1.20) − 0.81 (1.16) − 0.75 (1.16)

B2, € 2.01 (1.44)* 1.78 (1.50) − 0.59 (1.28) − 3.23 (1.65)* − 3.40 (1.70)*

B3, € − 0.31 (1.41) − 0.33 (1.41) − 0.69 (1.17) − 2.53 (1.55)* − 2.68 (1.61)*

ρ(I, Î) 0.57 (0.08) 0.56 (0.08) 0.49 (0.09) 0.56 (0.07) 0.57 (0.07)

WADG −WBF , % 0–100 25–75 50–50 75–25 100–0

WDGE −WIGE , % 50–50 50–50 50–50 50–50 50–50

ADG, kg − 0.04 (0.02)* − 0.03 (0.02)* 0.01 (0.01)* 0.05 (0.01)* 0.05 (0.01)*

BF, mm − 2.45 (0.74)* − 2.41 (0.73)* − 0.87 (0.45)* 1.54 (0.86)* 1.93 (0.81)*

FCR, kg/kg − 0.02 (0.05) − 0.02 (0.05) − 0.01 (0.05) 0.01 (0.05) 0.01 (0.05)

B1, € − 0.27 (1.25) − 0.11 (1.26) 0.48 (1.13) 0.35 (1.1) 0.28 (1.16)

B2, € 1.81 (1.29)* 1.97 (1.31)* 1.55 (1.28) − 1.68 (1.71) − 2.27 (1.73)*

B3, € − 0.99 (1.37) − 0.79 (1.39) 0.56 (1.12) − 1.02 (1.57) − 1.53 (1.66)

ρ(I, Î) 0.65 (0.07) 0.65 (0.07) 0.58 (0.07) 0.60 (0.07) 0.61 (0.06)

WADG −WBF , % 0–100 25–75 50–50 75–25 100–0

WDGE −WIGE , % 75–25 75–25 75–25 75–25 75–25

ADG, kg − 0.04 (0.02)* − 0.03 (0.02)* 0.00 (0.01) 0.04 (0.02)* 0.04 (0.02)*

BF, mm − 2.35 (0.76)* − 2.32 (0.77)* − 1.21 (0.65)* 0.74 (0.95) 1.29 (0.89)*

FCR, kg/kg − 0.01 (0.06) − 0.02 (0.06) − 0.04 (0.06) − 0.03 (0.05) − 0.02 (0.05)

B1, € − 0.49 (1.27) − 0.16 (1.32) 0.85 (1.23) 1.09 (1.07) 0.98 (1.06)

B2, € 1.56 (1.30)* 1.88 (1.35)* 2.24 (1.48)* 0.11 (1.77) − 0.72 (1.70)

B3, € − 1.14 (1.41) − 0.79 (1.43) 0.83 (1.21) 0.44 (1.42) − 0.13 (1.51)

ρ(I, Î) 0.69 (0.06) 0.70 (0.06) 0.65 (0.07) 0.63 (0.07) 0.63 (0.06)

WADG −WBF , % 0–100 25–75 50–50 75–25 100–0

WDGE −WIGE , % 100–0 100–0 100–0 100–0 100–0

ADG, kg − 0.04 (0.02)* − 0.03 (0.02)* 0.00 (0.01) 0.03 (0.02)* 0.04 (0.02)*

BF, mm − 2.24 (0.80)* − 2.23 (0.81)* − 1.38 (0.80)* 0.26 (1.03) 0.84 (0.96)

FCR, kg/kg 0.00 (0.06) − 0.01 (0.06) − 0.04 (0.06) − 0.05 (0.05) − 0.04 (0.05)

B1, € − 0.61 (1.28) − 0.22 (1.34) 0.86 (1.26) 1.33 (1.12) 1.27 (1.05)

B2, € 1.40 (1.31) 1.78 (1.37)* 2.35 (1.52)* 0.95 (1.83) 0.15 (1.77)

B3, € − 1.18 (1.42) − 0.79 (1.46) 0.74 (1.24) 0.94 (1.34) 0.53 (1.42)

ρ(I, Î) 0.69 (0.06) 0.70 (0.06) 0.66 (0.07) 0.63 (0.07) 0.63 (0.06)



Page 7 of 10Herrera‑Cáceres and Sánchez  Genet Sel Evol           (2020) 52:53  

Unfavourable economic responses were estimated 
when all the weight was assigned to the IGE ( WDGE = 
0%– WIGE = 100%) and the distributions of this weight 
across traits were WADG = 75%– WBF = 25% and WADG = 
100%– WBF = 0% (− 3.26 and -− 3.34 €/pig respectively). 
In these two scenarios, unfavourable responses on FCR 
were also estimated. Table 4 includes the accuracy of the 
index predictions, i.e. the correlations between predicted 
and true values for the indexes. As the weight was moved 
from IGE to DGE, the accuracy of the indexes increased 
from 0.54–0.58 to 0.63–0.70, depending on the weights 
assigned to the traits. In general, accuracy of the indexes 
also increased when the weight assigned to BF increased. 
More details are in Additional file 3: Tables S2, S3 and S4, 
which also present the accuracies of predictions of IGE, 
DGE and TBV.

When the data were generated using the SAM and 
genetic evaluations were based on the AM, the overall 
pattern of correlated responses in FCR was similar to 
that described for genetic evaluations based on the SAM 
(Table 5). Estimated responses in FCR were not statisti-
cally different from 0 for any distribution of economic 
weight between BF and ADG. For profit traits, only B2 
had responses that were statistically different from 0, 
which occurred when the weight on BF was at least 50%, 
i.e. 2.02, 1.72 and 1.43 €/pig, for weights on BF of 50, 75 
and 100%, respectively. The pattern of the correlations 
between the predicted values of the indexes and the real 
values of the index computed based on TBV predictions 
(Table 5) was also similar to that of the accuracies of the 
index when data were both simulated and analysed with 
the SAM (Table  4). These correlations increased as the 
weight assigned to BF increased and were comparable 
to those reported in Table 4 when the same weight was 
assigned to IGE and DGE ( WIGE = 50 and WDGE = 50). 
As expected, these correlations were higher when the 

SAM (Table 4) was used for the genetic evaluation than 
when the AM was used (Table 5). These higher correla-
tions for SAM have consequences on direct responses for 
ADG and BF, which were slightly higher when the SAM 
was used for genetic evaluation (Table  4). However, it 
should be noted that the data were generated using the 
SAM for both these cases.

As a baseline situation, we explored the genetic 
responses when IGE were ignored during the process 
of data generation (i.e. AM) and also during the genetic 
evaluation of the candidates, which was conducted by 
applying an AM with the variance components set to 
values that were used for the simulation in each replicate 
(Table  6). The most remarkable feature of this baseline 
situation was the decrease in the magnitude of the stand-
ard deviations of the marginal posterior distributions of 
the responses compared to those in Tables 4 and 5. In this 
case, the maximum value of the ratio between posterior 
standard deviation and posterior mean, across traits and 
scenarios, was 29.7, while it was only 9.3 when the SAM 
was used for simulation and genetic evaluations was con-
ducted using the AM (Table 5) and as high as 37.5 when 
the genetic evaluation was done with the SAM (Table 4). 
When data were simulated using the AM, responses in 
FCR were statistically different from 0 for the two sce-
narios in which most of the weight was assigned to BF. In 
these two scenarios, favourable economic responses were 
also estimated not only for markets with and without 
constraints on BF (3.04 and 3.05 €/pig for B2 and 0.92 €/
pig and 0.96 €/pig for B1). In addition, positive economic 
responses were obtained in the scenario in which ADG 
and BF had similar weights for both B1 and B2 (0.70 €/pig 
and 2.09 €/pig, respectively), but in this case the response 
in FCR was not statistically different from 0. In the 
baseline scenario, the accuracy of the selection indexes 
ranged from 0.58 to 0.69, and the largest accuracies were 

Table 5 Posterior mean (posterior SD) of the responses to selection for five indexes

Data were simulated using variance component samples from the marginal posterior distribution of the social animal model and the responses were obtained in five 
generations of selection evaluating candidates using the classical animal model
b ADG: average daily gain, BF: backfat thickness, FCR: feed conversion ratio, WADG −WBF : proportion of economic weight assigned to ADG and BF in the selection 
index, B1: economic benefit in a non‑BF‑constrained market, B2: economic benefit with BF penalty out of the range 6 to 10 mm, B3: economic benefit with BF penalty 
out of the range 10 to 20 mm, ρ(I, Î) : correlation between predicted 

(
Î
)
 index value and true value of the total breeding value (TBV)

*Probability of being higher than 0 was higher than 0.95 or lower than 0.05

WADG–WBF, %
a 0–100 25–75 50–50 75–25 100–0

ADG, kg − 0.04 (0.02)* − 0.03 (0.02)* 0.00 (0.01) 0.04 (0.02)* 0.04 (0.02)*

BF, mm − 2.29 (0.74)* − 2.29 (0.74)* − 1.21 (0.66)* 0.86 (0.94) 1.36 (0.85)*

FCR, kg/kg 0.00 (0.05) − 0.01 (0.05) − 0.03 (0.05) − 0.02 (0.05) − 0.02 (0.04)

B1, € − 0.62 (1.20) − 0.34 (1.25) 0.64 (1.17) 0.96 (1.01) 0.89 (0.99)

B2, € 1.43 (1.22)* 1.72 (1.28)* 2.02 (1.41)* − 0.18 (1.67) − 0.90 (1.59)

B3, € − 1.21 (1.35) − 0.92 (1.38) 0.62 (1.14) 0.22 (1.34) − 0.28 (1.42)

ρ(ITBV , Î) 0.60 (0.09) 0.60 (0.09) 0.53 (0.1) 0.52 (0.1) 0.54 (0.1)
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obtained in the scenarios where most of the weight was 
assigned to BF.

Discussion
In general, genetic parameters estimated with the SAM 
are subject to large estimation errors. In our case, these 
errors were particularly large because of the small size of 
our dataset, but other studies that used much larger data-
sets reported a similar magnitude of errors [7, 14–17]. 
Thus, this could be due to the limited amount of infor-
mation in pig datasets to separate direct from indirect 
genetic effects, as well as the within-pen sum of indirect 
genetic effects from other factors such as pen effects [18]. 
Consequently, the assessment of response to selection 
when a SAM is proposed to evaluate selection candi-
dates has to take such estimation errors into account. To 
accomplish this, we used Monte Carlo methods to inte-
grate variation of the posterior distribution of the vari-
ance components on genetic response predictions out. 
Since the function to assess the genetic response is com-
plex, i.e. based on stochastic simulation, we took advan-
tage of the availability of a computational cluster to afford 
the computations.

As expected, the uncertainty of the expected responses 
was much larger when the SAM was used for generat-
ing the data and for evaluation than when the AM was 
used. Direct responses in ADG and BF were only slightly 
smaller when the AM was used to rank the candidates 
(Table 5) than when the SAM was used to rank the can-
didates and the same weight was assigned to both IGE 
and DGE (Table  4). These findings indicate that using 
a different model to that used for data generation is 
not the most important factor for a decrease in accu-
racies and responses. The fact that similar patterns of 
direct responses in ADG and BF were observed when 

the evaluation was conducted using the SAM or AM 
could be explained by the large uncertainty on the model 
parameters for generating the data, which dominated the 
results for both models. In  situations where these errors 
would have a lower magnitude, using the wrong model for 
genetic evaluation is expected to have a stronger impact. 
Previous studies have addressed the theoretical magnitude 
of the estimation errors of genetic parameters with the 
SAM and reported difficulties associated with estimations 
based on such models [14, 18, 19]. However, to the best of 
our knowledge, none of these studies have addressed the 
consequences that these large estimation errors can have 
on the expected genetic responses to selection.

Our initial hypothesis was that using the SAM for the 
genetic evaluation would allow us to take advantage of 
genetic correlations among DGE and IGE of traits, which 
might help to alleviate the unfavorable genetic correlations 
that exist between BF and ADG, or between ADG and 
FCR: for example, a negative genetic correlation between 
IGE of FCR and DGE of ADG. Based on our results, this 
hypothesis does not hold for the population under study 
because the highest economic responses were obtained 
when the AM was used for genetic evaluation (Table  6). 
As mentioned, this result can be explained by the fact that 
the use of a complex model introduces a large uncertainty 
on genetic parameter estimates, which translates to uncer-
tainty in responses to selection. This, in turn, prevented 
responses from the SAM, which were of similar magnitude 
to those estimated when the AM was used, to be declared 
as significantly different from 0. This larger uncertainty 
on model parameters of the more complex models also 
reduces prediction accuracies (Tables 4, 5 and 6), and see 
Additional file 3: Table S2, particularly when most of the 
weight is assigned to IGE or to ADG, which also has con-
sequences on observed responses to selection.

Table 6 Posterior mean (posterior SD) of  the  responses to  selection for  five indexes when  data were generated 
with the animal model

Data were simulated using variance component samples from the marginal posterior distribution of the classical animal model and the responses were obtained in 
five generations of selection evaluating candidates using also the classical animal model
a ADG: average daily gain, BF: backfat thickness, FCR: feed conversion ratio, WADG −WBF : proportion of economic weight assigned to ADG and BF in the selection 
index, B1: economic benefit in a non‑BF‑constrained market, B2: economic benefit with BF penalty out of the range 6 to 10 mm, B3: economic benefit with BF penalty 
out of the range 10 to 20 mm, ρ(I, Î) : correlation between predicted 

(
Î
)
 and true value ( I  ) of the index

*Probability of being higher than 0 was higher than 0.95 or lower than 0.05

WADG–WBF, %
a 0–100 25–75 50–50 75–25 100–0

ADG, kg − 0.01 (0.01) − 0.01 (0.01) 0.01 (0.01)* 0.03 (0.01)* 0.03 (0.01)*

BF, mm − 2.11 (0.56)* − 2.04 (0.55)* − 1.15 (0.52)* 0.44 (0.94) 0.95 (0.87)

FCR, kg/kg − 0.05 (0.02)* − 0.05 (0.02)* − 0.02 (0.03) 0.01 (0.04) 0.02 (0.04)

B1, € 0.92 (0.60)* 0.96 (0.61)* 0.70 (0.74)* 0.03 (0.89) − 0.22 (0.85)

B2, € 3.04 (0.75)* 3.05 (0.77)* 2.09 (1.11)* − 0.56 (1.89) − 1.48 (1.79)

B3, € 0.53 (0.57) 0.61 (0.60) 0.74 (0.71)* − 0.42 (1.34) − 1.03 (1.42)

ρ(I, Î) 0.67 (0.07) 0.69 (0.07) 0.61 (0.11) 0.58 (0.08) 0.58 (0.07)
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In spite of the overall rejection of our hypothesis, it 
should be noted that when the genetic evaluation was 
conducted using the SAM (Table  4), the best economic 
responses were achieved when both BF and ADG had 
the same weight but the selection index relied exclu-
sively on DGE. Note that, in the simulation, phenotypes 
were generated considering the concept of total breeding 
value (DGE + (n-1)*IGE). This result partially supports 
our hypothesis, in the sense that the largest correlated 
response on FCR was obtained when the weights on DGE 
and IGE were different from their weights on TBV, i.e. 0 
versus (n-1) on IGE.

Another point that could explain the failure of our ini-
tial hypothesis is that the correlations that could elimi-
nate the antagonistic relationship between traits did 
not reach a relevant magnitude in the population under 
study. This could happen, for example, if the correlation 
of IGE for ADG with DGE for BF was low. Thus, one 
trait could be modified by selecting on the IGE and the 
other by selecting on DGE. Then, a correlated response 
in FCR could be expected if the correlation between IGE 
for ADG and IGE for FCR was negative and that between 
DGE of BF and DGE of FCR was positive. Some of these 
requirements necessary for our hypothesis to hold were 
fulfilled in our case, i.e., the posterior mean of the cor-
relation between IGE for ADG and DGE for BF was 
lower than that of the correlation between DGE for the 
two traits. However, other requirements were not satis-
fied. The correlations mentioned just above are only a 
part of the whole correlation structure, for example those 
between IGE and DGE across traits should be also con-
sidered. Accounting for the whole structure is the reason 
why we conducted an assessment of responses based on 
simulation to explore the consequences of different selec-
tion indexes combining IGE and DGE.

Regarding the applied problem addressed in our study, 
i.e. indirect improvement of FCR by joint selection on 
ADG and BF, our results indicate that, in this Duroc pig 
population, response in FCR is highly driven by a reduc-
tion in BF, and selecting only on ADG by ignoring BF, 
would lead to economic losses. When the data were gen-
erated with the AM, the economic responses resulted 
from both a direct reduction in BF and a correlated 
response in FCR. However, when the SAM was used to 
generate the data, the achieved economic benefit did not 
result from improved FCR but only from a reduction in 
BF, which was of value in some of the markets assessed.

The magnitude of genetic parameters is known to 
depend on the population under study, and for the traits 
considered here, a wide range of estimates have been 
reported in the literature for different lines and breeds. 
Although the genetic correlation between ADG and BF 
tends to be positive [4, 20], some studies on other Duroc 

lines have reported correlation values of nearly 0 [21]. 
Estimates of genetic correlations between BF and FCR 
and between ADG and FCR show a wider range of vari-
ability, with both having both negative and positive esti-
mates [4, 20, 21]. In [4, 21], the observed responses in the 
implemented selection experiments clearly matched the 
estimated parameters. Thus, we can state that the gen-
eral pattern of the genetic correlations that we estimated, 
both for IGE and DGE, is compatible with previously 
reported estimates of genetic parameters, although they 
were obtained with the AM.

Conclusions
Using the SAM in genetic evaluation to indirectly 
improve FCR by selection on ADG and BF does not over-
come the unfavourable genetic correlations that exist 
between the traits when they are evaluated with the tradi-
tional AM. On the one hand, this is due to the large mag-
nitude of the estimation errors of the genetic parameters 
estimated in more complex models such as the SAM. On 
the other hand, the correlations between IGE and DGE 
that could help overcome the unfavourable genetic cor-
relations between DGE did not reach sufficiently high 
magnitudes.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1271 1‑020‑00572 ‑4.

Additional file 1: Figure S1. Trace plots of Markov chains of the genetic 
parameters for the social animal model. This file contains the trace plots 
of the Markov chains for the genetic correlations and heritabilities of ADG, 
BF and FCR. This can be used to assess that our Markov chains have an 
acceptable rate of mixing.

Additional file 2: Table S1. Posterior mean (posterior SD) of genetic 
(above diagonal) and phenotypic (below diagonal) correlations, and herit‑
abilities (diagonal). This table contains the estimated genetic parameters 
for ADG, BF and FCR using the AM. These estimates can be compared to 
those obtained when the SAM (Table 3) was used for the analysis of the 
available dataset.

Additional file 3: Table S2. Posterior mean (posterior SD) of the correla‑
tion between true and predicted breeding values using the SAM. This 
table contains the correlations between true and predicted values of DGE 
and IGE of traits included in the selection index (ADG and BF) for the 25 
studied scenarios using the SAM. This table also contains the correlations 
between true and predicted values of an index calculated based on the 
total breeding value definition of the involved traits. Table S3. Posterior 
mean (posterior SD) of the correlations between true figures for total 
breeding value, direct and indirect genetic effects, and breeding values 
predictions obtained with the AM. This table contains the correlations 
between predicted values of EBV using the AM and the true values of 
DGE, IGE, and TBV used in the simulation, using the SAM, for the traits 
included in the selection index (ADG and BF). Table S4. Posterior mean 
(posterior SD) of the correlations between true and predicted breeding 
values using the AM for data generation and evaluation. This table con‑
tains the correlations between true and predicted values of EBV for traits 
included in the selection index (ADG and BF) when both simulation and 
genetic evaluations are conducted using the AM.
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