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Abstract 

Background:  In pig and poultry breeding, the objective is to improve the performance of crossbred production 
animals, while selection takes place in the purebred parent lines. One way to achieve this is to use genomic prediction 
with a crossbred reference population. A crossbred reference population benefits from expressing the breeding goal 
trait but suffers from a lower genetic relatedness with the purebred selection candidates than a purebred reference 
population. Our aim was to investigate the benefit of using a crossbred reference population for genomic predic-
tion of crossbred performance for: (1) different levels of relatedness between the crossbred reference population and 
purebred selection candidates, (2) different levels of the purebred-crossbred correlation, and (3) different reference 
population sizes. We simulated a crossbred breeding program with 0, 1 or 2 multiplication steps to generate the cross-
breds, and compared the accuracy of genomic prediction of crossbred performance in one generation using either 
a purebred or a crossbred reference population. For each scenario, we investigated the empirical accuracy based on 
simulation and the predicted accuracy based on the estimated effective number of independent chromosome seg-
ments between the reference animals and selection candidates.

Results:  When the purebred-crossbred correlation was 0.75, the accuracy was highest for a two-way crossbred 
reference population but similar for purebred and four-way crossbred reference populations, for all reference popula-
tion sizes. When the purebred-crossbred correlation was 0.5, a purebred reference population always resulted in the 
lowest accuracy. Among the different crossbred reference populations, the accuracy was slightly lower when more 
multiplication steps were used to create the crossbreds. In general, the benefit of crossbred reference populations 
increased when the size of the reference population increased. All predicted accuracies overestimated their corre-
sponding empirical accuracies, but the different scenarios were ranked accurately when the reference population was 
large.

Conclusions:  The benefit of a crossbred reference population becomes larger when the crossbred population is 
more related to the purebred selection candidates, when the purebred-crossbred correlation is lower, and when the 
reference population is larger. The purebred-crossbred correlation and reference population size interact with each 
other with respect to their impact on the accuracy of genomic estimated breeding values.
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Background
In pig and poultry production, the production ani-
mals are generally three- or four-way crossbreds. The 
main reasons for crossbreeding are to benefit from het-
erosis and breed complementarity, and to be flexible in 

creating different products for different markets [1–3]. 
To improve the performance of future production ani-
mals, selection takes place in each of the purebred par-
ent lines. Before the genomics era, this selection was 
often based on purebred performance, because tracing 
the pedigree of the crossbred production animals back 
to their purebred ancestors is challenging [4]. However, 
purebred performance is genetically different from cross-
bred performance, because purebreds and crossbreds are 
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generally raised in different environments [4–6] and have 
different genetic backgrounds [7–9]. It has been shown 
that the genetic correlation between purebred and cross-
bred performance, known as the purebred-crossbred cor-
relation ( rpc ), differs substantially from 1 for some traits 
[10–12]. Using currently available genomic data, linking 
the crossbred animals and the purebred selection can-
didates is easier, which facilitates selection of purebred 
animals for crossbred performance. For example, geno-
typing can be used to set up a crossbred reference popu-
lation for genomic prediction, where the genotypes and 
phenotypes of crossbreds are used to predict breeding 
values for crossbred performance for a set of genotyped 
purebred selection candidates [4, 13]. The lower the rpc is, 
the greater is the benefit expected from using crossbred 
information [10, 14, 15].

A potential limitation of using a crossbred reference 
population is the relatively weak genetic relatedness 
between the crossbreds and the purebred selection can-
didates. The accuracy of genomic prediction is strongly 
affected by the genetic relatedness between the reference 
population and the selection candidates [16–18], i.e. the 
more closely they are related, the higher is the accuracy 
of genomic prediction. With a purebred reference popu-
lation, the purebred parents of the selection candidates 
and their contemporaries can be used as reference ani-
mals, resulting in high relatedness between reference and 
selection animals. In contrast, with a four-way crossbred 
reference population, the most closely related purebred 
relatives of the crossbred reference animals are their 
grandparents, and these purebreds are also the great-
grandparents of the selection candidates when the gen-
eration interval is the same in purebreds and crossbreds. 
Hence, in that situation, the reference animals and selec-
tion candidates are separated by five generations. Those 
relationships become even more distant when the pro-
duction pyramid contains multiplication steps [6, 19]. 
To date, the effect of the distance in genetic relationship 
between a crossbred reference population and the pure-
bred selection candidates on the benefit of a crossbred 
reference population has not been studied.

When designing a breeding program, it is important 
to be able to rank the expected genetic progress of dif-
ferent scenarios before collecting the data in order to 
select the most optimal reference population. For this 
purpose, different deterministic prediction equations for 
the accuracy of genomic prediction have been derived 
[20–23]. However, their ability to rank different purebred 
or crossbred reference populations correctly, in terms of 
the achieved accuracy of predictions of crossbred perfor-
mance, has not been investigated.

The aim of this study was to investigate the benefit 
of using a crossbred reference population for genomic 

prediction of purebred animals for crossbred perfor-
mance for: (1) different levels of relatedness between the 
crossbred reference population and purebred selection 
candidates, (2) different levels of rpc , and (3) different ref-
erence population sizes. In addition, we investigated the 
ability to rank the prediction accuracy of different sce-
narios correctly based on deterministic prediction equa-
tions to predict the accuracy of crossbred performance of 
purebred selection candidates. We simulated a crossbred 
breeding program with 0, 1 or 2 multiplication steps to 
generate the crossbreds, and compared the accuracy of 
genomic prediction for crossbred performance in one 
generation using either a purebred or a crossbred refer-
ence population.

Methods
We simulated a crossbred breeding program in pigs, 
where selection in generations 1 through 8 of the nucleus 
population was based on purebred performance using 
genomic best linear unbiased prediction (GBLUP) 
(Fig.  1). From this nucleus population, different types 
of crossbreds were generated, namely two-way cross-
breds with 0 (2wayCB) or 1 (2wayCB_1MP) multiplica-
tion step, and four-way crossbreds with 0 (4wayCB), 
1 (4wayCB_1MP) or 2 (4wayCB_2MP) multiplication 
steps. To produce the crossbreds, the second best (SUB-
TOP) males from the nucleus population were used, i.e. 
the best purebred males that were not used as parents in 
the nucleus population. In addition, the scenarios with-
out multiplication steps were also applied using the best 
(TOP) males to produce crossbreds (2wayCB_TOP and 
4wayCB_TOP), i.e., the same males as those that were 
used to breed the next generation of the nucleus popu-
lation. Then, each of the resulting crossbred populations 
was used as reference population to predict genomic 
estimated breeding values (GEBV) for crossbred perfor-
mance of purebred nucleus animals in generation 9. The 
crossbred populations differed in the number of genera-
tions that separated them from the purebred selection 
candidates in generation 9 (Table 1).

Genotypes were simulated for all animals in the nucleus 
population. For crossbred animals, only the alleles com-
ing from the sire (two-way crossbred) or the paternal 
grand sire (four-way crossbred) were simulated. This 
implicitly assumes that the line-origin of the alleles in the 
crossbreds could be traced back without error and that 
genomic information from the other lines was not help-
ful to predict breeding values for the line of interest, as 
generally observed in practice [24, 25]. The alleles coming 
from the other lines were set to missing, and their contri-
butions to the phenotypes were simulated as for a poly-
genic trait.
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Fig. 1  General overview of the crossbred breeding program

Table 1  Overview of purebred ancestors of crossbred populations and the number of generations between the crossbred 
populations and purebred selection candidates

Crossbred population Purebred ancestors of crossbred animals Generations difference 
with selection 
candidatesGeneration SUBTOP/TOP

2wayCB_TOP 7 TOP 3

2wayCB 7 SUBTOP 3

2wayCB_1MP 6 SUBTOP 5

4wayCB_TOP 6 TOP 5

4wayCB 6 SUBTOP 5

4wayCB_1MP 5 SUBTOP 7

4wayCB_2MP 4 SUBTOP 9
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Population structure
To simulate genotypes of the nucleus population, we 
started by simulating a historical population (Fig.  2) 
using the QMSim software [26]. This historical popula-
tion consisted of 1200 (600 males and 600 females) ani-
mals per generation, that were randomly selected and 
mated for 5000 discrete generations (generation -5100 to 
-100). From the last historical generation, 40 males and 
400 females were randomly selected and mated to create 
a population that was randomly mated for 100 discrete 
generations (generations -100 to 0) by randomly select-
ing 40 males and 400 females to create the next genera-
tion, with 6 progeny per female (2 males and 4 females). 
The formation of this population mimicked the bottle-
neck that pigs experienced during breed formation [27], 
and was used to generate linkage disequilibrium on the 
genome.

From generation 0, 40 males and 400 females were 
randomly selected and mated to become the parents of 
the purebred nucleus population, which is referred to 
as the base generation. In the next nine generations, the 

best (TOP) 40 males and 400 females in each generation 
were selected and randomly mated with a mating ratio 
of 1:10 to generate the next nucleus generation using 
a litter size of 6 (2 males and 4 females). Selection was 
based on GEBV for purebred performance using GBLUP 
[28] implemented with the MiXBLUP software [29]. This 
GBLUP analysis included all animals from generation 0 
onwards. The genomic relationship matrix was calculated 
using Method 1 of VanRaden [30] and the allele frequen-
cies in the base generation. Variance components were 
fixed to the simulated variance components in the base 
generation.

From the nucleus population, 80 SUBTOP or TOP 
males were selected to produce the different crossbred 
populations (Table 1 and Fig. 1). In the case of a multipli-
cation step, 800 SUBTOP females were selected from the 
nucleus population as well. In the other multiplication 
and crossbreeding steps to generate the crossbred popu-
lation, 80 males and 800 females were selected randomly. 
In all steps, mating was at random with a mating ratio of 
1:10 and litter size was set to 3 (1 male and 2 females) to 

Fig. 2  Schematic overview of the historical and nucleus populations
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keep the same number of animals in the purebred and 
crossbred reference populations.

Genome size
The simulated genome consisted of 10 chromosomes of 
1 Morgan each. On each chromosome, 20,000 randomly 
spaced loci were simulated with a recurrent mutation 
rate of 0.00005 in the historical population. At the end 
of the historical population, loci with a minor allele fre-
quency (MAF) higher than 0.01 were selected and muta-
tion rate was set to zero.

The parameter settings of the simulated population 
resulted in a weak U-shaped allele frequency distribution 
for the loci that segregated (MAF > 0) in the base gen-
eration, from which 2000 causal loci and 20,000 mark-
ers were selected. The causal loci were selected randomly 
from the segregating loci. After sampling causal loci, 
markers were selected by dividing the remaining loci into 
100 bins based on allele frequency (i.e., allele frequen-
cies of bin 1 ranged from 0 to 0.01, of bin 2 from 0.01 to 
0.02, etc.) and sampling 200 loci as markers from each 
bin. This resulted in a uniform allele frequency distribu-
tion for markers, as is the case generally for commercially 
available marker chips [31–33].

Phenotypes
In the base generation, allele substitution effects were 
assigned to each of the causal loci for both purebred and 
crossbred performance, assuming that these two traits 
are correlated. Therefore, allele substitution effects were 
sampled from a multivariate normal distribution, with a 
mean of 0 and a standard deviation of 1. The correlation 
between the allele substitution effects for purebred and 
crossbred performance was set to 0.75 or 0.5, which rep-
resents the rpc in this simulation. For purebred animals, 
allele substitution effects were multiplied by the allele 
counts of the causal loci (0, 1, or 2) and summed over loci 
to calculate the true breeding value (TBV) of the animals 
for both traits. The genetic variance for purebred per-
formance ( σA2PB ) and crossbred performance ( σA2CB ) was 
computed as the variance of the TBV of the correspond-
ing trait across animals in the base generation.

For purebred animals, only phenotypes for purebred 
performance were simulated by summing the TBV and 
an environmental effect that was randomly sampled from 
a normal distribution with a mean of 0 and a variance 
equal to σE2PB = 4 ∗ σA

2
PB , such that heritability of the 

trait was 0.2.
To simulate phenotypes of crossbred animals for cross-

bred performance, first, haploid genotypes were simu-
lated for the two-way crossbred animals, which consisted 
of only one allele for each locus coming from their sire 
by generating gametes produced by the sire. The allele 

counts of these haploid genotypes were multiplied by the 
corresponding allele substitution effects for crossbred 
performance to calculate the true gametic value (TGV) 
coming from the sire ( TGVsire ). The TGV coming from 
the dam ( TGVdam ) was simulated as for a polygenic trait. 
First, a TBVdam was randomly sampled for all dams from 
N (0, σA

2
CB) . Second, TGVdam for each two-way crossbred 

animal was calculated as TGVdam =
1
2
TBVdam +MS , 

where MS is a Mendelian sampling term sampled from 
N (0, 1

4
σA

2
CB) . The TBV of the crossbred animal was then 

calculated as TGVsire + TGVdam . Phenotypes for cross-
bred performance of each crossbred animal were then 
simulated by summing the TBV and an environmental 
effect that was randomly sampled from N (0, σE

2
CB) , with 

σE
2
CB = 4 ∗ σA

2
CB , resulting in a heritability equal to 0.2. 

Analyses for two-way crossbred animals without multi-
plication steps were repeated with a heritability of 0.05 
for crossbred performance by setting σE2CB = 19∗σA

2
CB 

because, in practice, crossbred animals are kept in more 
variable environments, which results in larger environ-
mental variance components.

For four-way crossbred animals, on average 25% of the 
genome originated from the line of interest via the pater-
nal grand sire ( PGS ) and only this part was simulated with 
genotypes. This means that the paternal allele was known 
for on average 50% of the loci of the four-way crossbred 
animals. The allele counts of those loci were multiplied 
with the corresponding allele substitution effects to cal-
culate the TGV coming from the PGS ( TGVPGS ). The 
other ~ 50% of the paternal haplotype originated from 
the PGD , and its effect ( TGVPGD ) was simulated as for 
a polygenic trait. This step of the simulation considered 
both the proportion of the genome originating from the 
PGD for each simulated crossbred animal and the overlap 
in that part between sibs (see Additional file 1 for details). 
The TGVdam for the four-way crossbreds was sampled in 
the same way as described before for TGVdam of the two-
way crossbreds. The TBV of four-way crossbred animals 
was calculated as TGVPGS + TGVPGD + TGVdam , and 
phenotypes for crossbred performance were simulated 
by summing the TBV and an environmental effect, as 
described above. Again, for four-way crossbred animals 
without multiplication steps, the analyses were repeated 
with a heritability of 0.05.

Size of the reference population
In the default scenario, each generation contained 2400 
animals that could be included in the reference popula-
tion. To investigate the impact of size of the reference 
population, analyses were repeated by using 9600, 4800, 
1200, 600, and 300 instead of 2400 reference animals. 
The reference population size was increased by generat-
ing more offspring in generation 8 with the same mating 
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design (i.e., by creating more full sibs of animals in the 
reference population). The reference population size was 
decreased by randomly sampling a proportion of 0.5, 0.25 
or 0.125 of the full-sib and half-sib offspring of each sire. 
Thus, the number of families was kept the same but fam-
ily sizes were reduced. For the nucleus population, this 
means that not all parents of the selection candidates 
were included in the reference populations of 1200, 600 
and 300 animals. We used 50 replicates for all scenarios, 
except, for computational reasons, only 10 replicates 
were used for the scenarios with 9600 and 4800 crossbred 
animals in the reference population. Scripts and seeds to 
simulate the data are in Additional file 2.

Empirical accuracy
We were interested in the accuracy of GEBV for cross-
bred performance of purebred selection candidates in 
generation 9 based on different reference populations. 
The reference population consisted of all (i.e., 300, 600, 
1200, 2400, 4800, or 9600) animals from generation 
8 (Fig.  1). GEBV were estimated using GBLUP [28]. 
Because the reference populations with 300 or 600 ani-
mals were too small to accurately estimate the genetic 
variance, we fixed the genetic variance of the traits (either 
purebred or crossbred) that originated from the line 
of interest to its value in the base generation ( σA2PB and 
σA

2
CB ). All other variance components were estimated 

using ASReml 4.1 [34]. To check the impact of fixing the 
genetic variance, we also repeated all analyses by estimat-
ing all variance components.

For the purebred reference population, we used the fol-
lowing model:
yPB = µ+ Zu + e,

where µ is a general mean, yPB is a vector of pheno-
types of purebred reference animals, u is a vector of 
breeding values for purebred performance of reference 
animals and selection candidates ( u ∼ N (0,Gσ 2

APB
)), Z is 

an incidence matrix linking phenotypes to breeding val-
ues, and e is a vector of residuals ( e ∼ N (0, Iσ 2

e )). The 
genomic relationship matrix, G , was calculated following 
method 1 of VanRaden [30] as: G =

MM
′

∑

2pj(1−pj)
 , where M 

is a centered marker genotype matrix of purebred ani-
mals in which, for each animal, allele counts (i.e., 0, 1 or 
2) of each locus j were centered by subtracting 2pj , where 
pj is the observed allele frequency of locus j in the base 
generation.

For the two-way crossbred reference population, the 
model was:

where y2wayCB is a vector of phenotypes of two-way 
crossbred reference animals, uPat is a vector of breeding 

y2wayCB = µ+ ZPatuPat + Lm + e,

values of crossbred reference animals based on their 
paternal alleles and breeding values for crossbred perfor-
mance of purebred selection candidates with incidence 
matrix ZPat and uPat ∼ N (0,G(NP)σ

2

ACB
 ), m is a vector of 

maternal effects ( m ∼ N (0, Imσ
2
m ) for all dams m with 

identity matrix Im ) accounting for the resemblance 
between full sibs due to the dam, and L is the corre-
sponding incidence matrix. Note that the maternal effect 
was fitted with an identity matrix, because no relation-
ship structure was simulated in the dams. The relation-
ship matrix G(NP) for uPat was a partial relationship 
matrix based only on the paternal alleles originating from 
the nucleus population ( NP ), which represented 50% of 
the genome in the two-way crossbreds and was calcu-
lated following Sevillano et  al. [24] as 

G(NP)
=





MM
′

�

2pj(1−pj)
MT

′

�

2pj(1−pj)

TM
′

�

2pj(1−pj)
TT

′

�

2pj(1−pj)



 , where T is a centered 

marker genotype matrix of crossbred animals, with allele 
counts coming from the nucleus population (i.e., 0 or 1) 
of each animal centered by subtracting pj for each locus. 
Since the full genome of the purebreds and half of the 
genome of two-way crossbreds were used to estimate the 
relationship matrix, average diagonal elements were 1 for 
purebreds and 0.5 for crossbreds (see Additional file  3: 
Figure S3.1). The genetic variance due to the dam con-
sisted of between-family variance captured by m , and 
within-family segregation variance, which was included 
in e . For this reason, σ 2

m and σ 2
e  were estimated together 

with the breeding values.
For the four-way crossbred reference population, the 

model was:

 where y4wayCB is a vector of phenotypes of four-way 
crossbred reference animals, uPGS is a vector of breeding 
values of crossbred reference animals accounting for the 
contribution of the PGS and breeding values for cross-
bred performance of purebred selection candidates, with 
incidence matrix ZPGS and uPGS ∼ N (0,G(NP)σ

2

ACB
) , 

aPGD is a vector of breeding values for crossbred perfor-
mance of crossbred reference animals accounting for the 
contribution of the PGD, with incidence matrix ZPGD and 
aPGD ∼ N (0,G(PGD)σ 2

ACB,PGD
 ). Note that the notation for 

the breeding value coming from the PGD ( a ) is different 
than from the PGS ( u ), since the breeding value from the 
PGD was simulated as for a polygenic trait and was not 
based on genotypes. The relationship matrix G(NP) for 
uPGS was a partial relationship matrix based only on 
alleles that originated from the PGS in the nucleus popu-
lation, which represented approximately 25% of the 
genome in the four-way crossbreds, and also included the 
purebred selection candidates. This matrix was again 

y4wayCB = µ+ ZPGSuPGS + ZPGDaPGD + Lm + e,



Page 7 of 18Wientjes et al. Genet Sel Evol           (2020) 52:65 	

calculated following Sevillano et  al. [24] as 

G(NP)
=





MM
′

�

2pj(1−pj)
MT

′

�

2pj(1−pj)

TM
′

�

2pj(1−pj)
TT

′

�

2pj(1−pj)



 , where allele counts in 

T were set to missing for loci for which a crossbred ani-
mal did not carry an allele that originated from the 
nucleus population, which resulted in that locus effec-
tively not contributing to the estimated relationships. 
Since the full genome of the purebreds and only a quarter 
of the genome of the four-way crossbreds were used to 
estimate the relationship matrix, average diagonal ele-
ments were 1 for purebreds and 0.25 for crossbreds (see 
Additional file  3 Figure S3.2). The relationships matrix 
G(PGD) related to aPGD was also a partial relationship 
matrix and was estimated as the proportion of the 
genome that originated from the PGD that overlapped 
between sibs. It included only crossbred animals. The 
four-way crossbreds differed in the proportion of their 
genome that originated from the line of interest (i.e., 
from the PGS ), because of segregation in the F1 sires. For 
this reason, part of the genetic variation in uPGS among 
the four-way crossbreds resulted from the variation in 
the number of genes that originated from the PGS vs. 
PGD line (see Additional file 1 for details). Including the 
aPGD term enabled the model to capture this variation, 
since 50% of the genetic variance in the crossbreds was 
always explained by uPGS + aPGD . Again,σ 2

m and σ 2
e  were 

estimated together with the breeding values.
For the scenarios with only 300 or 600 crossbred ref-

erence animals, the analyses did not include a maternal 
effect because full sibs were only present for part of the 
crossbred animals with 600 reference animals, or for none 
of the crossbred animals with 300 reference animals.

For all scenarios, empirical accuracy of GEBV was 
estimated as the correlation between the GEBV and the 
TBV for crossbred performance of the purebred selec-
tion candidates in generation 9. Moreover, we investi-
gated the bias of the scale of the GEBV by estimating the 
regression coefficient of the TBV on the GEBV. For the 
crossbred reference populations, GEBV were unbiased 
when this regression coefficient was 1. For the pure-
bred reference populations, this regression coefficient 
was equal to Cov(TBVCB,GEBVPB)

Var(GEBVPB)
 , where TBVCB is a vector 

of TBV for crossbred (CB) performance and GEBVPB 
is a vector of GEBV for purebred (PB) performance of 
purebred selection candidates. We can write TBVCB as 
rpc ∗ TBVPB + e , where e is a vector of residual terms 
that are independent of the GEBVPB , because vari-
ance components were fixed to variance components in 
the base generation, for which σA2PB and σA2CB were the 
same. Hence, Cov(TBVCB,GEBVPB)

Var(GEBVPB)
= rpc

Cov(TBVPB,GEBVPB)
Var(GEBVPB)

 . 
Given that the expectation for Cov(TBVPB,GEBVPB)

Var(GEBVPB)
 is 1, the 

expectation for Cov(TBVCB,GEBVPB)
Var(GEBVPB)

 is rpc when GEBV are 
unbiased.

Predicted accuracy
We also investigated the potential to predict the accu-
racy of the GEBV for crossbred performance of purebred 
selection candidates. For the crossbred reference popula-
tions, this accuracy was predicted as [20, 35]:

where N  is the number of animals in the reference pop-
ulation, h2 is the heritability of the trait in the reference 
population (i.e., Bulmer-equilibrium h2 ), and Me is the 
effective number of independent chromosome segments 
between the reference population and selection can-
didates. Parameter Me was estimated from the data as 
the reciprocal of the variance in genomic relationships 
between the reference population and selection candi-
dates [22, 36, 37]. Similarly, we used the reciprocal of the 
variance of partial relationships between the reference 
population and selection candidates to compute the Me 
between a crossbred reference population and purebred 
selection candidates, thereby considering only alleles that 
originated from the nucleus population.

For the purebred reference population, accuracy was 
predicted as [22, 23]:

where rpc is included because the reference population is 
measured for purebred performance whereas the predic-
tion refers to crossbred performance. A single value of 
Me was used for all reference population sizes, and this 
value was estimated using a reference population size of 
2400 animals.

Based on these prediction equations, we created an R 
script (available in Additional file  4) that visualized the 
difference in predicted accuracy of a purebred versus a 
crossbred reference population for a range of rpc values 
and reference population sizes by means of a contour 
plot. The input parameters for this script are the Me 
between the purebred or crossbred reference populations 
and purebred selection candidates, and the heritabilities 
for purebred and crossbred performance.

Results
Population properties
The linkage disequilibrium (LD) pattern in the simu-
lated nucleus population (Fig. 3) was comparable to that 
reported for pig populations [38, 39]. In the nucleus 

rIH =

√

Nh2

Nh2 +Me
,

rIH = rpc

√

Nh2

Nh2 +Me
,
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population, selection was on purebred performance and, 
thus, the increase in TBV and the reduction in genetic 
variance were larger for purebred performance than for 
crossbred performance (Fig. 4). As expected, the change 
in average TBV and the reduction in genetic variance 
for the crossbred traits were ~ 75 and 50% of those of 
the purebred trait with rpc equal to 0.75 and 0.5, respec-
tively. The largest reductions in genetic variance (~ 30%) 
occurred in the first three generations as a result of the 
Bulmer effect [40]. Thereafter, an additional 20% of the 
genetic variance for purebred performance was lost 
because some genetic variants were driven to fixation, 
while no new mutations were simulated. Altogether, 
these results indicate that the simulated population is a 
realistic representation of a pig population with a history 
of selection for purebred performance.

Empirical accuracies for different reference populations
The average empirical accuracies of GEBV for crossbred 
performance of purebred selection candidates are in 
Fig. 5a and c, with genetic variance components fixed to 
the simulated value. As expected, all accuracies increased 
as the size of the reference population increased. Average 
empirical accuracies did not change when all genetic var-
iance components were estimated [see Additional file  5 
Figure S5.1].

When rpc was set to 0.75 (Fig. 5a), accuracy was high-
est for the two-way crossbred reference populations for 
all reference population sizes. Among the different two-
way crossbred populations, accuracy was highest for the 
population that was most closely related to the purebred 
selection candidates (2wayCB_TOP) and lowest for the 
population that was least closely related to the purebred 
selection candidates (2wayCB_1MP). The difference in 
accuracy between the three two-way crossbred refer-
ence populations was ~ 0.07 with 2400 animals in the 

reference population (2wayCB_TOP: accuracy = 0.46; 
2wayCB_1MP: accuracy = 0.39). Accuracies were roughly 
similar for the purebred and four-way crossbred refer-
ence populations, with higher accuracies for four-way 
crossbred reference populations that were more closely 
related to the selection candidates. Although the differ-
ence in relatedness with the selection candidates was 
larger among the four-way crossbred populations than 
among two-way crossbred reference populations, the 
difference in accuracy was smaller among the four-way 
crossbred populations (only ~ 0.04 with 2400 animals in 
the reference population; 4wayCB_TOP: accuracy = 0.33; 
4wayCB_2MP: accuracy = 0.29).

As expected, the accuracies of GEBV of purebred selec-
tion candidates for crossbred performance that was 
obtained with the crossbred reference populations were 
not affected by rpc , but the accuracy obtained with a pure-
bred reference population was about one third lower with 
rpc equal to 0.5 than with rpc equal to 0.75. Therefore, when 
the rpc was set to 0.5 (Fig. 5c), the purebred reference popu-
lations always resulted in the lowest accuracy. Remarkably, 
the accuracy obtained with a two-way crossbred reference 
population was always slightly more than double the accu-
racy obtained with a purebred reference population. This 
is probably related to the Bulmer effect due to selection for 
purebred performance in generations 1 through 8, which 
resulted in a larger reduction in the genetic variance for 
the purebred trait than for the crossbred trait.

Predicted accuracies for different reference populations
In order to predict the accuracies of GEBV of purebred 
selection candidates for crossbred performance, the Me 
between the reference population and selection candi-
dates had to be estimated (Fig. 6). For illustration, Me was 
also calculated for each generation of the nucleus popula-
tion with the selection candidates in generation 9, which 
showed that Me increased when the reference animals 
were less related to the selection candidates. For example, 
the Me between animals in generations 1 and 9 was larger 
(328) than between animals in generation 8 and 9 (202). 
This indicates that animals from generation 8 are more 
useful to predict breeding values for animals from gen-
eration 9 than animals from generation 1.

For the crossbred reference populations, Me was 
estimated only between crossbred animals in genera-
tion 8 and purebred selection candidates in generation 
9. The results show a smaller Me between the two-way 
crossbreds and the selection candidates than between 
the four-way crossbreds and the selection candidates. 
Moreover, within the two-way and four-way crossbred 
reference populations, Me was smaller for populations 
that were more closely related to the purebred selection 

Fig. 3  Average strength of linkage disequilibrium ( r2 ) between loci as 
a function of distance for one replicate
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candidates, which matches with the differences in 
empirical accuracies. The Me between the two-way 
crossbreds and purebred selection candidates (551) was 
approximately twice that for the purebred population, 
which was the same number of generations removed 
from the selection candidates (generation 6, Me =248). 
The Me between the four-way crossbred reference 
population and purebred selection candidates (898) 
was approximately four times larger than the Me for 
the purebred population, which was the same number 

of generations removed from the selection candidates 
(generation 4, Me = 278).

The estimated Me values were used to predict the 
accuracy of GEBV of purebred selection candidates 
for crossbred performance for the different scenarios 
(Fig. 5b and d). The predicted accuracies all exceeded 
the empirical accuracies. This is probably because the 
predictions assume that all the genetic variance in the 
selection candidates was explained by the markers, 
which is too optimistic. The overall trend in predicted 

Fig. 4  Genetic trend (a) and trend in genetic variance (b) in the nucleus population with direct selection for purebred (PB) performance. Genetic 
trend is based on average true breeding value (TBV) across generations for purebred and crossbred (CB) performance, for two levels of the 
correlation between purebred and crossbred performance ( rpc ). Direct selection is on purebred performance, with parameters for crossbred 
performance changing indirectly as a result of rpc
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Fig. 5  Average empirical (a and c) and predicted accuracy (b and d) of estimated breeding values of purebred selection candidates for crossbred 
performance. The reference population consisted of purebreds (PB), two-way crossbreds (CB) derived from the same sires as used in the nucleus 
(2wayCB_TOP), different sires with zero (2wayCB) or one multiplication step (2wayCB_1MP), four-way crossbreds derived from the same sires as 
used in the nucleus population (4wayCB_TOP), different sires with zero (4wayCB), one (4wayCB_1MP), or two multiplication steps (4wayCB_2MP). 
The purebred-crossbred correlation was equal to 0.75 (a and b) or 0.5 (c and d). Heritability was 0.2 in the purebred and crossbred populations. 
Averages were calculated across 50 replicates
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accuracies was, however, very similar to the trend 
in empirical accuracies, which resulted in a similar 
ranking of the scenarios at each size of the reference 
population. The only exception was for the purebred 
reference population, for which the empirical accu-
racy decreased faster than the predicted accuracy for 
reference population sizes smaller than 2400 animals. 
This is probably because not all parents of the selec-
tion candidates were included in the smaller purebred 
reference populations, which reduces the genetic rela-
tionships between the reference and selection ani-
mals, thereby negatively affecting the accuracy. This 
is in contrast to the predicted accuracy, for which the 
same Me value was used for all reference population 
sizes, assuming that the genetic link was constant for 
decreasing reference population sizes.

Figure  7 shows the predicted difference in accuracy 
when using a four-way crossbred reference population 
versus a purebred reference population, using the esti-
mated Me values and a heritability of 0.2. This figure 
clearly shows an interaction between the size of the ref-
erence population and rpc with respect to their impact 
on the accuracy of GEBV. When rpc is 0.6, for exam-
ple, the purebred and crossbred reference populations 
are expected to give similar accuracies for a reference 

Fig. 6  Estimate of the effective number of independent 
chromosome segments ( Me ) between the purebred selection 
candidates and different reference populations. The reference 
population consisted of purebreds (PB), two-way crossbreds (CB) 
derived from the same sires as used in the nucleus (2wayCB_TOP), 
different sires with zero (2wayCB) or one multiplication step 
(2wayCB_1MP), four-way crossbreds derived from the same sires 
as used in the nucleus population (4wayCB_TOP), different sires 
with zero (4wayCB), one (4wayCB_1MP), or two multiplication steps 
(4wayCB_2MP). The purebred-crossbred correlation was equal to 
0.75 (a and b) or 0.5 (c and d). Averages were calculated across 50 
replicates

Fig. 7  Expected benefit in accuracy of a four-way crossbred over a purebred reference population. The accuracy of a four-way crossbred reference 
population minus the accuracy obtained with an equally sized purebred reference population across different reference population sizes and 
purebred-crossbred correlations. Blue color indicates a benefit for the crossbred reference population, and red color indicates a benefit for the 
purebred reference population. Values for Me were set equal to the estimated values within this study (202 for purebreds and 898 for crossbreds), 
and the heritability was set to 0.2
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population size of 1000, whereas the crossbred reference 
population is expected to result in an accuracy that is 0.2 
higher for a reference population size of 10,000.

Lower heritability for crossbred animals
Results with a lower heritability of 0.05 in the crossbred 
population compared to a heritability of 0.20 in the pure-
bred population are in Fig.  8. When rpc was 0.75, the 

Fig. 8  Average empirical (a and c) and predicted accuracy (b and d) of estimated breeding values of purebred selection candidates for crossbred 
performance with a lower heritability in the crossbred populations. The reference population consisted of purebreds (PB), two-way crossbreds (CB) 
derived from different sires as used in the nucleus with zero multiplication steps (2wayCB), four-way crossbreds derived from different sires as used 
in the nucleus with zero multiplication steps (4wayCB). The purebred-crossbred correlation was equal to 0.75 (a and b) or 0.5 (c and d). Heritability 
was 0.2 in the purebred population, and 0.05 in the crossbred populations. Averages were calculated across 50 replicates
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purebred reference population outperformed the cross-
bred reference population for all reference population 
sizes. This was different when the rpc was 0.5, for which 
both crossbred reference populations outperformed the 
purebred reference population for all reference popula-
tion sizes. The ranking of the scenarios was accurately 
predicted when rpc was 0.75. However, when rpc was 0.5, 
the ranking differed for small sizes of the reference popu-
lation, which, to a lesser extent, was also the case when 
the heritability was the same in the purebred and cross-
bred populations.

Bias of estimated breeding values
Table 2 shows estimates of the regression coefficients of 
the TBV on the GEBV, which is a measure of bias of the 
scale of the GEBV. Note that, for a purebred reference 
population, the expected value of the regression coeffi-
cient was equal to rpc because a purebred reference popu-
lation resulted in GEBV for purebred performance. For 
a crossbred reference population, the expected value of 
the regression coefficient equals 1. All regression coeffi-
cients were smaller than their expected value, indicating 
that the variance in GEBV was higher than expected. For 
all scenarios, the regression coefficients decreased when 
the size of the reference population decreased, indicating 
greater bias for smaller reference populations. Moreover, 

with a crossbred reference population, the regression 
coefficients were lower when rpc was higher.

Biases were smaller when the genetic variance was esti-
mated and the reference population was large (2400 or 
more animals; see Additional file 5 Table S5.1). However, 
when the reference population was smaller, the num-
ber of animals was too small to accurately estimate the 
genetic variance, resulting in estimated genetic variance 
components converging to zero, which caused the esti-
mated regression coefficients to become extremely large.

Discussion
The first aim of this study was to investigate the benefit 
of using a crossbred reference population for genomic 
prediction of purebred selection candidates for cross-
bred performance, for (1) different levels of relatedness 
between the crossbred reference population and pure-
bred selection candidates, (2) different levels of rpc , and 
(3) different reference population sizes. Results showed 
that the benefit of a crossbred reference population is 
larger when the crossbred population is more related 
to the purebred selection candidates, rpc is lower, and 
the reference population is larger. Moreover, our results 
showed that the accuracy based on a crossbred refer-
ence population is higher when the same (TOP) sires are 
used to generate purebred and crossbred offspring com-
pared to using the SUBTOP sires to generate crossbred 

Table 2  Regression coefficients of  true breeding values on  genomic estimated breeding values of  purebred selection 
candidates for crossbred performance for different reference populations

Standard errors of the regression coefficient were ranging between 0.022 and 0.080, with an average standard error of 0.036

Scenario Reference population size

9600 4800 2400 1200 600 300

Purebred-crossbred correlation is 0.75

 Purebred 0.65 0.59 0.53 0.42 0.36 0.29

 2wayCB_TOP 0.90 0.86 0.81 0.75 0.71 0.65

 2wayCB 0.89 0.84 0.79 0.75 0.69 0.67

 2wayCB_1MP 0.87 0.84 0.76 0.72 0.69 0.65

 4wayCB_TOP 0.79 0.82 0.75 0.71 0.68 0.75

 4wayCB 0.78 0.79 0.73 0.70 0.73 0.59

 4wayCB_1MP 0.76 0.74 0.70 0.70 0.71 0.70

 4wayCB_2MP 0.74 0.73 0.75 0.77 0.70 0.69

Purebred-crossbred correlation is 0.5

 Purebred 0.42 0.38 0.34 0.26 0.23 0.19

 2wayCB_TOP 0.94 0.94 0.92 0.94 0.90 0.87

 2wayCB 0.94 0.94 0.91 0.90 0.90 0.81

 2wayCB_1MP 0.96 0.91 0.90 0.87 0.87 0.83

 4wayCB_TOP 0.89 0.85 0.89 0.90 0.87 0.98

 4wayCB 0.88 0.86 0.86 0.86 0.87 0.85

 4wayCB_1MP 0.89 0.91 0.87 0.91 0.96 0.80

 4wayCB_2MP 0.89 0.83 0.86 0.87 0.84 0.83
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offspring. This gain was larger for two-way than four-
way crossbreds, because of the relative larger increase in 
relatedness for the two-way crossbreds.

A crossbred reference population suffers from shar-
ing only part of the genome with each of the lines of the 
purebred selection candidates: 50% for two-way cross-
breds and 25% for four-way crossbreds. Instead of two- 
or four-way crossbreds, pig breeding programs generally 
use three-way crossbreds. Since three-way crossbred ani-
mals share 50% of their genome with the sire line, results 
for the sire line of three-way crossbred programs will be 
equal to those for two-way crossbreds in our study [13]. 
Similarly, results for the dam line of three-way crossbred 
programs will be equal to those for the four-way cross-
breds [13]. Thus, although we did not simulate three-
way crossbreds, the results of this study can be easily 
extended to three-way crossbreds.

We simulated the traits based on only additive effects. 
However, allele substitution effects were simulated to be 
different in purebreds vs. crossbreds by using an rpc dif-
ferent from 1. Differences in allele substitution effects 
between purebred and crossbred populations can result 
from non-additive effects [7, 8] and differences in the 
environment in which the animals are raised [4–6]. The 
contribution of non-additive effects (dominance and 
epistasis) versus genotype-by-environment effects on rpc 
is not known. However, extensive and accurate estimates 
of rpc are available [10] and using this information, it ena-
bled us to realistically model a pig population.

In this study, we used the same rpc for the different 
crossbred reference populations. The value of rpc due to 
dominance depends on the difference in allele frequen-
cies between the purebred line of interest and the mated 
line [41, 42]. There is no reason why this difference would 
be larger when the mated line is crossbred instead of 
purebred. Therefore, with additive and dominance gene 
action, we do not expect a systematic difference in the 
value of rpc for two-way crossbreds compared to four-way 
crossbreds. However, the difference in allele frequen-
cies between two purebred lines could become larger 
over time due to drift and selection, which reduces the 
value of rpc . Although changes in allele frequencies are 
expected to be small over a limited number of genera-
tions [40, 43], dominance gene action can result in slight 
differences in rpc between crossbred populations gener-
ated from purebred ancestors of different generations, 
which was not taken into account in this study. Thus in 
principle, we assumed that only genotype-by-environ-
ment interactions contributed to rpc.

We assumed that the line-origin of the alleles in the 
crossbreds could be derived without error. Vandenplas 
et  al. [44] developed a method to assign line-origin to 
alleles based on haplotypes. For this method, the more 

distantly related are the parental lines, the more the 
haplotype frequencies differ between the lines, which 
makes it easier to track the line-origin of the haplotypes 
and their alleles in the crossbreds. The number of mul-
tiplication steps that occur in the purebred lines prior 
to crossing has no effect on the assignment of line-ori-
gin, because it only depends on the composition of the 
crossbred genome. In studies using real data, 95.2% of 
the alleles of three-way crossbreds pigs [45] and 91.1% 
of the alleles of three-way crossbred broilers [46] could 
be assigned to one of the lines using this method. The 
lower percentage in broilers was probably because the 
number of purebred genotypes available was small for 
one line [46]. Since the correct line origin is not known 
in real data, the accuracy of assigning the line-origin was 
investigated in a simulation study, which showed that 
the line-origin of an allele could be correctly assigned for 
94.3 to 97.2% of the alleles in three-way crossbreds, with 
a higher percentage when the lines were more distantly 
related [44]. Collectively, these studies showed that it is 
possible to correctly assign line-origin for at least 95% of 
the alleles in the crossbred animals when at least 1000 
animals are genotyped per purebred line. Incorrectly 
assigned alleles are, in the worst case, completely unin-
formative, but in general, genetic correlations between 
the parental lines are higher than 0, which means that 
even incorrectly assigned alleles can still contain some 
information. Therefore, we expect that when 95% of the 
alleles are correctly assigned, the accuracy of genomic 
prediction is still at least 95% of the accuracy with perfect 
assignment of alleles. Or, in other words, our assumption 
of being able to correctly assign the line-origin of alleles 
may have resulted in only a slight upward bias of accu-
racy for all crossbred scenarios.

Bulmer equilibrium
Prior selection in the nucleus population was on pure-
bred performance and a Bulmer equilibrium [40] was 
reached within about three generations. The resulting 
reduction in genetic variance in the nucleus population 
was larger for purebred performance than for crossbred 
performance because rpc was less than 1. Therefore, in 
generation 8, Bulmer-equilibrium genetic variances and 
heritabilities were larger for crossbred performance ( h2 = 
0.14 for rpc = 0.75, and h2 = 0.16 for rpc = 0.5) than for 
purebred performance ( h2 = 0.11). This was beneficial for 
the accuracy obtained with crossbred reference popula-
tions. However, if a crossbred reference population was 
used for multiple generations, the Bulmer equilibrium 
would become stronger for crossbred performance and, 
at equilibrium, the genetic variance and heritability for 
crossbred performance would be lower. This indicates 
that the slight benefit of a higher heritability for the 
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crossbred populations will not persist over generations. 
We investigated the impact of this by predicting the accu-
racy of the different reference populations using the same 
heritability of 0.11 for all reference populations, instead 
of the different current Bulmer-equilibrium heritabili-
ties (as done for Fig. 5b and d). This mainly affected the 
accuracies for small reference population sizes, for which 
the purebred reference population now slightly outper-
formed all crossbred reference populations when rpc was 
0.75. For larger sizes of reference populations, the impact 
of differences in the Bulmer equilibrium heritability was 
small.

Designing reference populations
Deciding on the best genotyping strategy is important 
when optimizing breeding programs [47]. In order to 
do so, the costs of each strategy must be considered. It 
is important to note that the same crossbred reference 
population can be used for multiple lines. For exam-
ple, genotyping 2000 purebred animals for two separate 
within-line reference populations is just as expensive as 
genotyping 4000 two-way crossbred animals for a cross-
bred reference population that can be used for both lines. 
When using four-way crossbred animals, the number 
of genotyped crossbreds can be even four times larger. 
This means that the accuracy of 2000 purebred animals 
should be compared with that of 8000 four-way cross-
bred animals, which shows a clear benefit of the four-way 
crossbreds reference population, even when rpc is 0.75 
(Fig. 5a). Thus, the benefit of using a crossbred reference 
population is likely larger when comparing scenarios that 
require the same total investment.

A crossbred reference population benefits from 
expressing the breeding goal trait [14, 25], but suffers 
from a lower genetic relatedness with the purebred selec-
tion candidates than a purebred reference population 
[16–18]. The balance between these two factors deter-
mines whether a crossbred or purebred reference popu-
lation is beneficial for predicting breeding values for 
crossbred performance of purebred selection candidates. 
However, this balance depends on the size of the refer-
ence population, as shown by our results (Fig. 5), because 
an infinitely large crossbred reference population can 
theoretically result in a maximum accuracy of 1 [22, 23], 
compared to rpc for a purebred reference population [10]. 
With a large reference population, accuracy approaches 
its maximum and the benefit of recording the breeding 
goal trait outweighs the disadvantage of a lower genetic 
relatedness. With small reference population sizes, accu-
racy is strongly affected by the relatedness between the 
reference and selection populations, which is a disad-
vantage for the crossbred reference population. Thus, 
with smaller rpc , the size at which the crossbred reference 

population outperforms the purebred reference popula-
tion becomes smaller.

In practice, crossbred animals are raised in more vari-
able environments, resulting in larger environmental var-
iance components [11] and the environmental variance 
may even be heterogeneous across farms [48]. Therefore, 
heritability in commercial crossbred populations is often 
expected to be lower than in purebred populations [11, 
49]. Our results show that, in this case, the benefit of a 
crossbred reference population occurred only when rpc 
was 0.5, but not 0.75 (Fig. 8). This shows that when herit-
ability in crossbred populations is lower than in purebred 
populations, rpc has to be lower or the reference popula-
tion larger in order to see a benefit of the crossbred refer-
ence population.

Estimates of Me and predicted accuracy
The second aim of this study was to investigate the ability 
to rank different scenarios correctly by using determin-
istic equations to predict the accuracy of GEBV of pure-
bred selection candidates for crossbred performance. 
For these predictions, the Me between the selection 
candidates and reference populations had to be esti-
mated. Our results show that the Me between two-way 
crossbreds and purebreds was roughly double that for a 
purebred population with the same number of genera-
tions removed from the purebred selection candidates. 
This implies that variation in relationships between pure-
breds and two-way crossbreds is 50% of the variation 
in relationships among purebreds. This occurs because 
the variation in relationships among purebreds includes 
the variation contributed by both the sire and the dam, 
compared to the variation only contributed by the sire 
for a crossbred reference population. For the four-way 
crossbreds, the Me was four times as large as that for a 
purebred reference population because it only included 
variation contributed by the paternal grand sire. These 
results indicate that an estimate of the Me between pure-
bred selection candidates and a crossbred reference 
population can be obtained based on the Me within a 
purebred line between generations. This means that only 
genotypes of purebred animals across multiple genera-
tions are required to obtain an estimate of the value of Me 
between purebreds and crossbreds. Based on this knowl-
edge, the equation that we used to predict the accuracy 
became equivalent to the prediction equation derived by 
Vandenplas et  al. [23], which uses the Me in purebreds 
times two to predict the accuracy for a two-way cross-
bred reference population.

The predicted accuracy of GEBV based on Me was 
always higher than the average empirical accuracy. One 
explanation for this is that the markers did not explain all 
the genetic variance in the selection candidates, which is 
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assumed in the prediction formula that we used [21, 50]. 
This could be the case when markers and causal loci have 
different properties, such as allele frequency distribu-
tions [36]. However in our study, the difference in allele 
frequency distribution between markers and causal loci 
was limited. Another reason could be the high level of 
relatedness within the reference populations [51], which 
increases the overlap in information in the reference 
population. This suggests that the effective number of 
animals in the reference population may be smaller than 
the actual number of animals. Most important for our 
study is, however, that the ranking of the scenarios was 
similar for the empirical and predicted accuracy when 
the reference population was large. When the reference 
population was smaller, the accuracy of the purebred ref-
erence population was over-predicted to a larger extent 
than the accuracy of the crossbred reference popula-
tion. This is probably due to the number of strong rela-
tionships between the reference and selection animals, 
which decreased fast when the size of the purebred ref-
erence population was reduced, but not when using a 
crossbred reference population. Specifically, all parents of 
the selection candidates were included in purebred ref-
erence populations of 2400 animals or more, but not in 
the smaller reference populations. Altogether, our results 
indicate that, although the accuracy is overestimated, the 
predicted accuracy can rank the different crossbred and 
purebred reference populations correctly when the refer-
ence population is large and can give some preliminary 
insights on the optimal reference population structure.

Bias of estimated breeding values
Our results show that GEBV of purebred animals for 
crossbred performance are subject to considerable bias, 
especially for small reference population sizes and a high 
level of rpc (Table 2). This bias is probably a result of using 
base generation allele frequencies and variance compo-
nents that accounted for the reduction in genetic vari-
ance over generations as a result of genome-wide changes 
in allele frequency (drift) since the base generation, but 
not for the Bulmer effect and also not for a greater change 
in allele frequencies at loci that affect the trait [40]. This 
is supported by the result that the bias was larger for a 
crossbred reference population when rpc was 0.75 than 
when rpc was 0.5, because the crossbred variance compo-
nents were more affected by the Bulmer effect when rpc 
was higher. Moreover, the biases were lower when the 
genetic variance components were estimated and the ref-
erence population was large (see Additional file 5). Since 
only one generation with phenotypes and genotypes was 
included in the reference population, the data on which 
selection was based were not included in the model and, 
as a result, did not account for the Bulmer effect. When 

the reference population was larger, biases were gener-
ally lower. This is probably because the shrinkage of EBV 
becomes less dependent on variance components when 
the data contains more information.

Conclusions
Altogether, we conclude that the benefit of a crossbred 
reference population over a purebred reference popula-
tion for prediction of GEBV of purebred selection can-
didates for crossbred performance increases when the 
crossbred population is more related to the purebred 
selection candidates, when rpc is lower, and when the 
reference population is larger. When rpc is relatively low 
(≤ 0.5), a crossbred reference population is expected to 
be superior to a purebred reference population. When 
rpc is greater than 0.5, the benefit of a crossbred reference 
population compared to a purebred reference popula-
tion depends on the size of the reference population. This 
shows that there is an interaction between size of the 
reference population size and the magnitude of rpc with 
respect to their impact on the accuracy of GEBV. Predic-
tion equations based on Me provide preliminary insights 
on the ranking of different reference populations in terms 
of obtained accuracy, provided that reference populations 
are large. When comparing scenarios, it is also important 
to consider that a single crossbred reference population 
can be used for multiple purebred lines, while a purebred 
reference population can be used for only one line.
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