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Abstract 

Background:  Inbreeding depression refers to the decrease in mean performance due to inbreeding. Inbreeding 
depression is caused by an increase in homozygosity and reduced expression of (on average) favourable domi-
nance effects. Dominance effects and allele frequencies differ across loci, and consequently inbreeding depression is 
expected to differ along the genome. In this study, we investigated differences in inbreeding depression across the 
genome of Dutch Holstein Friesian cattle, by estimating dominance effects and effects of regions of homozygosity 
(ROH).

Methods:  Genotype (75 k) and phenotype data of 38,792 cows were used. For nine yield, fertility and udder health 
traits, GREML models were run to estimate genome-wide inbreeding depression and estimate additive, dominance 
and ROH variance components. For this purpose, we introduced a ROH-based relationship matrix. Additive, domi-
nance and ROH effects per SNP were obtained through back-solving. In addition, a single SNP GWAS was performed 
to identify significant additive, dominance or ROH associations.

Results:  Genome-wide inbreeding depression was observed for all yield, fertility and udder health traits. For example, 
a 1% increase in genome-wide homozygosity was associated with a decrease in 305-d milk yield of approximately 
99 kg. For yield traits only, including dominance and ROH effects in the GREML model resulted in a better fit (P < 0.05) 
than a model with only additive effects. After correcting for the effect of genome-wide homozygosity, dominance 
and ROH variance explained less than 1% of the phenotypic variance for all traits. Furthermore, dominance and ROH 
effects were distributed evenly along the genome. The most notable region with a favourable dominance effect for 
yield traits was on chromosome 5, but overall few regions with large favourable dominance effects and significant 
dominance associations were detected. No significant ROH-associations were found.

Conclusions:  Inbreeding depression was distributed quite equally along the genome and was well captured by 
genome-wide homozygosity. These findings suggest that, based on 75 k SNP data, there is little benefit of accounting 
for region-specific inbreeding depression in selection schemes.
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Background
Inbreeding depression refers to the decrease in mean 
performance with increased levels of inbreeding [1]. 
Many important traits in dairy cattle show inbreeding 

depression [2–5]. For example, a 1% increase in pedigree-
based inbreeding is associated with a decrease in 305-day 
milk yield of 20 to 38 kg and with an increase in calving 
interval of 0.2 to 0.7 days [6–8]. The reduction in mean 
performance is believed to be caused by the increase 
in homozygosity associated with inbreeding, reducing 
the expression of dominance effects [1, 9]. When domi-
nance effects are on average favourable (i.e. when there 
is directional dominance in the favourable direction), 
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their reduced expression results in a lower phenotypic 
performance. Not all genomic loci are expected to con-
tribute equally to inbreeding depression. The expected 
contribution of a locus depends on both its dominance 
effect (higher with larger dominance effect) and its allele 
frequency (higher at intermediate allele frequencies) [1, 
9]. Interactions between loci, i.e. epistasis, may play a 
role in explaining inbreeding depression as well. How-
ever, epistasis is difficult to prove and difficult to account 
for in statistical models. Therefore, epistasis is typi-
cally ignored. When epistasis is ignored, the change in 
mean phenotypic performance due to inbreeding equals 
−F

∑
i2piqidi , where F  is the genome-wide inbreeding 

coefficient, di is the statistical dominance effect at locus i , 
and pi and qi are the allelic frequencies [1].

The increasing availability of single nucleotide poly-
morphism (SNP) data enables the study of inbreed-
ing depression along the genome. SNPs are expected to 
capture effects of quantitative trait loci (QTL) in link-
age disequilibrium (LD) with the SNPs. Traditionally, 
single SNP genome-wide association studies (GWAS) 
have been conducted to identify significant dominance 
(and additive) associations [10–12]. In such studies, one 
SNP is fitted at a time and typically a pedigree-based or 
genomic relationship matrix is included to account for 
population structure and prevent inflation of type I errors 
(e.g. [12]). With approaches that are more novel, all SNP 
effects can be estimated simultaneously. For example, 
additive genetic and dominance relationship matrices 
can be computed [13] and these matrices can be fitted in 
a mixed model using genomic best linear unbiased pre-
diction (GBLUP) to estimate additive genetic and domi-
nance effects, after which additive and dominance effects 
of single SNPs can be obtained through back-solving (e.g. 
[14]). Since variance components need to be estimated, 
genomic residual maximum likelihood (GREML) can be 
used, based on the same mixed model, yielding estimates 
of random effects and variance components simultane-
ously, whereas GBLUP assumes that variances are known 
[15]. Benefits of GREML SNP solutions, over those from 
a single SNP GWAS, are that all SNP effects are estimated 
simultaneously (i.e. accounting for other SNPs in LD) and 
that effects are regressed towards the mean depending on 
information in the data.

In addition to the estimation of dominance effects, 
there is an increasing interest in the use of regions 
of homozygosity (ROH) to quantify inbreeding and 
inbreeding depression [2, 4, 9, 16]. When compared to 
homozygosity of individual SNPs, ROH may better cap-
ture (region-specific differences in) inbreeding depres-
sion. This is due to two reasons. First, as a multi-locus 
measure of LD, ROH are expected to better capture the 
probability that QTL located in between the SNPs of the 

ROH are homozygous. When many subsequent SNPs are 
homozygous, i.e. are in ROH, it is very likely that the loci 
between those SNPs are also homozygous. Homozygosity 
of individual SNPs is expected to be less predictive of the 
homozygosity at QTL, because of the strong dependence 
on the LD between the QTL and the individual SNPs (e.g. 
[45]). Second, ROH capture more recent inbreeding, and 
recent inbreeding is expected to be more harmful than 
old inbreeding, although empirical results do not always 
support this hypothesis [2, 8]. In a simulation study, Kel-
ler et al. [17] found that, among the inbreeding measures 
that they investigated, ROH-based inbreeding performed 
best in capturing the homozygous inbreeding load. Mar-
tikainen et  al. [4] estimated the effect of ROH-based 
inbreeding on fertility traits in Finnish Ayrshire cattle, 
first per chromosome and then within chromosomes 
using a sliding window approach. Pryce et  al. [2] per-
formed a single SNP GWAS to study the effect of ROH 
on yield traits and calving interval in Australian Holstein 
and Jersey cattle. In their approach, the ROH-status of a 
SNP was set to 1 when the SNP was in a ROH (irrespec-
tive of which ROH), and to 0 otherwise [2]. Ferenčaković 
et al. [16] performed a similar analysis for sperm quality 
traits in Austrian Fleckvieh bulls. Although these studies 
did report candidate regions associated with inbreeding 
depression, they did not consider how much of the total 
phenotypic variation was explained by ROH effects (in 
relation to additive and dominance effects).

The objective of this study was to estimate dominance 
and ROH effects across the genome for Dutch Holstein 
Friesian dairy cattle and to estimate the contribution 
of these effects to the phenotypic variance. For vari-
ous yield, fertility and udder health traits, first we ran 
GREML models to estimate the effect of genome-wide 
homozygosity and estimate the amount of variance 
attributable to additive, dominance and ROH effects. 
Then, we obtained individual SNP effects through back-
solving. We also performed a single SNP GWAS to esti-
mate additive, dominance and ROH effects per SNP and 
compared GWAS estimates with those obtained from the 
GREML approach.

Methods
Data
In total, 38,792 first-parity cows (fraction Holstein Frie-
sian > 87.5%, either red or black), which calved in the 
period 2012–2016 in 233 herds, were included. The 
same dataset was used as in Doekes et al. [8]. Genotype 
and phenotype data were provided by the Dutch-Flem-
ish cattle improvement co-operative (CRV; Arnhem, the 
Netherlands). Cows were genotyped with the Illumina 
BovineSNP50 BeadChip (v1 and v2) or CRV custom-
made 60  k Illumina panel (v1 and v2). Genotypes were 
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imputed to approximately 76  k, following Druet et  al. 
[18]. The 75,538 SNPs used by Doekes et al. [8] were rem-
apped to the ARS-UCD1.2 assembly, using the NAGRP 
Data Repository [19] and the NCBI Genome Remapping 
Service [20]. The final dataset comprised 75,377 success-
fully remapped SNPs. The distribution of the allelic fre-
quencies of these SNPs was approximately uniform [see 
Additional file 1: Figure S1].

Phenotypic data included yield, fertility and udder 
health traits. For yield, the 305-day milk yield (MY; in 
kg), 305-day fat yield (FY; in kg) and 305-day protein 
yield (PY; in kg) were included. For fertility, the calving 
interval (CI; in days), interval calving to first insemina-
tion (ICF; in days), interval first to last insemination (IFL; 
in days) and conception rate (CR; in %) were included. 
For udder health, the mean somatic cell scores for day 5 
through to 150 (SCS150; in units) and day 151 through 
to 400 (SCS400; in units) were included. Somatic cell 
scores were calculated as 1000 + 100*[log2 of cells/mL]. 
Descriptive statistics for the different traits are reported 
by Doekes et al. [8].

Identification of ROH
Regions of homozygosity (ROH) were identified with the 
Plink 2.0 software [21]. The following criteria were used 
to define a ROH: (i) a minimum physical length of 1 Mb, 
(ii) a minimum of 15 SNPs, (iii) a minimum density of 1 
SNP per 100 kb, (iv) a maximum of 1 heterozygous call 
within a ROH, and (v) a maximum gap of 500 kb between 
two consecutive SNPs. Since genotypes were imputed 
to 76  k, there were no missing genotypes. A scanning 
window of 15 SNPs was used, with a maximum of 1 
heterozygote call per window. The Plink command was 
plink --cow --homozyg --homozyg-density 100 --homozyg-
gap 500 --homozyg-het 1  --homozyg-kb 1000 --homozyg-
snp 15  --homozyg-window-het 1  --homozyg-window-snp 
15. The use of criteria such as a maximum gap of 500 kb 
will have resulted in some SNPs having a lower probabil-
ity of being in a ROH (e.g. there were 66 gaps of > 500 kb), 
but will also have reduced the number of false positive 
ROH. The SNP density was relatively uniform along the 
genome (see Additional file 1: of Doekes et al. [22]).

Statistical models
Additive, dominance and ROH effects were estimated 
with two approaches: (i) a GREML model with back-solv-
ing, and (ii) a single SNP GWAS. For both approaches, 
the classical (“statistical”) parametrization was used for 
additive and dominance effects, which implies among 

others that additive effects were calculated as allele sub-
stitution effects (see Vitezica et al. [13]).

GREML with back‑solving
GREML models were used to estimate all SNP effects 
simultaneously and to estimate variance components. 
For each trait, three models were run in mtg2 [23]: one 
with only additive effects (A), one with additive and 
dominance effects (AD), and one with additive, domi-
nance and ROH effects (ADR). Model A was:

where y is a vector of phenotypes; X is an incidence 
matrix that related the observations to fixed effects; b 
is a vector of fixed effects that included herd of calving 
(233 levels), year of calving (5 levels), season of calving (4 
levels, defined as the four quarters of a year), age at calv-
ing (as linear covariate) and genome-wide SNP homozy-
gosity (as linear covariate, to account for genome-wide 
inbreeding depression), the latter being calculated as 
the proportion of homozygous SNPs; Q is an incidence 
matrix that related observations to random herd-year-
season effects; c is a vector of random herd-year-season 
effects (4596 levels), which were assumed to be distrib-
uted as c ∼ N (0, Iσ 2

HYS) , with σ 2
HYS being the herd-year-

season variance and I an identity matrix; u is a vector of 
random polygenic additive effects (i.e. breeding values), 
which were assumed to be distributed as u ∼ N (0,Gσ 2

A) , 
with G being the genomic relationship matrix and σ 2

A 
the additive genetic variance; and e is a vector of ran-
dom residuals, which were assumed to be distributed as 
e ∼ N (0, Iσ 2

E ) , with I being an identity matrix and σ 2
E the 

residual variance.
Model A was extended to model AD by adding a 

dominance term:

where v is a vector of random polygenic dominance 
deviations, which were assumed to be distributed as 
v ∼ N (0,Dσ 2

D) , with D being the dominance relationship 
matrix and σ 2

D the dominance variance.
Model AD was further extended to model ADR by 

adding a ROH term:

where w is a vector of random polygenic ROH devia-
tions, which were assumed to be distributed as 
w ∼ N (0,Rσ 2

ROH ) , with R being a ROH-based relation-
ship matrix and σ 2

ROH the ROH variance.
The additive genomic relationship matrix ( G ) was 

computed with calc_grm [24], according to VanRaden 
[25]:

y = Xb+Qc+ u + e, Model A

y = Xb+Qc+ u + v + e, Model AD

y = Xb+Qc+ u + v + w + e, Model ADR
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 where pi is the allele frequency of allele A at SNP i , qi the 
allele frequency of allele B at SNP i and Z is the additive 
marker covariate matrix with elements of −2pi, 1− 2pi , 
and 2− 2pi for genotypes BB, AB, and AA, respectively.

The dominance relationship matrix ( D ) was com-
puted with calc_grm [24], according to Vitezica et  al. 
[13]:

 where H is the dominance marker covariate matrix with 
elements of−2pi

2 , 2piqi , −2qi
2 for genotypes BB, AB, and 

AA, respectively.
The ROH-based relationship matrix ( R ) was intro-

duced in this study to quantify the effect of a SNP being 
in a ROH (irrespective of which ROH). R was computed 
as a cross-product matrix:

 where p∗i  is the frequency of SNP i being in a ROH, q∗i  
is the frequency of SNP i not being in a ROH, and M is 
the ROH marker covariate matrix with elements of 1− p∗i  
for being in a ROH and of 0− p∗i  for not being in ROH. 
Hence, element Rjk could be interpreted as the (centered 
and scaled) probability that animals j and k both have a 
ROH at a random SNP. Note that the ROH does not have 
to be the exact same ROH for both animals. For exam-
ple, if animal j has a ROH ranging from the 10th to the 
40th SNP, and animal k has a ROH ranging from the 20th 
to the 45th SNP, then both animals “share” a ROH from 
the 20th SNP to the 40th SNP. Even if animals “share” a 
ROH at the same location, the ROH does not have to be 
identical. Namely, animal j could have a ROH with allele 
1, and animal k with allele 2. It is important to note that 
the R matrix is different from the segment-based (or 
haplotype-based) relationship matrix that was defined by 
De Cara et  al. [26], which is sometimes also referred to 
as a ROH-based relationship matrix. In our study, R indi-
cates whether animals are inbred at the same genomic 
positions, i.e. have ROH at the same genomic positions, 
whereas the segment-based relationship matrix indicates 
the probability that, if you mated two animals, the off-
spring would carry ROH. A more detailed explanation of 
how R was calculated, including a numerical example, is 
provided in [Additional file 2: Tables S1 and S2].

Goodness-of-fit of Models A, AD and ADR were 
compared using maximum likelihood (ML) ratio tests. 

G =
ZZ

′

∑
i2piqi

D =
HH

′

∑
i(2piqi)

2
,

R =
MM

′

∑
ip

∗
i q

∗
i

,

Test statistics were defined as two times the differ-
ence between the maximum log likelihood of a reduced 
model (e.g. Model A) and that of a full model (e.g. 
Model AD). Approximate P-values were calculated as 
0.5(1− Pr

(
χ2
1 ≤ T

)
) , where T  was the test statistic.

Variance components were obtained from the mtg2 
output. Relative variance components and corresponding 
standard errors were calculated using the delta method 
in mtg2 [23]. For example, the relative dominance vari-
ance was calculated as σ 2

D/σ
2
P , where σ 2

P is the phenotypic 
variance (which excluded σ 2

HYS).
To estimate additive effects ( ̂α ), dominance effects 

( ̂d ) and ROH effects ( ̂r  ) per SNP, the polygenic additive 
effects ( ̂u ), dominance deviations ( ̂v ) and ROH devia-
tions ( ̂w ) were back-solved using the compute SNP-effects 
program of calc_grm [24], according to:

 where all parameters are defined as before. Note that 
for additive and dominance effects, pi and qi were allelic 
frequencies, whereas for ROH effects p∗i  and q∗i  were the 
frequencies of a SNP being in a ROH or not. The back-
solving procedure was verified, by recalculating poly-
genic effects from the back-solved SNP effects.

Note that the dominance deviations ( ̂v ) and dominance 
SNP effects ( ̂d ) did not include directional dominance, 
because the mean dominance was already absorbed by 
the fixed regression on genome-wide homozygosity. 
The mean dominance effect across loci can be calcu-
lated as −b/NSNP , where b is the regression coefficient 
for genome-wide homozygosity and NSNP is the number 
of SNPs [27, 28]. In this study, we report the σ 2

D and the 
dominance effects as obtained from GREML and back-
solving output (thus, excluding mean dominance). How-
ever, we also computed the mean dominance effect (i.e. 
−b/NSNP ) and investigated the effect of correcting σ 2

D for 
this mean dominance effect (see Discussion).

Single SNP GWAS
A single SNP GWAS was performed to estimate additive, 
dominance and ROH effects as fixed effects per SNP. For 
this purpose, GREML Model A was extended by adding 
a fixed additive, dominance and ROH effect at a specific 

α̂ =
Z

′

G−1û∑
i2piqi

,

d̂ =
H

′

D−1v̂
∑

i(2piqi)
2
,

r̂ =
M

′

R−1ŵ∑
ip

∗
i q

∗
i

,
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SNP. For each SNP, the following model was run with 
Snappy [29] in Wombat [30]:

 where j is a vector with allele counts (coded as 0, 1, and 2 
for genotypes BB, AB, and AA); α is the additive effect; k 
is a vector with heterozygosity status (coded as 0, 1, and 0 
for genotypes BB, AB, and AA); d is the dominance effect; 
l is a vector with ROH status (coded as 1 when the SNP 
was in a ROH, or 0 otherwise); and r is the ROH-effect. 
The other parameters are defined as in GREML Model A.

Solutions and t-statistics were obtained from the 
output, and corresponding P-values were computed. 
Genomic inflation was assessed using QQplots and 
genomic inflation factors. The latter were computed 
as the ratio of the observed median χ2 statistic over the 
expected median of the χ2 distribution under the null 
hypothesis [31]. To account for multiple testing, P-values 
were adjusted with the p.adjust() function in R by apply-
ing the approach of Benjamini and Hochberg [32]. A 
genome-wide false discovery rate (FDR) of 10% was used 
as a threshold to declare associations as being significant.

y = jα + kd + lr + Xb+Qc+ u + e,

Results
Homozygosity and ROH‑coverage along the genome
Genome-wide SNP homozygosity of cows approximately 
followed a normal distribution with a mean of 64.4% and 
a standard deviation of 1.0% (Fig. 1a). In total, 3,910,969 
ROH were identified. As expected, these ROH followed 
approximately an exponential distribution in terms of 
length (Fig.  1b), with short ROH being more abundant 
than long ROH. The frequency of a SNP being in a ROH 
was on average 11.5% [for distribution, see Additional 
file 1: Figure S2] and differed along the genome (Fig. 1c). 
Chromosomes 10, 16 and 20 had the highest ROH-fre-
quency. The highest local peak was observed on chromo-
some 1, with a ROH-frequency of up to 63.3%. Sixty-two 
SNPs were never in a ROH. These SNPs were mostly 
located at the start or end of chromosomes.

The homozygosity status and ROH status partly over-
lapped. Of all SNPs across all individuals, 11.3% were 
both homozygous and in a ROH, 53.1% were homozy-
gous but not in a ROH, 0.2% were heterozygous and in 
a ROH, and the remaining 35.4% were heterozygous and 
not in a ROH.
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Fig. 1  Summary statistics of SNP homozygosity and regions of homozygosity (ROH) across all cows: (a) Distribution of genome-wide SNP 
homozygosity; (b) Distribution of ROH length; (c) Frequency of each SNP being in a ROH by genomic position
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Genome‑wide inbreeding depression from GREML models
Genome-wide homozygosity had an unfavourable effect 
on all evaluated traits and across all GREML models 
(Table  1). For example, a 1% increase in homozygosity 
in Model A was associated with a decrease in 305-d milk 
yield of 99.6 kg (SE = 5.2), an increase in calving interval 

of 1.1  days (SE = 0.4) and an increase in SCS400 of 2.3 
units (SE = 0.7). These unfavourable effects of genome-
wide homozygosity reflect the presence of (favourable) 
directional dominance. For example, the mean domi-
nance effect of a SNP in Model A was 0.13  kg for milk 
yield, − 0.0015  days for calving interval and − 0.0030 

Table 1  Effect of  a  1% increase in  genome-wide homozygosity ( b ), and  mean dominance effect per  SNP ( −b/NSNP ), 
for three models and nine traits

Model A, additive model; AD, additive + dominance model; ADR, additive + dominance + ROH model

MY, 305-day milk yield (kg); FY, 305-day fat yield (kg); PY, 305-day protein yield (kg); CI, calving interval (days); ICF, interval calving to first insemination (days); IFL, 
interval first to last insemination (days); CR: conception rate (%); SCS150 somatic cell score day 5 to 150 (1000 + 100* [log2 of cells/mL]); SCS400: somatic cell score day 
151 to 400 (1000 + 100*[log2 of cells/mL])

Trait Ncows Model A Model AD Model ADR

b(SE) −b/NSNP b(SE) −b/NSNP b(SE) −b/NSNP

MY 38,778 − 99.6 (5.2) 0.1322 − 98.7 (6.1) 0.1310 − 97.8 (6.7) 0.1298

FY 38,778 − 4.10 (0.20) 0.0054 − 4.04 (0.23) 0.0054 − 4.01 (0.27) 0.0053

PY 38,778 − 3.49 (0.17) 0.0046 − 3.45 (0.20) 0.0046 − 3.42 (0.23) 0.0045

CI 34,864 1.11 (0.35) − 0.0015 1.11 (0.35) − 0.0015 1.11 (0.38) − 0.0015

ICF 34,937 0.20 (0.15) − 0.0003 0.21 (0.16) − 0.0003 0.21 (0.17) − 0.0003

IFL 34,937 0.79 (0.30) − 0.0011 0.79 (0.30) − 0.0010 0.79 (0.30) − 0.0010

CR (%) 34,774 − 0.68 (0.19) 9.0E–06 − 0.68 (0.19) 9.0E–06 − 0.68 (0.19) 9.0E–06

SCS150 38,301 1.09 (0.69) − 0.0015 1.08 (0.70) − 0.0015 1.09 (0.71) − 0.0014

SCS400 37,068 2.28 (0.67) − 0.0030 2.26 (0.70) − 0.0030 2.26 (0.70) − 0.0030

Table 2  Estimated variance components for three GREML models and nine traits, with standard errors in parentheses

Model A, additive model; AD, additive + dominance model; ADR, additive + dominance + ROH model

σ 2

P
 , phenotypic variance (excluding the herd-year-season variance); σ 2

A
 , additive genetic variance; σ 2

D
 , dominance variance; σ 2

ROH
 , ROH variance; σ 2

G
 , genetic variance 

( σ 2

A
+ σ 2

D
 for model AD, and σ 2

A
+ σ 2

D
+ σ 2

ROH
 for model ADR)

MY, 305-day milk yield (kg); FY, 305-day fat yield (kg); PY, 305-day protein yield (kg); CI, calving interval (days); ICF, interval calving to first insemination (days); IFL, 
interval first to last insemination (days); CR, conception rate (%); SCS150 somatic cell score day 5 to 150 (1000 + 100*[log2 of cells/mL]); SCS400: somatic cell score day 
151 to 400 (1000 + 100*[log2 of cells/mL])
*  The corresponding variance component was fixed to 0 (because its initial estimate was slightly negative)

Model Parameter Trait

MY FY PY CI ICF IFL CR SCS150 SCS400

A σ 2

P
1356452 1813.04 1269.15 4215.19 717.658 3056.16 12.6991 17693.4 16336.5

σ 2

A
/σ 2

P
(%) 41.16 (0.81) 33.34 (0.82) 30.98 (0.81) 5.02 (0.43) 6.41 (0.49) 3.13 (0.35) 2.36 (0.32) 9.26 (0.54) 12.0 (0.60)

AD σ 2

P
1356134 1812.49 1268.93 4215.18 717.690 3056.15 12.6991 17693.82 16336.80

σ 2

A
/σ 2

P
(%) 41.13 (0.81) 33.31 (0.82) 30.95 (0.81) 5.02 (0.43) 6.41 (0.49) 3.13 (0.35) 2.35 (0.32) 9.26 (0.54) 11.94 (0.60)

σ 2

D
/σ 2

P
(%) 0.77 (0.28) 0.90 (0.31) 0.87 (0.32) 0.00 (0.38) 0.35 (0.41) 0.09 (0.39) 0.04 (0.40) 0.16 (0.35) 0.34 (0.36)

σ 2

A
/σ 2

G
(%) 98.17 (0.66) 97.36 (0.89) 97.27 (0.99) 99.93 (7.63) 94.76 (5.78) 97.23 (11.89) 98.52 (16.45) 98.30 (3.66) 97.22 (2.87)

σ 2

D
/σ 2

G
(%) 1.83 (0.66) 2.64 (0.89) 2.73 (0.99) 0.07 (7.63) 5.24 (5.78) 2.77 (11.89) 1.48 (16.45) 1.70 (3.66) 2.78 (2.87)

ADR σ 2

P
1355963 1812.48 1268.69 4215.08 717.624 3056.15 12.6991 17693.8 16336.8

σ 2

A
/σ 2

P
(%) 41.10 (0.81) 33.27 (0.82) 30.90 (0.81) 5.01 (0.43) 6.38 (0.49) 3.13 (0.35) 2.35 (0.32) 9.25 (0.54) 11.94 (0.60)

σ 2

D
/σ 2

P
(%) 0.51 (0.32) 0.54 (0.32) 0.52 (0.36) 0* 0.14 (0.47) 0.09 (0.39) 0.04 (0.40) 0.14 (0.40) 0.34 (0.36)

σ 2

ROH
/σ 2

P
(%) 0.17 (0.11) 0.25 (0.12) 0.24 (0.13) 0.07 (0.12) 0.13 (0.14) 0* 0* 0.01 (0.12) 0*

σ 2

A
/σ 2

G
(%) 98.38 (0.68) 97.68 (0.92) 97.62 (1.02) 98.53 (2.30) 95.94 (6.11) 97.23 (11.93) 98.52 (16.76) 98.39 (3.74) 97.22 (2.87)

σ 2

D
/σ 2

G
(%) 1.22 (0.75) 1.60 (1.01) 1.63 (1.12) 0* 2.09 (6.91) 2.77 (11.89) 1.48 (16.45) 1.46 (4.20) 2.78 (2.87)

σ 2

ROH
/σ 2

G
(%) 0.40 (0.26) 0.72 (0.37) 0.75 (0.40) 1.47 (2.25) 1.97 (2.21) 0* 0* 0.15 (1.29) 0*
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units in SCS400 (Table 1). Estimated effects of genome-
wide inbreeding depression were similar across Models 
A, AD and ADR.

Variance components and goodness of fit of GREML 
models
Additive genetic variance was observed for all traits 
(Table  2). In Model A, heritability estimates ranged 
from 2.36% (SE = 0.32%) for conception rate to 41.16% 
(SE = 0.81%) for milk yield. Heritability estimates were 
approximately identical across Models A, AD and ADR.

In Model AD, 0.8 to 0.9% of the phenotypic variance 
for yield traits and less than 0.4% of the phenotypic vari-
ance for all other traits was attributable to dominance. 
When expressed as part of the total genetic variance, 
dominance variance explained on average 2.36% of the 
genetic variance in Models AD (with a range of 0.07 to 
5.24% across traits). The small contribution of dominance 
was also reflected by the goodness-of-fit of the different 
models. When moving from Model A to AD, the maxi-
mum log likelihood increased significantly (P < 0.05) only 
for yield traits (Table 3). For these yield traits, the maxi-
mum log likelihood further increased (P < 0.05) when 
moving to Model ADR. In Model ADR, the relative ROH 
variance for yield traits was approximately 0.2% (Table 2), 
while the relative dominance variance was lower than 
that in Model AD (i.e. 0.5% instead of 0.8%).

The herd-year-season variance (data not shown) was 
similar across Models A, AD and ADR and was highest 
for yield traits (6.7% to 9.8% of total variance) and for the 
interval between calving and first insemination (5.8% of 

total variance). The latter trait is known to be strongly 
influenced by farmers’ decision.

Comparison of GREML and GWAS effects
Estimated additive, dominance and ROH effects from 
back-solving in GREML and from single SNP GWAS 
models were approximately normally distributed with a 
mean of zero (Fig. 2). The range and standard deviation 
of GWAS effects were substantially larger than those of 
GREML effects. For example, additive effects for milk 
yield estimated by GWAS ranged from − 1069 to 1020 kg 
with a standard deviation of 36.6 kg, whereas those esti-
mated by GREML ranged from − 25.7 to 17.8 kg with a 
standard deviation of 1.1  kg. The difference between 
GWAS and GREML estimates was larger for dominance 
and ROH effects than for additive effects. For example, 
dominance effects for milk yield estimated by GWAS 
ranged from − 1038 to 1120  kg with a standard devia-
tion of 34.1  kg, whereas those estimated by GREML 
ranged from − 0.25 to 0.25 kg with a standard deviation 
of 0.05 kg.

There was a moderate correlation between SNP effects 
estimated by GREML and GWAS. For milk yield, for 
example, this correlation was 0.50 for additive effects, 
0.40 for dominance effects and 0.79 for ROH effects. For 
additive and dominance effects, many SNPs had large 
(absolute) GWAS effects but a GREML effect close to 
zero (Fig. 3).

Additive effects across the genome
Estimated additive genetic effects followed a similar 
pattern as that reported for other GWAS. Manhattan 
plots of SNP effects for yield traits, obtained by back-
solving from the GREML ADR Models, are in Fig. 4. As 
expected, SNPs with the largest additive effects for yield 
traits were located between 0 and 1 Mb on chromosome 
14, surrounding the DGAT1 gene [33]. The effects in this 
region were antagonistic, i.e. alleles that were favora-
ble for milk and protein yields were unfavorable for fat 
yield. Two other regions had major additive effects on all 
yield traits, one on chromosome 5 (approximately 88.2 to 
88.5 Mb), surrounding the ABCC9 gene [33], and one on 
chromosome 6 (near 87  Mb), surrounding the GC gene 
[33]. For protein yield, there was an additional peak on 
chromosome 6 (approximately 85.4 to 85.7  Mb), which 
included the casein cluster, i.e. CSN1, CSN2 and CSN3 
[33]. The abovementioned additive peaks also passed the 
10% FDR threshold in the GWAS (Fig. 5). Genomic infla-
tion factors of the GWAS for additive and dominance 
effects were all lower than 1.1, suggesting that there was 
no major inflation of P-values for these effects [see Addi-
tional file 3: Figure S3].

Table 3  Comparison of goodness–of-fit of different GREML 
models for nine traits

Model A, additive model; AD, additive + dominance model; ADR, 
additive + dominance + ROH model

MY, 305-day milk yield; FY, 305-day fat yield; PY: 305-day protein yield; CI, 
calving interval; ICF, interval calving to first insemination; IFL, interval first to 
last insemination; CR, conception rate; SCS150 somatic cell score day 5 to 150; 
SCS400, somatic cell score day 151 to 400

Trait Log-
likelihood 
of Model A

Difference in log-
likelihood

P-value

AD-A ADR-AD AD vs A ADR vs AD

MY − 287087.83 4.172 1.437 0.002 0.045

FY − 161337.92 5.014 2.355  < 0.001 0.015

PY − 155089.55 4.141 2.120 0.002 0.020

CI − 162356.33 0.000 0.236 0.500 0.246

ICF − 132424.64 0.382 0.436 0.191 0.175

IFL − 157131.13 0.026 0.000 0.410 0.500

CR − 141255.38 0.004 0.000 0.465 0.500

SCS150 − 205365.12 0.107 0.007 0.322 0.453

SCS400 − 196930.13 0.464 0.000 0.168 0.500
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The peaks of GREML additive effects were less pro-
nounced for fertility and udder health traits than for yield 
traits [see Additional file  4: Figure S4]. In addition, for 
fertility and udder traits, fewer SNPs showed a signifi-
cant additive association in the GWAS [see Additional 
file  5: Figure S5]. The most notable region with signifi-
cant associations was a region on chromosome 19 for 
SCS400. This region consisted of two narrow subpeaks 
(one around 54.6 Mb and one around 55.3 Mb). For the 
interval between calving and first insemination (ICF), 
various significant additive associations were detected 
in the GWAS. The most notable region, which was also 
identified by the GREML approach, was on chromosome 
28 (near 35.8 Mb).

Dominance and ROH effects along the genome
GREML-based dominance effects showed less pro-
nounced peaks than additive effects (Fig.  4) [see also 
Additional file  4: Figure S4]. In the GWAS, there were 
also fewer significant dominance associations than sig-
nificant additive associations (Fig. 5) [see also Additional 
file 5: Figure S5].

For yield traits, the most notable region with large 
favorable dominance effects in the GREML and with 
significant dominance associations in the GWAS was 
located on chromosome 5 (Figs. 4 and 5). This region was 
rather wide, with significant associations between 13 and 
40 Mb and the largest effects between 24 and 28 Mb [see 
Additional file  6: Figures  S6 and S7]. In addition to the 
region on chromosome 5, two other peaks passed the 
10% FDR in the GWAS, one near DGAT1 for milk and 
fat yields and one on chromosome 23 (near 25.2 Mb) for 
milk yield.

For fertility and udder health traits, there were very few 
significant dominance associations in the GWAS (Addi-
tional file 5). The only significant SNPs were found for the 
interval between calving and first insemination (ICF) and 
these SNPs did not cluster in peaks.

ROH effects showed many narrow peaks for all traits, 
both with GREML and GWAS (Figs.  4 and 5) [see also 
Additional file 4: Figure S4 and Additional file 5: Figure 
S5]. However, none of the ROH effects in the GWAS 
passed the 10% FDR.
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Fig. 2  Distributions of SNP effects for 305-day milk yield (kg), estimated by GREML and single SNP GWAS. The mean ( ̄x ) and standard deviation ( sd ) 
of the effects are shown. Note that distributions were truncated such that the first and last bar represent “smaller than” and “bigger than” classes 
(i.e. the range was larger than shown here). Also note that the dominance effects shown here do not include the mean dominance effect that was 
absorbed by the fixed regression on genome-wide homozygosity



Page 9 of 18Doekes et al. Genet Sel Evol           (2020) 52:64 	

Discussion
The objective of this study was to obtain a better under-
standing of (differences in) inbreeding depression across 
the genome of Dutch Holstein Friesian dairy cattle. To 
fulfil this objective, first we estimated genome-wide 
inbreeding depression and estimated additive, domi-
nance and ROH variance components with GREML 
models. Then, we investigated dominance and ROH 
effects along the genome for yield, fertility and udder 
health traits, using GREML (with back-solving) and a sin-
gle SNP GWAS.

Genome‑wide inbreeding depression
Genome-wide SNP homozygosity had an unfavourable 
effect on all traits, indicating the presence of directional 
dominance (Table  1). The estimated effects were com-
parable in size to those previously reported for similar 
traits in Holstein Friesian dairy cattle [2, 3, 8]. When 
comparing inbreeding depression estimates across stud-
ies, it is important to consider the variance of underlying 

inbreeding measures [34]. For example in this study, the 
effect of a 1% increase in SNP homozygosity on milk 
yield (of approximately − 99  kg) may seem larger than 
the effect of a 1% increase in ROH-based inbreeding that 
we previously reported (of approximately − 36  kg [8]), 
but this difference can be largely explained by the differ-
ent scale of the inbreeding measures. In this study, SNP 
homozygosity had a mean of 64.4% and a standard devia-
tion of 1.0%, whereas ROH-based inbreeding in our pre-
vious study had a mean of 12.3% and a standard deviation 
of 2.7% [8]. Therefore, a 1% increase in SNP homozygo-
sity captures a larger effect at the population level than a 
1% increase in ROH-based inbreeding. To illustrate this 
effect of scale, previously we compared the phenotypes 
of highly inbred cows and lowly inbred cows and showed 
that different inbreeding measures may result in similar 
inbreeding depression at the population level, in spite of 
the difference in estimated regression coefficients [8].
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Fig. 3  Scatterplots comparing SNP effects for 305-day milk yield (kg) estimated by GREML and single SNP GWAS. The dashed line is a linear 
trendline. The regression equation corresponding to this line and the Pearson correlation coefficient (R) are shown. Note that the dominance effects 
shown here do not include the mean dominance effect that was absorbed by the fixed regression on genome-wide homozygosity
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Fig. 4  Additive, dominance and ROH effects for yield traits, estimated by GREML (model ADR) with back-solving. MY: 305-day milk yield (kg); 
FY: 305-day fat yield (kg); PY: 305-day protein yield (kg). Effects were multiplied by 100 and divided by the genetic standard deviation ( σg ) of the 
corresponding trait. Note that the dominance effects shown here do not include the mean dominance effect that was absorbed by the fixed 
regression on genome-wide homozygosity
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Fig. 5  Statistical significance of additive, dominance and ROH effects for yield traits from single SNP GWAS. MY: 305-day milk yield; FY: 305-day 
fat yield; PY: 305-day protein yield. The horizontal red line is a threshold based on 10% false-discovery rate (absence of this line implies that all 
effects were below the threshold). The y-axis for MY additive effects was truncated at 40; in the peak on chromosome 14, there were 6 SNPs with a 
-log10(P-value) ranging from 40 to 94
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Dominance and ROH variance
Estimates of dominance and ROH variances were small 
and differed significantly from zero for yield traits 
only (Tables  2 and 3). Dominance and ROH variances 
explained less than 1% of the phenotypic variance, and 
less than 5% of the genetic variance. When we ran models 
excluding dominance, i.e. Models AR, the ROH variance 
also explained less than 1% of the phenotypic variance 
[see Additional file 7: Table S3]. The maximum log-likeli-
hoods of Models AR were significantly higher than those 
of Models A for yield traits only [see Additional file  7: 
Table S4].

Many other studies have estimated dominance variance 
in Holstein Friesian dairy cattle. Here, we use “relative 
dominance variance” for the ratio of dominance variance 
over phenotypic variance. Note that in the literature the 
term “dominance heritability” is also sometimes used for 
the same ratio [14, 35, 36]. Estimates of relative domi-
nance variance based on pedigree relationship matrices 
in Holstein cattle typically range from 1 to 5% [37–40], 
although a few studies suggest a larger contribution of 
dominance effects [41, 42]. Estimates based on genomic 
relationship matrices are similar to, or slightly higher, 
than pedigree-based estimates (Table 4).

Our relative dominance variance estimates tend to 
be a bit lower than most estimates from the literature. 
One explanation is that we corrected for genome-wide 
inbreeding depression in our GREML models (as dis-
cussed in the next section). Another reason for low 
dominance variance may be the limited SNP density that 
we used, although most other studies used similar den-
sities (Table  4). It is well known that the additive vari-
ance captured by a SNP depends on r2 (with r being the 

correlation between the SNP and a QTL), while the dom-
inance variance captured by the SNP depends on r4 [46]. 
In other words, the detection of dominance effects relies 
more on high LD than detection of additive effects. Thus, 
the detection of dominance effects would benefit sub-
stantially from a higher SNP density. In addition to SNP 
density and the inclusion of a regression on genome-
wide homozygosity, many other factors may explain dif-
ferences in relative dominance variance across studies. 
These factors include differences in trait definition, dif-
ferences in the way phenotypes are (pre)corrected for 
fixed effects, differences in how the dominance relation-
ship matrix is calculated and population-specific differ-
ences [13, 47].

In this study, we introduced a ROH-based relation-
ship matrix to estimate a ROH-based variance compo-
nent. For yield traits, Model ADR showed a better fit 
than Model AD (Table  3), which suggests some benefit 
of including ROH effects. This benefit appeared to be 
due to an overall redistribution of variance components 
and could not be easily explained. In fact, the proportion 
of variance explained by dominance in Model AD was 
slightly higher than the combined proportion of vari-
ance explained by dominance and ROH effects in Model 
ADR (Table  2). The dominance variance from the AD 
model appeared to be split over dominance and ROH 
components in Model ADR, suggesting that dominance 
and ROH effects partly captured the same variation 
(which might be due to collinearity between the D and 
R matrices, see discussion on Orthogonality of G , D and 
R ). However, differences in variance components across 
models were small and may have also been due to ran-
dom sampling.

Table 4  Estimates of relative dominance variance from various studies that used genomic relationship matrices

a  GW ID: genome-wide inbreeding depression
b  In this particular study, an imprinting effect was also fitted. All other studies used AD models

Study Density Accounted for GW IDa Relative dominance variance

Aliloo et al. [14] 632 k (imputed) Yes  ≤ 1% for yield traits

1% for calving interval

Aliloo et al. [14] 632 k (imputed) No 3 to 4% for yield traits

1% for calving interval

Sun et al. [35] 50 k (imputed) Yes, in precorrection of pheno-
types

3 to 4% for yield traits

1% for SCS

0% for daughter pregnancy rate

Jiang et al. [43]b 50 k (imputed) No 7 to 13% for yield traits

0 to 15% for fertility traits

9% for SCS

Alves et al. [44] 41 k (imputed) No 0 to 4% for fertility traits

Mao et al. [45] 36 k No 7% for interval first-last insemination

4% for number of inseminations
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Accounting for directional dominance when estimating 
dominance variance with GREML
In our GREML models, we corrected for genome-wide 
inbreeding depression by including a fixed regres-
sion on genome-wide SNP homozygosity. This correc-
tion is important to ensure that the model assumptions 
of a mean dominance effect of zero ( E[v] = 0 ) and of 
no covariance between additive and dominance effects 
( cov[u, v] = 0 ) hold, and to prevent the dominance vari-
ance from being inflated [10, 28, 47]. Indeed, when we 
removed the fixed regression on genome-wide homozy-
gosity from Model AD, the relative dominance variance 
for yield traits increased to approximately 3% (as com-
pared to 0.8%), which are values similar to those reported 
by Aliloo et  al. [47]. In addition, the mean back-solved 
dominance effect was no longer zero, but slightly favour-
able. The mean back-solved dominance effect for milk 
yield, for example, was 0.05 kg when not accounting for 
genome-wide homozygosity (as compared to 0.0005  kg 
when accounting for genome-wide homozygosity). Note 
that this 0.05 kg is smaller than the 0.13 kg from the fixed 
regression on genome-wide homozygosity (Table  1), 
which may be explained by shrinkage on the mean domi-
nance when it was part of the random effect.

When a fixed regression on genome-wide SNP 
homozygosity is included in an AD model, the mean 
dominance effect across all loci is absorbed by this 
regression [27, 28]. Consequently, the σ 2

D of such models 
is expected to be underestimated. Namely, the σ 2

D of such 
models captures only the deviations of dominance effects 
( di ) at individual loci from the mean dominance effect 
( ̄d ) across all loci, σ 2

D =
∑

i(2piqi(di − d̄))2, while the 
full dominance variance equals σ 2

DFULL
=

∑
i(2piqidi)

2 . 
Thus, to obtain σ 2

DFULL
 , a component related to the mean 

dominance effect across all loci should be added to the σ 2
D 

from the GREML output. This additional component can 
be derived as:

where σ 2
DFULL

 is the full dominance variance, σ 2
D is the 

dominance variance obtained from the GREML output, 
N  is the number of SNPs, (2pq)2 is the mean squared 
expected heterozygosity, and d̄2 is the squared mean 
dominance effect, where d̄ can be obtained from the 

σ 2
DFULL

=
∑

i
(2piqidi)

2

=
∑

i

(
2piqi(di − d̄)+ 2piqid̄

)2

=
∑

i
(2piqi(di − d̄))2 +

∑
i
(2piqid̄)

2

= σ 2
D + N (2pq)2d̄2,

regression on genome-wide homozygosity. Note that, in 
the third line of the derivation above, a cross-product has 
disappeared because 

∑
(di − d̄) = 0.

To quantify the difference between σ 2
D and σ 2

DFULL
 , we 

calculated σ 2
DFULL

 for Model AD, applying the reasoning 
above. The additional component, N (2pq)2d̄2 , was rela-
tively small compared to σ 2

D . For milk yield, for example, 
N (2pq)2d̄2 equalled 189 kg2, whereas σ 2

D equalled 10,377 
kg2. Consequently, the relative dominance variance 
increased only marginally when accounting for the addi-
tional N (2pq)2d̄2 component (e.g. from 0.77 to 0.78% for 
milk yield).

In Model ADR, it was assumed that ROH effects were 
distributed as ∼ N (0,Rσ 2

ROH ). This assumption may not 
hold, because of a potential average genome-wide ROH-
effect being different from zero (similar to the genome-
wide dominance effect). However, since genome-wide 
SNP homozygosity and genome-wide ROH coverage 
(the FROH ) are highly correlated [8], we expected that the 
inclusion of genome-wide homozygosity would largely 
correct for a genome-wide ROH effect. In Model ADR, 
the means of the back-solved ROH effects were approxi-
mately zero (e.g. − 0.0007 for milk yield), suggesting that 
the fixed effect for genome-wide homozygosity indeed 
removed the mean ROH effect.

Orthogonality of G , D and R
In the GREML models in this study, the G and D were 
parameterized according to Vitezica et al. [13], ensuring 
orthogonality between these matrices. R was constructed 
using VanRaden’s method 1 [25], with ROH-status of 
SNPs as input instead of genotype status. Since the ROH-
status of a SNP partly depends on its genotype status (e.g. 
a SNP typically must be homozygous to be in a ROH), 
some collinearity was expected between R on the one 
hand, and G and D on the other hand. To check for collin-
earity, correlations between off-diagonals of the different 
relationship matrices were calculated. These correlations 
equalled 0.03 between G and D , 0.18 between G and R , 
and 0.44 between D and R . Correlations between vari-
ance component estimates were also calculated, using 
the average information matrix from Models ADR, and 
equalled approximately 0 between σ 2

G and σ 2
D , 0 between 

σ 2
G and σ 2

ROH , and 0.41–0.48 between σ 2
D and σ 2

ROH [see 
Additional file 8: Table S5]. This suggests that there was 
moderate collinearity between R and D and that it was 
difficult to disentangle the dominance and ROH variance 
components.

Although the moderate collinearity between D and R 
may have complicated the partitioning of variance com-
ponents, the ranking of estimated SNP effects did not 
seem to be affected. Correlations between back-solved 
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dominance effects of Models AD and ADR were above 
0.998 for all traits. Similarly, correlations between addi-
tive effects of Models A, AD and ADR were above 0.999 
for all traits.

Our objective was to investigate dominance and ROH 
effects along the genome, and the ranking of these effects 
did not seem to be affected by collinearity. Therefore, we 
believe that the collinearity had no effect on the results 
and conclusions of this study and decided not to perform 
a precorrection for orthogonality in our study. If similar 
analyses were to be performed in the future, orthogonal-
ity of G , D and R could be ensured by a pre-correction 
of the indicator matrix underlying R (i.e. the M in this 
study), making it independent from the indicator matri-
ces underlying G (i.e. Z ) and D (i.e. H ). This could be 
achieved by linear regression. For each SNP i , the cor-
responding vector in M (say Mi ) could be regressed on 
the corresponding vectors of Z (i.e. Zi ) and H (i.e. Hi ). The 
residuals of this linear regression could then be used as 
the new indicator variable (say M∗

i  ) to build a corrected 
R-matrix. By virtue of least squares, the M∗

i  would be 
orthogonal to Zi and Hi.

SNP effects estimated by GREML and single SNP GWAS
In this study, we estimated SNP effects with two 
approaches: GREML with back-solving and a single SNP 
GWAS. It is important to note that these approaches 
are equivalent when they are used for association map-
ping and when the models are strictly identical. As shown 
mathematically by Bernald Rubio et al. [48], the test sta-
tistics of GREML and of single SNP GWAS are equivalent 
if models are identical. These test statistics can be calcu-
lated as the estimates of effects divided by their standard 
deviation [48]. In this study, we did not compare the test 
statistics of the GREML and GWAS models, because of 
two software-related reasons: (1) the D and R matrices 
were not fitted in the single SNP GWAS, introducing a 

difference between GREML and GWAS models, and 
(2) the standard deviations of GREML effects were not 
available.

Although we did not compare test statistics, we did 
compare the effects of SNPs. Estimated effects of SNPs 
were much larger for the single SNP GWAS than for 
GREML and correlations between the effects of both 
approaches were moderate (Figs.  2 and 3). This can be 
explained by the fact that a single SNP GWAS estimates 
the effects for one SNP at a time as fixed effect with-
out shrinkage, whereas GREML estimates the effects of 
all SNPs together as random effect with shrinkage. The 
magnitude of shrinkage depends on the standard error 
of the estimate of the effect, which in turn depends on 
the amount of data and the variance of the associated fac-
tor. There is more shrinkage for a factor that explains a 
smaller proportion of the variance [49]. This explains why 
the effects of GREML are so much smaller than those of 
the single SNP GWAS (Figs. 2 and 3), especially for dom-
inance effects (which explained little variance) and ROH 
effects (which explained even less variance). Shrinkage 
can also explain why there were various SNPs with a large 
absolute additive and dominance effect for GWAS, but 
with a close to zero additive and dominance effect for 
GREML (Fig.  3). These SNPs all had a low minor allele 
frequency (MAF). For additive effects, the degree of 
shrinkage at a SNP (given a fixed sample size) depends 
on 2pq [49]. When we manually shrunk additive effects 
from the GWAS by multiplying them with 2pq , the outli-
ers indeed disappeared and the correlation between addi-
tive effects of GWAS and GREML increased from 0.50 to 
0.86 (Fig. 6).

Region‑specific inbreeding depression
We found limited evidence for region-specific inbreed-
ing depression based on 75  k SNP data for yield, fertil-
ity and udder health traits. For yield traits, we only found 
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Fig. 6  Scatterplot comparing additive effects for 305-day milk yield (kg) estimated by GREML and by GWAS with manual shrinkage. The GWAS 
effects were manually shrunk by multiplying them with 2pq . The dashed line is a linear trendline. The regression equation corresponding to this line 
and the Pearson correlation coefficient (R) are shown
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a few regions with large favourable dominance effects 
from GREML and significant dominance associations 
in the GWAS (Figs. 4 and 5). These regions were similar 
to those identified in previous studies. For example, in a 
recent large-scale GWAS with approximately 300  k US 
Holsteins and 60 k SNP data, Jiang et al. [11] also found 
the most significant dominance effects for yield traits on 
chromosome 5 between 24 and 28 Mb. The second most 
significant dominance peak for milk yield that they found 
was located on chromosome 23 (near 18  Mb). The lat-
ter peak was also observed in an earlier GWAS with 43 k 
Holsteins [43]. The peak that we observed on chromo-
some 23 (near 25 Mb) was not exactly at the same loca-
tion, but close to the previously reported peak. We also 
found a significant dominance peak near the DGAT1 
gene on chromosome 14 for milk and fat yields. Signifi-
cant dominance effects of DGAT1 on milk and fat yields 
have been reported before [11, 50, 51]. For non-yield 
traits, we found very few significant dominance asso-
ciations for fertility traits and no significant dominance 
associations for SCS, also similar to findings of Jiang et al. 
[11].

We detected no significant GWAS associations for 
ROH effects. Pryce et  al. [2], in contrast, reported vari-
ous candidate regions associated with inbreeding depres-
sion for yield traits and calving interval based on a single 
SNP GWAS for ROH status in US Holsteins. This may be 
explained by two differences in the approach used. First, 
we estimated the additive, dominance and ROH effects 
simultaneously, whereas Pryce et  al. [2] had no domi-
nance effect in the model. Second, Pryce et  al. [2] used 
a threshold of -log10(P-value) of 3 to identify candidate 
regions and mentioned that the FDR was high. When we 
applied a threshold -log10(P-value) of 3 in the GWAS, 
we indeed found various significant ROH peaks for all 
traits (Fig. 5) and [see Additional file 5 Figure S5]. Some 
of these peaks were favourable, potentially indicating 
signatures of selection, whereas others were unfavour-
able, potentially indicating inbreeding depression. Also 
note that genomic inflation factors were approximately 
1.3 for ROH effects [see Additional file 3 Figure S3], sug-
gesting substantial inflation. Because the ROH effects did 
not pass the 10% FDR, we decided not to correct for this 
inflation.

In this and other studies in which a single SNP GWAS 
for ROH-status was performed [2, 16], the ROH-status of 
a SNP was set to 1 when the SNP was in a ROH, irre-
spective of which ROH it concerned. As a result, the esti-
mated ROH-effect of a SNP was a pooled effect of many 
distinct ROH. This approach is in line with the reasoning 
behind inbreeding depression, namely that any homozy-
gosity decreases performance (irrespective for which 
allele). However, it may be of interest to know which 

specific ROH is unfavourable. Fine-mapping of individ-
ual ROH effects is not straightforward due to the large 
number of distinct ROH (each having a low frequency). 
One possibility is to group ROH based on common core 
regions and then try to associate ROH-groups with the 
phenotype, as is sometimes done in humans (e.g. [52].). 
Alternatively, one could test each individual ROH, e.g. 
using the heuristic approach introduced by Howard et al. 
[53]. In the approach of Howard et al. [53], the mean phe-
notype of individuals with a specific ROH is compared 
to the mean phenotype of individuals without that ROH. 
A limitation of this approach is that it is computation-
ally intensive, in spite of the various filtering criteria that 
can be used (such as minimum ROH-frequency). Conse-
quently, the feasibility for datasets with many traits and 
large numbers of individuals is limited. Recently, this 
approach has been applied to smaller datasets (less than 
10,000 individuals) in swine [53] and Canadian Holstein 
cattle [54], and the estimated effects reported by these 
studies are rather large. For example, the average effect 
of unfavourable ROH identified by Marras et al. [54] for 
305-d milk yield in first parity cows, was -295 kg with a 
standard deviation of 105  kg. These effects are likely to 
be overestimated, because of statistical biases similar to 
those in a single SNP GWAS. In addition, there may be 
many false negatives due to the initial filtering steps and 
the use of significance thresholds to account for multiple 
testing. Despite these limitations, the identified unfa-
vourable ROH-haplotypes and their effects could be used 
to build an inbreeding load matrix (ILM), which provides 
some information on the expected inbreeding load of the 
offspring of a particular mating [53]. This could be valu-
able in mating programs but is of less importance for 
selection schemes.

An important observation in this study was that domi-
nance (and ROH) effects shrunk substantially when 
the fixed regression on homozygosity was included in 
GREML models. This was also observed by Aliloo et al. 
[47]. As a result, ROH and dominance variances were 
small (< 1% of phenotypic variance) and only significant 
for yield traits. This suggests that, after correcting for 
genome-wide inbreeding depression, fitting dominance 
and ROH effects (based on 75 k data) had little additional 
value. Overall, our findings suggest that, based on 75  k 
SNP data, the deleterious effect of homozygosity is quite 
evenly distributed across the genome and is well captured 
by genome-wide homozygosity in Holstein–Friesian 
dairy cattle. Based on these findings, there is little benefit 
of accounting for region-specific inbreeding depression 
in selection schemes.
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Conclusions
Inbreeding depression was observed for yield, fertility 
and udder health traits in Dutch Holstein Friesian cattle. 
However, after correcting for genome-wide homozygosity 
dominance and ROH effects explained very little variance 
in GREML models. A few regions with relatively large 
favourable dominance effects and significant dominance 
associations (based on 10% FDR) were identified for yield 
traits, based on both GREML and single SNP GWAS. 
Overall, however, inbreeding depression appeared to be 
distributed quite equally along the genome and was well 
captured by genome-wide homozygosity.
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