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Abstract 

Background:  In this paper, we present the AlphaPart R package, an open-source implementation of a method for 
partitioning breeding values and genetic trends to identify the contribution of selection pathways to genetic gain. 
Breeding programmes improve populations for a set of traits, which can be measured with a genetic trend calculated 
from estimated breeding values averaged by year of birth. While sources of the overall genetic gain are generally 
known, their realised contributions are hard to quantify in complex breeding programmes. The aim of this paper is to 
present the AlphaPart R package and demonstrate it with a simulated stylized multi-tier breeding programme mim-
icking a pig or poultry breeding programme.

Results:  The package includes the main partitioning function AlphaPart, that partitions the breeding values and 
genetic trends by pre-defined selection paths, and a set of functions for handling data and results. The package is 
freely available from the CRAN repository at http://CRAN.R-proje​ct.org/packa​ge=Alpha​Part. We demonstrate the use 
of the package by partitioning the nucleus and multiplier genetic gain of the stylized breeding programme by tier-
gender paths. For traits measured and selected in the multiplier, the multiplier selection generated additional genetic 
gain. By using AlphaPart, we show that the additional genetic gain depends on accuracy and intensity of selection 
in the multiplier and the extent of gene flow from the nucleus. We have proven that AlphaPart is a valuable tool for 
understanding the sources of genetic gain in the nucleus and especially the multiplier, and the relationship between 
the sources and parameters that affect them.

Conclusions:  AlphaPart implements the method for partitioning breeding values and genetic trends and provides a 
useful tool for quantifying the sources of genetic gain in breeding programmes. The use of AlphaPart will help breed-
ers to improve genetic gain through a better understanding of the key selection points that are driving gains in each 
trait.
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Background
Breeding programmes improve populations for a set 
of traits by selecting and mating genetically superior 
individuals. Population improvement can be meas-
ured with a genetic trend calculated by averaging esti-
mated breeding values by year of birth [1, 2]. While 
sources of the overall genetic gain are generally known, 

their realised contributions are hard to quantify in com-
plex breeding programmes due to many interacting 
processes. García-Cortés et  al. [3] proposed a method 
for such analyses. In summary, the method uses pedi-
gree information to first partition the breeding values 
into a parent average and a Mendelian sampling term: 
ai = 1/2as + 1/2ad + wi [4], where ai , as , and ad are the 
breeding values of the individual, its sire, and its dam, 
respectively, and wi is the individual’s Mendelian sam-
pling term. The parent average represents the expected 
breeding value of progeny given the breeding values of 
parents and the Mendelian sampling term represents 
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the deviation arising from recombination and segrega-
tion of parental chromosomes. The partitioning method 
then allocates Mendelian sampling terms to the selec-
tion path that generated it. For example, assuming a 
small trio pedigree with two parents and a female prog-
eny, and specifying gender with two levels (males and 
females) as the selection path variable, we can write 
ai = 1/2as + 1/2ad + wi = (1/2ad + wi)+ 1/2as = aif + aim  , 
where aif  denotes the contribution of the female path 
and aim denotes the contribution of the male path. 
Since individual i is a female, we assigned her Mende-
lian sampling term wi to the contribution of females as 
we did with half of the dam’s breeding value ( 1/2ad ). We 
assigned half of the sire’s breeding value to the contri-
bution of males. Alternatively, assuming that the sire is 
imported, then an interesting path specification can be 
made that separates contributions from domestic versus 
imported sources, which can be partitioned similarly to 
the gender example. In general, we can write a vector 
of breeding values as a linear combination of Mende-
lian sampling terms of individuals and their ancestors: 
a = Tw , where T is a triangular matrix of expected 
gene flow between ancestors and individuals [4, 5] and 
w is a vector of Mendelian sampling terms. The method 
of García-Cortés et  al. [3] uses a path variable to parti-
tion the gene flow matrix T = T1 + T2 + · · · + Tp and 
with this partitions breeding values by selection paths 
a = (T1 + T2 + · · · + Tp)w = a1 + a2 + · · · + ap), where 
Ti describes the gene flow for a selection path i . Aggre-
gating these partitions by other variables (such as year of 
birth, countries, gender, etc.) is a powerful way to analyse 
sources of genetic gain.

The partitioning method has been used in a number 
of cases. Gorjanc et al. [6, 7] estimated contributions of 
breeding programmes in different countries to country-
specific and global genetic trends in the Brown-Swiss and 
Holstein populations. Špehar et al. [8] estimated contri-
butions of domestic and foreign selection paths to genetic 
gain of Croatian Simmental cattle, and Škorput et al. [9] 
estimated such contributions to genetic gain in two pig 
breeds in Croatia. The latter study also extended the anal-
ysis by accounting for the uncertainty of estimated breed-
ing values and partitions [2]. However, these studies used 
bespoke implementations of the partitioning method, for 
which no open-source software exists.

The aim of this paper is to present the AlphaPart R 
package that implements a method for partitioning 
breeding values and genetic trends. We demonstrate 
the package with an example in which we partition the 
genetic gain of a small population for which genetic 
material is imported. Next, we demonstrate the package 
by partitioning the genetic trends of a stylized multi-tier 

breeding example usually applied in pig and poultry 
breeding.

Implementation
AlphaPart is an R package available from the CRAN 
repository at https​://CRAN.R-proje​ct.org/packa​
ge=Alpha​Part and thus easily installed via install.
packages(“AlphaPart”) and loaded with 
library(AlphaPart) command inside R. We devel-
oped the package with the aim to create a user-friendly 
implementation of the method for partitioning breeding 
values and genetic trends. The only input required from 
the user is an initial data frame. All the subsequent func-
tions in the analysis pipeline accept the output of a pre-
ceding function.

First, we demonstrate the standard AlphaPart analysis 
pipeline in an example session by analysing genetic gain 
in a breeding programme that imports genetic material 
from another population. Next, we demonstrate the use-
fulness of AlphaPart by analysing the dynamics of genetic 
gain in a multi-tier breeding programme. The simulation 
code for the generation and analysis of both datasets is 
available in the GitLab repository https​://git.ecdf.ed.ac.
uk/Highl​ander​Lab_publi​c/jobst​eter_alpha​part.

Example session of analysing a breeding programme using 
import
Here, we demonstrate the functionality of AlphaPart on 
a simulated example. Consider a case of a small popula-
tion (Population 1) that imports genetic material from two 
larger populations (Populations 2 and 3) that have higher 
genetic gains per unit of time. Populations 2 and 3 achieve 
higher genetic gains with higher accuracy of selection 
(h2 = 0.9 vs. h2 = 0.7 in Population 1). In addition, Popu-
lation 3 benefits from a higher intensity of male selection 
(2.89 vs. 2.67 in Populations 1 and 2). In this simulation, we 
assume the presence of genotype-by-environment interac-
tions and genetic correlations of a trait in Population 1 with 
a trait in Population 2 and a trait in Population 3 of 0.9 and 
0.8, respectively, and we assume 20 generations of selection 
of males on phenotypic values. In generations 1 to 10, we 
perform selection within these populations without import 
and in generations 11 to 20, Population 1 imports 10% of 
semen from Population 2 and 10% of semen from Popula-
tion 3. To optimize the breeding strategy in Population 1, 
we would like to quantify how much genetic gain between 
generations 11 and 20 stems from each of the popula-
tions. Hence, we partition the breeding values by variable 
“population of origin”. To analyse this situation, we used 
stochastic simulation to generate the dataset. Details of the 
simulation are provided in Additional file 1: Figure S1.

https://CRAN.R-project.org/package=AlphaPart
https://CRAN.R-project.org/package=AlphaPart
https://git.ecdf.ed.ac.uk/HighlanderLab_public/jobsteter_alphapart
https://git.ecdf.ed.ac.uk/HighlanderLab_public/jobsteter_alphapart
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Preparing the data
The main input for the analysis is a data frame that 
holds pedigree information with individual/sire/dam 
or individual/sire/maternal-grandsire identification, a 
time-ordering variable such as year of birth, partition 
variable (path), and breeding values for one or multiple 
traits. The package provides functions to pre-process 
the input data, such as for correcting missing or incor-
rect years of birth and setting the base population of the 
pedigree. For this example session we prepared the input 
data frame PedEval containing the year (generation) of 
birth (Generation), identifications for individuals and 
their parents (IId, FId, and Mid), population or origin 
(Population), and breeding values (Bv) for the trait 
expressed in Population 1 (Fig. 1).

The missing or erroneous years of birth in the input 
data affect the accuracy of partitioning. The package 
allows us to impute missing or correct erroneous years 
of birth with the pedFixBirthYear() function. Since 
we are using simulated data in this example, we have no 
missing or erroneous generations of birth. If we had, we 
would run:

The pedFixBirthYear() function requires the 
input data frame as described above (Fig.  1) that holds 
at least individual, father and mother identification, and 
the year of birth. It also requires the generation interval 
via the interval argument. The function computes the 
missing birth years either (i) based on offspring by add-
ing the generation interval to the birth year of the oldest 
offspring to obtain the parent birth year (argument down 
set to FALSE); or (ii) based on parents by subtracting the 
generation interval from the birth year of the youngest 

parent to obtain offspring birth year (argument down set 
to TRUE). The output of the function is a data frame with 
corrected years of birth.

Our data frame contains information on 20 genera-
tions of selection, for 10 of these, selection is performed 
within each of the populations, and for the 10 following 
generations, genetic material from Populations 2 and 3 is 
imported into Population 1. If we want to consider only 
the generations in which we perform import, that is gen-
erations 11 to 20, we use the function pedSetBase() 
to rebase the pedigree:

The pedSetBase() function requires the input data 
frame as described above (Fig. 1) that holds at least indi-
vidual, father and mother identification, and the year of 
birth. It also requires instructions on where to rebase the 
pedigree via the keep argument. The function removes 
all the individuals that do not meet the condition, includ-
ing their role as parents. The output of the function is a 
data frame with an adjusted set of individuals.

Partitioning analysis
We partition the breeding values with the main function 
of the package, AlphaPart(). To partition breeding 
values (Bv) into contributions of selection in Population 
1 (domestic source), Population 2 (imported source) and 
Population 3 (imported source) we use:

The function AlphaPart() requires the input 
data frame as described above (Fig.  1). Following the 
method described by García-Cortés et  al. [3], the func-
tion recurses the pedigree from the oldest to the young-
est individual and calculates for each individual its 
parent average and Mendelian sampling terms for the 
trait. Then, it assigns half of the parent average term 
to each of the parents’ paths and Mendelian sampling 
term to the individual’s path. For the founders, the func-
tion assigns their entire breeding values to the found-
ers’ paths. The function can also conveniently partition 
breeding values for multiple traits by specifying a vec-
tor of variables, say colBV = c(“Bv1”, “Bv2”). This 
specification triggers simultaneous partitioning of mul-
tiple vectors (breeding values) in the input data frame, 

Fig. 1  Example input data frame for partitioning analysis. The 
data frame shows the first few rows of individual’s generation, 
identification (IId), father’s identification (FId), mother’s identification 
(MId), population and breeding value (Bv)
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but each vector is partitioned independently. The multi-
ple trait option can also serve to partition samples from 
the posterior distribution of breeding values to quantify 
uncertainty due to estimation from the available data [2, 
9]. To speed-up calculations, we use C++ and simul-
taneous partitioning of multiple traits (where needed). 
The function can also simultaneously partition and sum-
marize path contributions by a grouping variable (for 
example generation) provided via the colBy argument, 
which is a useful computational speed-up for huge pedi-
grees. Alternatively, we subsequently use the summary.
AlphaPart() function to summarize the partitions as 
shown below.

The output of the AlphaPart() function is an object 
of either a data frame with partitioned breeding val-
ues (AlphaPart class) or partitioned and summarized 
breeding values (summaryAlphaPart class). In either 
case, the output is a list with an info element and an 
element with partitioned breeding values for each of the 
traits. The info element is a list with information on the 
path variable (path), number of paths (nP), path labels 
(lP), number of traits (nT), trait labels (lT), and puta-
tive warnings (warn). The trait element is a data frame, 
named after the analysed trait (Fig. 2), and holds, for each 
individual, all the columns from the input data frame 
as well as parent average (Bv_pa), Mendelian sampling 
term (Bv_w), and breeding value partitions (Bv_Pop1, 
Bv_Pop2 and Bv_Pop3).

In Fig. 2, we see that individuals 75165 (Population 1, 
breeding value 9.20) and 76300 (Population 2, breeding 
value 12.16) are treated as founders without pedigree 
information. Thus, their entire breeding value is assigned 

to their Mendelian sampling term and to their popula-
tions of origin. The breeding value of their offspring, 
individuals 83134 and 83135, are partitioned into par-
ent average and Mendelian sampling terms and they are 
also partitioned by the population of the animal’s origin. 
For example, breeding value of 83134 is 10.42 with par-
ent average 10.68 = (9.20 + 12.16)/2 and Mendelian sam-
pling term −  0.26. Since parents are from Populations 
1 and 2 and their progeny is from Population 1, we can 
partition the offspring breeding value, 10.42, also into the 
contribution of Population 1, 9.20/2—0.26 = 4.34, and 
contribution of Population 2, 12.16/2 = 6.08. Offspring 
83135 is mated with individual 89462 from Population 3 
with a breeding value of 13.01 (not shown). The breed-
ing values of their offspring, individuals 91296 and 91297, 
are therefore partitioned into contributions from three 
populations.

Analysing the results
To summarise the individual partitions of breeding val-
ues, the package includes functions to summarize and/or 
combine paths by a grouping variable, subset the parti-
tioning results and visualise these summaries.

An interesting measure is the trend of mean breeding 
values (genetic trend) and path partitions (partial genetic 
trends) through time. To summarize the breeding values 
and the partitions by generation, we use the summary.
AlphaPart(). Since we are interested in the genetic 
gain of Population 1, we use the subset option to filter out 
Population 1 individuals:

Fig. 2  Example output data frame from partitioning analysis with the AlphaPart() function. The data frame holds for each individual all the 
columns from the input data frame (Fig. 1) as well as parent average (Bv_pa), Mendelian sampling term (Bv_w), and breeding value partitions 
(Bv_Pop1, Bv_Pop2 and Bv_Pop3)
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The input for the summary.AlphaPart() is the 
output of the partitioning analysis (AlphaPart class). 
The function also requires a variable that allows us to 
summarize the breeding values and their partitions via 
the by argument. In the case above, we are summarizing 
by generation, but depending on the analysis this could 
be any variable (for example, gender, population, … and 
their combinations). By default, the function summarizes 
the mean of the breeding values of the analysed trait, but 
the user can specify any R function via the FUN argu-
ment. The function can also summarize only a subset of 
the object by specifying which individuals to keep. The 
user passes the condition as a vector of logical values via 
the subset argument as shown above.

The output of the summary.AlphaPart() function 
is a data frame that holds summarized breeding values 
and their partitions for the trait (summaryAlphaPart 
class). It is a list with an info element and one element for 
each partitioned trait. The summary element, named after 
the analysed trait (Fig.  3), contains the grouping variable 
(Generation), number of individuals per level (N), and 
output of the summary function applied to the breeding 
values (Sum) and its partitions (Pop1, Pop2, and Pop3).

We can use package functions to further manipulate the 
partitioned or summarized results. If we are only interested 
in the contributions of Populations 1 and 2, we can filter 
out the summary results with the AlphaPartSubset() 
function:

> sumPartByGen2 <-

AlphaPartSubset (sumPartByGen,

paths = c("Pop1", "Pop2"))

The AlphaPartSubset() function takes the output 
of either the partitioning (AlphaPart class) or sum-
marizing (summaryAlphaPart class) analysis, and 
a character vector of paths to keep via the paths argu-
ment. The output of the function is a subset of the data-
set of the input class.

We could also be interested in only the contribution of 
domestic vs. imported sources and not of specific popu-
lations. To this end, we can combine the contributions of 
imported sources, i.e. from Populations 2 and 3, with the 
AlphaPartSum() function and compare the contribu-
tions of Population 1 (named Domestic) vs. the combined 
contributions of imported sources (named Import):

The input for AlphaPartSum() can be the output of 
either the partitioning (class AlphaPart) or summariz-
ing (class summaryAlphaPart) analysis. The function 
also takes a list of paths to sum via the map argument. 
Each element of this list contains the name of the newly 
created combined path followed by the names of the 
paths to combine.

Lastly, we can plot the summarized partitions with the 
plot.summaryAlphaPart() function:
> plot(sumPartByGen)
The input for the plotting function must be a summa-

rized dataset (class summaryAlphaPart), which could 
have been further subsetted or in which some of the 
paths have been combined. The output is a list (plot-
SummaryAlphaPart class) containing one plot for 
each partitioned trait. We show the output plot in Fig. 4.

Simulated multi‑tier breeding example
We applied the AlphaPart R package on a simulated 
example of a multi-tier pig breeding programme. Our 
aim was to examine the gene flow between nucleus and 
multiplier and the contribution of nucleus and mul-
tiplier selection on genetic gain in each tier. Breeders 
select in the nucleus and multiply this improvement 
in the multiplier to supply a large number of breeding 
animals for commercial purposes. The multiplier gener-
ally has a lower genetic mean than the nucleus due to a 
time-lag in the gene flow. However, animals with very 
high breeding values for some traits can be observed in 

Fig. 3  Example output data frame of summarized partitions 
obtained with the summary.AlphaPart() function. The data 
frame holds information on generation, number of data points (N), 
the total genetic gain (Sum) and mean contributions of the three 
populations (Pop1, Pop2, and Pop3)
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the multiplier tier. We simulated a multi-tier breeding 
programme and used AlphaPart to partition the genetic 
trend of true breeding values by a tier-gender variable 
to quantify sources of genetic gain in the nucleus and 
the multiplier.

We used the AlphaSimR package [10] for stochas-
tic simulation of a multi-tier breeding programme for a 
single breed with a closed nucleus and a flow of animals 
from the nucleus into the multiplier (Fig.  5). We simu-
lated 40 generations of selection on two traits. Trait 1 had 
a heritability of 0.25 and trait 2 had a heritability of 0.10. 
The traits were influenced by the same set of causal loci, 

but the effect of these loci on the two traits were uncor-
related. We measured both traits in the nucleus and only 
trait 1 in the multiplier. We selected on an index with 
equal weights on the estimated breeding values for the 
two traits. We split the simulation into an initial burn-in 
period of 20  years to achieve a population equilibrium 
and a subsequent 20-year period of genetic evaluation 
and selection.

In the burn-in period, we simulated only the nucleus 
and we selected animals based on the index of pheno-
type values for both traits. We selected 25 males and 500 
females in each generation and randomly mated them 
to produce a new generation of 6000 progeny (12 per 
mating). At the end of the burn-in, we generated 5000 
females to seed the multiplier.

In the evaluation, we simulated both the nucleus and 
the multiplier and selected animals within each tier based 
on the index of estimated breeding values for both traits 
(Fig. 5). In the nucleus, we selected 25 nucleus males and 
500 nucleus females in each generation and randomly 
mated them to produce a new generation of 6000 prog-
eny (12 per mating). In the multiplier, we selected 750 
multiplier females in each generation and randomly 
mated them to a set of males to produce a new genera-
tion of 9000 progeny (12 per mating). To quantify the 
effect of selection in the multiplier on genetic gain, we 
defined the set of males as either (1) the 25 best nucleus 
males (MaleFlow100 scenario—100% of males are from 
the nucleus) or (2) the 25 best nucleus males and 100 best 
multiplier males (MaleFlow20 scenario—20% of males 

Fig. 4  Example output plot of summarized partitions obtained with 
the plot.summaryAlphaPart() function. The plot shows 
the overall genetic trend and its partition into the contributions of 
domestic selection (Pop1) and import from two populations (Pop2 
and Pop3) by generation

Fig. 5  Design of the simulated stylized multi-tier breeding programmes. We simulated two scenarios with a closed nucleus and a directional flow 
of animals from the nucleus into the multiplier. The scenarios differ in the percentage of multiplier males imported from the nucleus
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are from the nucleus and the number of females per male 
is smaller). We emphasise that nucleus males were used 
in the nucleus and multiplier without delay to reduce 
genetic lag between them.

We estimated the breeding values for each trait inde-
pendently before each nucleus or multiplier selection 
decision. We ran a pedigree-based model implemented 
in blupf90 [11] and used all available data from evalua-
tion generations. The model included the mean as a fixed 
effect and animal breeding values as a random effect 
modelled hierarchically with pedigree.

Finally, we partitioned the true breeding values and 
genetic trends with AlphaPart as demonstrated above. 
We used the AlphaPart() function to partition stand-
ardized true breeding values from the 20 evaluation 
generations by the tier-gender variable and the sum-
mary.AlphaPart() function to summarize the parti-
tions by generations to quantify the contribution of each 
tier-gender level to genetic trend in the nucleus and the 
multiplier.

We repeated the simulation 10 times and measured 
the genetic trend separately in the nucleus and multi-
plier. We present standardized true breeding values and 
genetic trends, as well as their partitions with the mean 
set to zero and the genetic standard deviation set to one 
in generation 20. We chose to present true (instead of 
estimated) breeding values to assess the true sources of 
genetic gain.

Results
The results show partitions of true breeding values and 
genetic trends in the nucleus and multiplier obtained 
with AlphaPart for the two simulated stylized multi-tier 
breeding scenarios. Partitioning showed that we can 
explain the situation with very high breeding values in 
the multiplier by the extent of nucleus-multiplier gene 
flow as well as accuracy and intensity of multiplier selec-
tion. For each scenario, we first describe the distribution 
of true breeding values in the nucleus and multiplier in 
generation 40 of one replicate. Next, we explain the 
sources of the observations by partitioning the nucleus 
and multiplier genetic trend and averaging the results 
across ten replicates. The distributions of partitioned true 
breeding values for one replicate are shown in Additional 
file 2: Figure S2 and Additional file 3: Figure S3.

MaleFlow100 scenario
Distribution of breeding values
In the MaleFlow100 scenario, the multiplier had a higher 
genetic merit on average than the nucleus for trait 1 and 
trait 2 as shown in Fig.  6 with the distribution of true 
breeding values in the nucleus and the multiplier by trait 
in generation 40 of one replicate. The multiplier had a 

higher genetic merit on average and hence produced ani-
mals with a higher breeding value than the nucleus for 
both traits, which was reflected in a higher index value 
as well.

Partitioning the true breeding values and genetic trend
The partitioning showed that the higher genetic gain in 
the multiplier compared to the nucleus for trait 1 was 
due to an additional contribution from selection of mul-
tiplier females as shown in Fig. 7 with the genetic trends 
in the nucleus and multiplier by trait and their partitions 
summarised over 10 replicates. As expected, the nucleus 
genetic gain stemmed completely from the selection 
of nucleus males and nucleus females. The selection of 
nucleus males contributed more to the genetic gain than 
the selection of nucleus females. The mean genetic gains 
at generation 40 in the nucleus were 9.75 and 8.34 for 
traits 1 and 2, respectively, with male selection contribut-
ing 5.65 for trait 1 and 4.92 for trait 2, and female selec-
tion contributing 4.10 for trait 1 and 3.42 for trait 2.

In the multiplier, the average genetic gain for trait 1 was 
higher than in the nucleus. This increase was driven by 
two sources. First, nucleus males made a larger contribu-
tion to the multiplier than to nucleus genetic gain, since 
they contributed directly by fathering the multiplier ani-
mals and indirectly through subsequent selection of their 
genes in future generations. Second, multiplier female 
selection made a non-zero contribution. The mean 
genetic gain at generation 40 in the multiplier for trait 1 
was 10.00 with nucleus males contributing 5.75, nucleus 
females 4.09, and multiplier females 0.14. The mean 
genetic gain and its path partitioning at generation 40 for 
trait 2 were similar in the multiplier and the nucleus. The 
distributions of partitioned true breeding values for one 
replicate are shown in Additional file 2: Figure S2.

MaleFlow20 scenario
Distribution of breeding values
In the MaleFlow20 scenario, the genetic merit was higher 
in the multiplier than the nucleus for trait 1, but lower 
for trait 2 as shown in Fig. 6 with the distribution of true 
breeding values in nucleus and multiplier by trait in gen-
eration 40 of one replicate. Again, we observed animals 
with higher breeding values for trait 1 in the multiplier 
than in the nucleus, with an even larger difference than in 
the MaleFlow100 scenario. We did not observe the same 
phenomena for trait 2.

Partitioning the true breeding values and genetic trend
The partitioning revealed, that selection of multiplier 
males and females further increased the genetic gain for 
trait 1 in the multiplier compared to the nucleus, but 
decreased the genetic gain for trait 2 as shown in Fig. 8 
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Fig. 6  Distribution of true breeding values by trait, tier, and scenario. We show scaled densities in generation 40 of one simulation replicate. 
MaleFlow100 uses only nucleus males in the multiplier, and MaleFlow20 uses nucleus and multiplier males in the multiplier. Trait 1 is measured in 
the nucleus and the multiplier, while trait 2 is measured only in the nucleus. Black vertical lines represent the nucleus mean breeding value for a trait

Fig. 7  Partitioning of genetic trend by tier-gender in the MaleFlow100 scenario. The scenario uses nucleus males in the multiplier. Trait 1 is 
measured in the nucleus and the multiplier, while trait 2 is measured only in the nucleus
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with the genetic trends in the nucleus and multiplier by 
trait and their partitions summarised over 10 replicates. 
As in MaleFlow100 scenario, the nucleus genetic gain 
stemmed from selection of nucleus males and females. 
The mean genetic gains at generation 40 were 10.09 and 
8.39 for traits 1 and 2, respectively, with nucleus males 
contributing 5.69 for trait 1 and 5.17 for trait 2, and 
nucleus females contributing 4.40 for trait 1 and 3.22 for 
trait 2.

In the multiplier, the genetic gain was again higher than 
in the nucleus, but only for trait 1. This higher genetic 
gain was a result of non-zero contribution of multiplier 
female and male selection and a reduced contribution 
of nucleus females. In MaleFlow20, we reduced the use 
of nucleus males in the multiplier, which reduced the 
contribution of nucleus females via reduced nucleus-
multiplier gene flow. For trait 2, the genetic gain in the 
multiplier was lower than in the nucleus due to a small 
average negative contribution of multiplier females and 
multiplier males and reduced contribution of nucleus 
females and nucleus males via reduced gene flow. The 
mean genetic gain at generation 40 in the multiplier was 
10.36 for trait 1 and 8.14 for trait 2, with nucleus males 
contributing 5.70 for trait 1 and 5.09 for trait 2, nucleus 
females contributing 4.21 for trait 1 and 3.13 for trait 2, 
multiplier males contributing 0.15 for trait 1 and -0.03 for 
trait 2, and multiplier females contributing 0.30 for trait 1 
and -0.05 for trait 2. The distributions of partitioned true 

breeding values for one replicate are shown in Additional 
file 3: Figure S3.

Discussion
In this paper, we present AlphaPart, a freely available 
R package that implements the method for partition-
ing breeding values and genetic trends. We demonstrate 
the package on a simulated stylized multi-tier breeding 
example with a higher genetic trend for some traits in the 
multiplier compared to the nucleus. Following this, we 
organized the discussion into two parts: (i) advantages 
and disadvantages of the AlphaPart R package and (ii) 
partitioning results of the breeding example.

AlphaPart
AlphaPart is a free implementation of the method for 
partitioning breeding values and genetic trends. The 
method and the package are valuable for deciphering 
and quantifying the sources of genetic gain in breeding 
programmes. The package is easy to use, since it stream-
lines the partitioning analysis into a few lines of R code. 
AlphaPart presents a holistic tool to perform a parti-
tioning analysis, from preparing the input data—such as 
manipulating the pedigree data—to handling of results 
and plotting. The partitioning step is fast, even for large 
pedigrees, since the main partitioning function is recur-
sive and implemented in C++.

Fig. 8  Partitioning of the genetic trend by tier-gender in the MaleFlow20 scenario. The scenario uses nucleus and multiplier males in the multiplier. 
Trait 1 is measured in the nucleus and the multiplier, while trait 2 is measured only in the nucleus
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AlphaPart is aimed at researchers who are interested 
in quantifying the sources of genetic gain in their breed-
ing programmes in order to understand the dynamics 
of genetic gain, improve selection efficiency in certain 
partitions, assess the performance of different breeding 
actions, or to optimize investment. The accuracy of parti-
tioning depends on the accuracy of the estimated breed-
ing values and their Mendelian sampling terms, which 
are driven by the genetic parameters of the trait, the 
information available in the breeding programme struc-
ture used, and choice of the prediction model.

Future development of AlphaPart will include an exten-
sion of the partitioning method in three areas. The first 
extension will use genomic information to inform which 
genome regions and which specific haplotypes or alleles 
drive genetic change. The second extension will use the 
partitioning method to analyse contributions to changes 
in genetic variance in addition to the genetic mean. The 
third extension will simplify handling of uncertainty of 
path contributions when working with samples from pos-
terior distributions [2, 9].

Multi‑tier breeding example
The multi-tier breeding example illustrated the investiga-
tive power of the partitioning method and the free Alp-
haPart implementation. Here, we discuss the sources of 
genetic gain in the two tiers of a breeding programme.

By partitioning the genetic trend in a simulated 
multi-tier breeding programme, we disentangled the 
observation that some multiplier animals have higher 
breeding values for some traits compared to the nucleus 
animals. While larger numbers of individuals and there-
fore recombinations in the multiplier can potentially 
reveal more variation and occasional outlying animals 
(due to an outstanding recombination), we expect lower 
breeding values in the multiplier due to time-lag between 
the nucleus and multiplier. In this study, we analysed a 
situation with no or limited genetic lag on the male side. 
We showed with partitioning that the gene flow from 
the nucleus into the multiplier was expectedly the main 
source of genetic gain in the multiplier.

However, the results also showed that selection in the 
multiplier can contribute genetic gain in addition to 
the gene flow from the nucleus. The multiplier outper-
formed the nucleus for trait 1, because with the 10,500 
recorded multiplier animals there was a substantial 
amount of information for accurate multiplier selection 
that generated additional genetic gain. We emphasise 
that this result is also due to a limited time-lag between 
the nucleus and multiplier as we used the nucleus males 
in the nucleus and multiplier concurrently assuming arti-
ficial insemination. The partitioning of genetic trend for 
trait 1 showed that when we used only the nucleus males 

in the multiplier (MaleFlow100), the multiplier gener-
ated additional gain from two sources. First, compared 
to the nucleus, the contribution of the nucleus males 
increased because they contributed through the imme-
diate gene flow and through the long-term gene flow 
contributions that influenced the selection of multiplier 
females. Second, the selection of multiplier females con-
tributed as well. When we used both the nucleus males 
and the multiplier males in the multiplier (MaleFlow20), 
the multiplier generated further gain through a combi-
nation of the sources—the contribution of selection in 
multiplier females and males, and the decreased contri-
bution of nucleus selection due to the reduced gene flow. 
This decrease was due to a smaller number of progeny 
per nucleus male in the multiplier compared to the Male-
Flow100 scenario. In both scenarios, we observed a trend 
of decreasing contribution of multiplier selection over 
generations, although the average multiplier contribution 
was always above zero. Since we partitioned breeding 
values with generation 20 as a base generation, the par-
ent average and Mendelian sampling terms for multiplier 
animals in generation 20 were assigned to the multiplier 
path. Over the generations, the nucleus and multiplier 
contributions converged since the pedigree used in 
next generations accounted for the origin of the nucleus 
males. This shows the importance of proper base popu-
lation specification (including unknown parent groups) 
for meaningful partitioning. This long-term dynamic of 
contributions is related to the dynamics of “long-term 
genetic contributions” in the context of genetic gain and 
inbreeding [12, 13], but it should be noted that the “long-
term genetic contributions” are trait agnostic (depend 
only on the pedigree). On a related note, with the imple-
mented method in AlphaPart, we can evaluate (long-
term) genetic contributions by setting breeding values to 
1 for all animals and partitioning the breeding values by 
paths [6].

On the contrary, trait 2 was not measured in the mul-
tiplier and had a comparable or smaller genetic trend in 
the multiplier than in the nucleus. For trait 2, the mul-
tiplier animals were selected only on estimated parent 
average, which resulted in low accuracy selection. In 
the MaleFlow100 scenario, this low accuracy selection 
resulted in a null contribution of multiplier females to the 
genetic trend for trait 2 and comparable genetic trends 
between the nucleus and the multiplier. In the Male-
Flow20 scenario with a reduced nucleus-multiplier gene 
flow, this low accuracy selection resulted in the reduced 
genetic gain for trait 2.
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Conclusions
AlphaPart R package is a freely available software for par-
titioning breeding values and genetic trends. Use of Alp-
haPart will help breeders to better understand sources of 
genetic gain and improve their breeding programmes.
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