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Abstract 

Background:  Knowledge about potential functional relationships among traits of interest offers a unique opportu-
nity to understand causal mechanisms and to optimize breeding goals, management practices, and prediction accu-
racy. In this study, we inferred the phenotypic causal networks among five traits in a turkey population and assessed 
the effect of the use of such causal structures on the accuracy of predictions of breeding values.

Methods:  Phenotypic data on feed conversion ratio, residual feed intake, body weight, breast meat yield, and walk-
ing score in addition to genotype data from a commercial breeding population were used. Causal links between 
the traits were detected using the inductive causation algorithm based on the joint distribution of genetic effects 
obtained from a standard Bayesian multiple trait model. Then, a structural equation model was implemented to infer 
the magnitude of causal structure coefficients among the phenotypes. Accuracies of predictions of breeding values 
derived using pedigree- and blending-based multiple trait models were compared to those obtained with the pedi-
gree- and blending-based structural equation models.

Results:  In contrast to the two unconditioned traits (i.e., feed conversion ratio and breast meat yield) in the causal 
structures, the three conditioned traits (i.e., residual feed intake, body weight, and walking score) showed noticeable 
changes in estimates of genetic and residual variances between the structural equation model and the multiple trait 
model. The analysis revealed interesting functional associations and indirect genetic effects. For example, the struc-
tural coefficient for the path from body weight to walking score indicated that a 1-unit genetic improvement in body 
weight is expected to result in a 0.27-unit decline in walking score. Both structural equation models outperformed 
their counterpart multiple trait models for the conditioned traits. Applying the causal structures led to an increase in 
accuracy of estimated breeding values of approximately 7, 6, and 20% for residual feed intake, body weight, and walk-
ing score, respectively, and different rankings of selection candidates for the conditioned traits.

Conclusions:  Our results suggest that structural equation models can improve genetic selection decisions and 
increase the prediction accuracy of breeding values of selection candidates. The identified causal relationships 
between the studied traits should be carefully considered in future turkey breeding programs.
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Background
The number of traits included in genetic evaluation 
programs has increased steadily over time. Hence, mul-
tivariate linear mixed models (MTM), e.g. [1, 2], are 
increasingly important in animal breeding. Although 
MTM have been successfully used to study the genetic 
and environmental relationships between phenotypes, 

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  eabdalla@uoguelph.ca
1 Centre for Genetic Improvement of Livestock, University of Guelph, 
Guelph, ON, Canada
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1607-3437
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-021-00611-8&domain=pdf


Page 2 of 10Abdalla et al. Genet Sel Evol           (2021) 53:16 

they do not infer the phenotype networks that describe 
the interrelationships that are generally present in bio-
logical systems. Models that account for recursive-
ness and feedback between traits, such as  structural 
equation models (SEM) [3, 4],  can be used to evaluate 
simultaneous relationships that exist between pheno-
types. Knowledge about cause-and-effect mechanisms 
that underlie interrelationships between environmental 
factors, management practices, animal physiology, and 
performance outcomes is crucial to explore the behav-
ior of complex systems and can contribute to improv-
ing management practices and multi-trait selection 
strategies in livestock.

A phenotypic correlation between two traits, y1 and 
y2, can be due to a direct effect of one on the other or 
to extraneous (confounding) variables that jointly affect 
both traits, among other possibilities. Defining the 
causal structure allows prediction of the effect of inter-
ventions (e.g., management practices) applied to each 
trait. When, for instance, y1 affects y2 while y2 does not 
affect y1, an intervention on y1 will cause changes on 
y2, but not conversely. Structural equation models have 
been used in many fields including genetics, econom-
ics, psychometrics, social statistics, and biological sci-
ences [5]. From their studies on bovine milk fatty acid 
traits and meat quality traits of Wagyu beef, Bouwman 
et  al. [6] and Inoue et  al. [7], respectively, compared 
MTM and SEM and observed differences in estimates 
of parameters between them.

Similar to other species, MTM has been widely 
applied to assess the associations between production, 
reproduction and welfare traits in turkeys. Quinton 
et  al. [8], examined the connections between survival 
and fitness in turkeys using MTM and concluded that 
selection for growth may decrease survival and traits 
related to walking ability. Their suggestion was to per-
form a multiple trait selection program for growth, sur-
vival, walking ability, hip and leg structures. Analyzing 
walking ability, breast meat yield, and feed efficiency 
traits, Abdalla et  al. [9] reported unfavorable genetic 
correlations of walking ability with body weight and 
breast meat yield. Other applications of MTM for tur-
keys were presented by Emamgholi Begli et  al. [10] to 
estimate phenotypic and genetic correlations between 
clutch and broodiness traits, along with body weight 
and other conventional egg production traits. Similar to 
previous literature, the authors reported an unfavorable 
genetic correlation between egg production and body 
weight and suggested that including clutch and pause 
length traits in the selection index may reduce broodi-
ness while increasing egg number.

The objectives of this study were: (1) to search for 
causal structures among body weight, walking ability, 

breast meat yield, and two feed efficiency traits in a tur-
key breeding line; (2) to fit a SEM based on the uncovered 
causal structures to quantify the relationships between 
the traits; and (3) to compare MTM and SEM in terms 
of prediction accuracy of breeding values based on ped-
igree-based (BLUP) and single-step blending (ssGBLUP) 
animal models.

Methods
Phenotypic data
Data used in this study were previously described [9] 
and further details are in Table 1. Briefly, the data were 
provided by Hybrid Turkeys, Kitchener, Canada, from 
10 generations of a turkey breeding line from birds 
hatched between 2009 and 2017. Feed conversion ratio 
(FCR; N = 5619), residual feed intake (RFI; N = 5619), 
and breast meat yield (BMY; N = 9634) were recorded on 
male birds, whereas body weight (BW; N = 170,844) and 
walking score (WS; N = 170,844) were recorded on both 
males (N = 99,832) and females (N = 71,012). A stand-
ard feeding system with group housing and shared feed-
ers and drinkers was used until 15  weeks of age. From 
this point on and until 19 to 20 weeks of age, a real-time 
automated system was used to monitor individual feed 
intake in males. With this system, each bird was identi-
fied during each visit to the feed station and the weight of 
the feeder in addition to the body weight of the bird were 
taken using a scale [11]. FCR was calculated as total feed 
intake divided by weight gain, while RFI was obtained 
as the residual of a multiple regression of observed feed 
intake on metabolic mid-weight and body weight gain 
[12]. Based on walking ability, a subjective WS ranging 
from 1 to 6 was given to each male and female at 18 and 
20  weeks of age, respectively. Birds with better walking 
ability received a higher WS. Males were slaughtered at 
21 or 22 weeks to obtain BMY, which was calculated as:

Genomic data
Genotypes from a proprietary 65  K single nucleotide 
polymorphism (SNP) panel (65,000 SNPs; Illumina, Inc.) 
were available for a subset of the animals as reported in 
Table 1. SNPs that were located on the sex chromosome, 
those that deviated significantly from Hardy–Weinberg 
proportions (P < 1× 10−8), and SNPs with a minor allele 
frequency lower than 5% or with a call rate lower than 
90% were removed. The number of SNPs that remained 
for analysis was 53,455. All genotyped animals had a call 
rate higher than 90% and all were included in the study.

BMY=
Breast meat weight

Live body weight at slaughter
× 100.



Page 3 of 10Abdalla et al. Genet Sel Evol           (2021) 53:16 	

Structural equation modeling (SEM)
Three main steps are required to perform SEM [5, 13]:

(1) Draw samples from the posterior distribution of 
the covariance matrices of residuals from a multiple trait 
model.

(2) Apply the inductive causation (IC) algorithm to 
query about the statistical independence between two 
traits. In each query, the IC performs the following:

•	 Compute the posterior distribution of residual partial 
correlation between two traits for each sample that is 
drawn from the posterior distribution of covariance 
matrices of residuals.

•	 Obtain the highest posterior density (HPD) for the 
posterior distribution of the residual partial correla-
tion.

•	 Two traits are declared conditionally dependent if the 
HPD interval contains 0.

(3) Fit the SEM based on the selected causal structure.

Multiple trait model (MTM)
Pedigree‑based best linear unbiased prediction (PBLUP)
To estimate genetic and residual (co)variance compo-
nents using pedigree relationships, the following multiple 
trait linear mixed model was fitted:

where, y is a vector of observations of FCR, RFI, BMY, 
BW and WS, sorted by animals; b is a vector with the sys-
tematic effects of hatch week-year for all traits and sex 
for BW and WS; u is a vector of additive genetic effects, 
distributed as u ∼ N (0,A ⊗G), where A is the numera-
tor relationship matrix, derived by including inbreeding 
coefficients, and G is the additive genetic variance–covar-
iance matrix among traits; e is a vector of residual effects, 
distributed as e ∼ N (0,

∑
+

i Eiy) where Eiy indicates a 
mi ×mi matrix corresponding to the trait phenotypes 

y = Xb + Zu + e,

that were available for animal i , and mi is the number 
of trait phenotypes available for animal i ; X and Z are 
incidence matrices for the respective fixed and random 
effects.

Single‑step genomic best linear unbiased prediction 
(ssGBLUP)
The same model outlined above for PBLUP was used for 
ssGBLUP, except that the A matrix was replaced by the H 
matrix, which is a combined pedigree and genomic rela-
tionship matrix [14]. For both models (PBLUP and ssG-
BLUP), a Markov chain Monte Carlo (MCMC) method 
based on Gibbs sampling was used to estimate the joint 
posterior distribution to derive posterior means and 
standard deviations of parameters of interest. Using 
the software THRGIBBS1F90 [15], a single chain of the 
Gibbs sampler was run, with the first 100,000 samples 
discarded as burn-in. Thereafter, samples were saved 
every 50 iterations, resulting in 20,000 samples. Conver-
gence was assessed by visual inspection of trace plots of 
posterior distributions and Geweke’s diagnostic [16]. The 
latter ranged from − 0.20 to 0.24 for all variance–covari-
ance parameters.

Inductive causation (IC) algorithm
The IC algorithm can be used to explore the full space of 
possible networks among traits [17]. When two traits are 
genetically correlated, residual (co)variances are gener-
ated to correct for the confounding among them. The IC 
algorithm performs a series of statistical decisions based 
on partial correlations between traits. First, IC computes 
the posterior distribution of the residual partial correla-
tion between two traits at each sample drawn from the 
posterior distribution of covariance matrices of residu-
als derivative from MTM (PBLUP or ssGBLUP). Then, 
the HPD for the posterior distribution of residual partial 
correlation is obtained. The process to declare that two 
traits are conditionally dependent or not can be divided 

Table 1  Descriptive statistics of  the  analyzed dataset including  number of  records, mean, standard deviation, training 
and validation subsets for different production and fitness traits in a turkey line

Trait Number Mean Std Training Validation

Genotyped Not genotyped Genotyped Not genotyped

Feed conversion 
ratio (kg/kg)

5592 2.58 0.39 2307 2711 110 464

Residual feed 
intake (kg)

5592 0.00 2.51 2307 2711 110 464

Body weight (kg) 170,844 17.50 5.32 13,862 139,061 1138 16,783

Breast meat yield 
(%)

9634 24.37 2.33 843 7877 136 778

Walking score (1 
to 6)

170,844 2.10 0.86 13,862 139,061 1138 778
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into three main steps: (1) two traits are considered con-
nected with an undirected link (e.g., y1–y2) if the partial 
correlations among them conditional on every possible 
set of the remaining traits are declared different from 
0; (2) if the two traits are nonadjacent but share a com-
mon adjacent trait (e.g., y1 and y3 in y1–y2–y3) and their 
partial correlations are conditionally non-null on all 
possible subsets of the remaining traits that contain the 
adjacent trait (y2 in this case), arrowheads pointing to the 
common adjacent trait can be added (i.e., y1 → y2 ← y3), 
which is known as an unshielded collider; and (3) with-
out creating a new unshielded collider or cycle, as many 
undirected links as possible are oriented based on the 
partially oriented graph obtained in step 2. Declaration 
of partial correlations to be null or not was based on the 
HPD intervals, i.e. a correlation was declared to be null if 
the HPD contained the value 0. To evaluate the structure 
sensitivity [5, 13], HPD intervals of 85, 90, and 95% were 
applied. The IC analysis was carried out by using a previ-
ously described software program [17] written in R [18].

Structural equation models
Based on the causal network inferred by the IC algo-
rithm, two SEM models were fitted: the structural equa-
tion PBLUP (SEPBLUP) and the structural equation 
ssGBLUP (SEssGBLUP). For SEPBLUP, the model was:

where y is a vector of observations of FCR, RFI, BMY, 
BW, and WS sorted by animal; X , b∗ , Z , u∗ , e∗ , hold simi-
lar meanings to those for the MTM described above, 
except that the vectors here serve as systematic and ran-
dom effects that directly affect each trait and that are 
not mediated by other traits [4, 5, 17]. �iy is a mi ×mi 
matrix of structural coefficients describing the cho-
sen causal structure corresponding to the phenotypes 
that are available for animal i , and mi is the number of 
phenotypes available for animal i . It was assumed that 
u∗ ∼ N (0,A ⊗G∗) , where A is as defined for the MTM 
and G∗ is the SEM additive genetic (co)variance matrix 
(i.e., it describes variances and covariances of direct 
genetic effects). Similarly, e∗ ∼ N (0,

∑
+

i Eiy) where Eiy 
indicates a mi ×mi matrix with the SEM residual vari-
ances corresponding to the phenotypes that were present 
for animal i , and mi is the number of phenotypes avail-
able for animal i . The same model used for SEPBLUP was 
fitted for SEssGBLUP after replacing the A matrix by the 
H matrix.

The causal phenotypes inferred by the IC algo-
rithm were included as covariates in both SEM mod-
els. As SEM accounts for all random variables that 

y = (

+∑

i

�iy)y + Xb∗+Zu∗ + e∗,

simultaneously affect two or more traits, the residual 
covariances between traits were set to 0 for both models, 
which allows the structural coefficients to be identifiable 
[19, 20]. An MCMC chain with the same specifications as 
used for the MTM was used to estimate the posterior dis-
tributions of the SEM parameters. Visual inspection trace 
plots of posterior distributions and Geweke’s diagnostic 
[16] applied for MTM were also applied for the SEM to 
ensure convergence.

Assessment of accuracy and bias of estimated breeding 
values
Estimates of the accuracy of estimated breeding values 
(EBV) for the PBLUP and ssGBLUP models for the data 
analyzed here were reported in our previous study [9]. 
Here, the goal was to compare the accuracy obtained 
based on the SEM to those reported in [9]. First, phe-
notypes corrected for fixed effects were estimated for 
all birds using SEBLUP. Then, approximately 10% of the 
birds (the youngest) had their phenotypes masked, which 
constituted the validation subset, while the remaining 
phenotypes were used to train the model  (Table 1). The 
accuracy estimate was the Pearson correlation coeffi-
cient between the adjusted phenotypes of the validation 
subset and their corresponding EBV obtained from the 
respective models. Bias was assessed using the regres-
sion of adjusted phenotypes of the validation subset on 
their corresponding EBV. In addition to evaluating accu-
racy and bias of EBV, we also calculated rank correlations 
between EBV of selection candidates by the two mode-
ling approaches (i.e., between PBLUP and SEPBLUP and 
between ssGBLUP and SEssGBLUP).

Results and discussion
Multiple trait model and inductive causation algorithm 
analyses
Posterior means of heritabilities and of genetic and resid-
ual correlations obtained from the MTM, along with 
their respective posterior standard deviations (PSD), 
are in Table  2. These parameters were similar to those 
reported by Abdalla et al. [9] for the same dataset. HPD 
intervals of 95, 90, and 85% were applied to detect causal 
relationships between traits, resulting in the graphs 
shown in Fig.  1a–c, respectively. Use of the three HPD 
intervals showed similar links between the traits with 
PBLUP or ssGBLUP. However, with an HPD of 95%, the 
direction of the causality was uncovered neither for the 
connections of FCR with either RFI or BW, nor for the 
connection between RFI and BW. When the 90% HPD 
interval was applied, the direction of two (FCR—RFI and 
FCR—BW) out of the three unknown links was detected 
(FCR → RFI and FCR → BW). The last unoriented link 
(RFI—BW) became oriented (RFI → BW) when the 85% 
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HPD interval was used, resulting in a fully directed acy-
clic diagram (DAG; Fig. 1c).

Structural equation model analysis
The causal network that was obtained based on the 85% 
HPD interval (Fig. 1c) was used to fit the SEM. Posterior 
means of the variance components and of the genetic and 
residual correlations, along with their respective PSD for 
the MTM and the SEM, are in Table  2. Links between 
traits with their respective structural coefficients that 
were inferred using the SEM are shown in Fig.  2. For 
some traits, slight differences were observed in the vari-
ance component estimates obtained using the SEM ver-
sus the MTM. While both FCR and BMY had similar 
estimates to those from the MTM, genetic variances were 
lower based on the SEM than based on the MTM for the 
other three traits. The SEM resulted in smaller estimates 
of residual variances for all traits, except for FCR and 
BW. The traits BW and WS also showed different esti-
mates of heritability based on the SEM versus the MTM: 
from 0.35 ± 0.07 and 0.24 ± 0.04, respectively, for the 
MTM, to 0.32 ± 0.07 and 0.21 ± 0.04 when the SEM was 
applied. This suggests that these parameters were over-
estimated when causality between traits was ignored. The 
upstream traits FCR and BMY did not show similar dif-
ferences in estimates between the SEM and MTM. Such 
changes in variance component estimates are expected 
[6, 7] because the traits RFI, BW, and WS are conditioned 
on at least one of the other two traits, FCR and BMY in 
the DAG, (see Fig. 1c).

Posterior means of genetic correlations from the SEM 
also differed from those obtained with the MTM; the 
SEM resulted in higher posterior means of genetic corre-
lations among all traits, except for the correlations of FCR 
with RFI (0.69 ± 0.09) and WS (− 0.12 ± 0.07), as well as 
for the correlation between BMY and WS (− 0.46 ± 0.13). 
Because genetic effects could be direct or indirect, com-
pared to the MTM, the SEM has the ability to separately 
identify these types of effects [17]. Although estimates 
of genetic correlations differed between the two models, 
these estimates cannot be directly compared, because 
their definitions differ [6, 17].

Differences in estimates of variance components 
parameters and of genetic and residual correlations 
between MTM and SEM have been previously reported. 
In a study on bovine milk fatty acid, Bouwman et al. [6] 
reported that unconditioned traits showed lower reduc-
tions in estimates of variance components based on the 
SEM versus the MTM, than the conditioned traits. Simi-
lar results were reported by Inoue et al. [7] in their study 
on the inference of the causal relationship between six 
meat quality traits in Wagyu beef.

Posterior means of the structural coefficients obtained 
from the SEM are shown in Fig. 2. All coefficients were 
negative, except that between FCR and RFI (1.52 ± 0.05). 
For traits with direct links (i.e., FCR → RFI, FCR → BW, 

Table 2  Posterior means (Mean) and  posterior standard 
deviations (PSD) of  variance components for  the  multi-
trait model and the structural equation model

Residual correlations between traits were fixed to 0 for the structural equation 
models

FCR feed conversion ratio (kg/kg), RFI residual feed intake (kg), BW body weight 
(kg), BMY breast meat yield (%), WS walking score (1 to 6)
a   σ 2

g genetic variance, σ 2
e  residual variance, rg genetic correlation, re residual 

correlation, h2  narrow sense heritability

Componenta Multi-trait model Structural equation 
model

Mean PSD Mean PSD

σ 2
g FCR 0.05 0.01 0.05 0.01

σ 2
g RFI 0.61 0.02 0.53 0.02

σ 2
g BW 0.66 0.05 0.58 0.05

σ 2
g BMY 1.09 0.13 1.09 0.13

σ 2
g WS 0.14 0.02 0.10 0.01

σ 2
e FCR 0.30 0.01 0.31 0.01

σ 2
e RFI 4.26 0.11 3.94 0.09

σ 2
e BW 1.20 0.03 1.24 0.03

σ 2
e BMY 2.94 0.08 2.91 0.08

σ 2
e WS 0.44 0.01 0.37 0.01

rg FCR, RFI 0.69 0.09 0.62 0.08

rg FCR, BW 0.17 0.08 0.19 0.09

rg FCR, BMY – 0.04 0.04 – 0.08 0.04

rg FCR, WS – 0.12 0.07 – 0.08 0.07

rg RFI, BW 0.13 0.09 0.18 0.09

rg RFI, BMY – 0.10 0.08 – 0.19 0.07

rg RFI, WS 0.07 0.01 0.05 0.01

rg BW, BMY 0.17 0.09 0.20 0.06

rg BW, WS – 0.36 0.06 – 0.32 0.06

rg BMY, WS – 0.46 0.13 – 0.29 0.12

re FCR, RFI 0.23 0.09 – –

re FCR, BW – 0.38 0.06 – –

re FCR, BMY – 0.10 0.03 – –

re FCR, WS 0.03 0.00 – –

re RFI, BW – 0.17 0.05 – –

re FCR, BMY – 0.07 0.03 – –

re RFI, WS 0.05 0.02 – –

re BW, BMY 0.19 0.02 – –

re BW, WS – 0.15 0.03 – –

re BMY, WS – 0.06 0.02 – –

h2 FCR 0.14 0.02 0.14 0.02

h2 RFI 0.13 0.02 0.12 0.02

h2 BW 0.35 0.07 0.32 0.07

h2 BMY 0.27 0.04 0.27 0.04

h2 WS 0.24 0.04 0.21 0.04
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and BMY → WS), the signs of the posterior means of the 
structural coefficients are expected to be analogous to the 
sign of the corresponding posterior means of the residual 
covariances between the same traits obtained from the 
MTM. The traits FCR and BMY did not have other traits 
as causal parents and, therefore, the sign of their direct 
effects on other traits should follow those based on the 
MTM. Although this is not guaranteed, posterior means 
of the indirect structural coefficients between traits (i.e., 
RFI → BW and BW → WS) had the same sign (negative) 
as their counterpart residual covariances in the MTM. 

However, the converse can also be true, as indirect 
structural coefficients are inferred from a conditional 
association and the residual covariances are marginal 
associations [5].

Results indicated that RFI is positively affected by FCR, 
which was inferred at a magnitude of 1.52 ± 0.05 (Fig. 2). 
The connection between these two feed efficiency traits 
has previously been reported for turkeys [12, 21] and 
other species, e.g. [22, 23]. The main difference between 
them is that FCR is expressed as a ratio of feed intake and 
growth rate, while RFI is a linear index of feed intake and 
growth rate. However, as a ratio of two component traits, 
genetic selection for FCR may not account for how selec-
tion is working on each trait directly [24]. Moreover, FCR 
is not independent of production traits and also does not 
account for them. Such problems are not encountered 
with RFI but animals that have favorable RFI could grow 
slowly [25]. Regardless, Case et  al. [12] compared FCR 
and RFI in a turkey population and reported that both 
could be integrated into a turkey selection index, but RFI 
may be advantageous because it is more independent of 
performance traits than FCR. In general, both traits are 
important to improve feed efficiency and both can be 
considered as “expensive-to-measure” phenotypes. Inves-
tigating the direction and the magnitude of the associa-
tion between FCR and RFI seems critical for selection 
indexes that aim at improving simultaneous multiple 
traits through genetic selection.

Estimates of the structural coefficients of FCR with 
BW (− 0.60 ± 0.14) and of RFI with BW (− 0.04 ± 0.00) 
were both negative. Slightly lower genetic correlations 
of FCR (0.65 ± 0.05) and RFI (0.09 ± 0.06) with BW have 
been reported for turkeys [12] compared to our estimates 
(0.65 ± 0.05 and 0.09 ± 0.06, respectively). Although the 

Fig. 1  Links between traits detected by the inductive causation algorithm based on 95 (a), 90 (b) and 85% (c) of highest posterior density intervals 
of the posterior distribution of the residual partial correlation. Links without arrowheads represent associations between traits and those with 
arrowheads represent causal relationships towards arrowheads. FCR feed conversion ratio (kg/kg), RFI residual feed intake (kg), BW body weight (kg), 
BMY breast meat yield (%), WS walking score (1 to 6)

Fig. 2  Links and posterior means ± posterior standard deviations of 
structural coefficients between the studied traits based on results of 
the inductive causation algorithm based on 85% of highest posterior 
density intervals of the posterior distribution of the residual partial 
correlation (Fig. 1c). Links represent causal relationships toward 
arrowheads. FCR feed conversion ratio (kg/kg), RFI residual feed intake 
(kg), BW body weight (kg), BMY breast meat yield (%), WS walking 
score (1 to 6)
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results of this study suggest that FCR has more influ-
ence on BW than RFI based on a higher estimate of the 
structural coefficient, the posterior distribution for the 
structural coefficient of RFI on BW showed a relatively 
wider range (SD = 2.51; Table  1) and, therefore, its true 
value could be quite different from the posterior mean. 
Moreover, RFI is expected to increase by 1.52 for each 
unit increase in FCR, which implies that RFI is expected 
to improve as a result of selection for FCR. Thus, selec-
tion on either trait may have similar effects on BW. 
Although RFI is calculated by adjusting for BW, it may 
not guarantee that the genetic correlation is zero. Thus, 
independence of RFI from BW could be confounded by 
the change in growth rate [26, 27]. Depending on the 
ultimate goal of the breeding program, the causal effects 
between BW and these two feed efficiency traits suggest 
favorable conditions for the joint genetic improvement of 
these three traits. Selection for lower FCR is expected to 
lead to better RFI and BW. It is well known that RFI and 
FCR are genetically strongly related [9, 12] and have weak 
relationships with BW, given that efficiency traits are 
implemented to reduce feed consumption and increase/
maintain body weight gain. Uncovering causal effects 
provides insights and hypotheses about how causal rela-
tionships between traits may contribute to better selec-
tion decisions.

Based on the estimated structural coefficients, BW and 
BMY are expected to influence WS negatively, which 
indicates that for each kg of BW and for each 1-unit 
of BMY, WS is expected to drop by 0.27 ± 0.06 and 
0.03 ± 0.00, respectively (Fig. 2). These three phenotypes 
are key traits in turkey breeding programs. Body weight 
and BMY are among the most important phenotypes in 
turkey populations raised for meat, while adequate walk-
ing ability ensures that birds maintain good health and 
fitness. Genetically, BW and BMY are unfavorably cor-
related with WS (e.g., [9, 26, 27]), which could be due 
to the relatively faster rate of improvement in BW and 
BMY as a result of direct selection for these traits, than 
the rate of improvement in muscles and bones of the legs. 
The close relationship between body size and the relative 
proportion of body parts is expected to cause a decline in 
the proportion of leg muscle and bone as BW and BMY 
increase [28, 29]. This disproportionate relationship is 
associated with genetic increases in BW [30].

Nestor et al. [28] reported that leg abnormalities start-
ing at the age of 16 weeks has increased in turkeys as a 
result of years of selection for body and breast meat. 
Our study shows that interventions (e.g., management 
practices [5, 17]) on BW or BMY may block the indirect 
genetic effects through them on WS. Previous studies 
have reported that walking ability can be improved by 
genetic selection without negatively affecting BW [29, 

31]. From a six-generation study, Emmerson et  al. [29] 
reported that a single-trait selection for increased shank 
width resulted in improved walking ability in large-
bodied turkeys, while BW continued to increase. These 
findings are consistent with results reported in Nestor 
et  al. [32] from two selection experiments that aimed 
at increasing the relative proportions of leg muscle and 
bone in turkeys. Although the magnitude of the causal 
coefficient of BMY on WS was low (− 0.03 ± 0.001), the 
influence of BMY on WS could be strong, given that the 
phenotype of BMY is large (24.37 ± 2.33; Table  1). The 
influence of BMY on waking ability could also be due to a 
physical pressure of the breast on the legs and, as a result, 
on walking ability.

Accuracy and bias
Estimates of prediction accuracy and bias of EBV from 
MTM (PBLUP and ssGBLUP; Abdalla et  al. [9]) and 
SEM (SEPBLUP and SEssGBLUP) are in Tables 3 and 4, 
respectively. As expected, there was no difference in the 
accuracy of EBV for the upstream traits (FCR and BMY) 
between MTM and SEM since they were unconditioned 
in the SEM. However, estimates of the accuracy of EBV 

Table 3  Accuracy of  estimated breeding values 
for  the  studied traits based on  the  pedigree-based best 
linear unbiased prediction (PBLUP), single-step genomic 
best linear unbiased prediction (ssGBLUP), structural 
equation PBLUP (SEPBLUP), and  the  structural equation 
ssGBLUP (SEssGBLUP)

Trait PBLUP SEPBLUP ssGBLUP SEssGBLUP

Feed conversion ratio 0.29 0.29 0.38 0.38

Residual feed intake 0.21 0.22 0.27 0.29

Body weight 0.36 0.38 0.40 0.42

Breast meat yield 0.30 0.30 0.37 0.37

Walking score 0.26 0.31 0.30 0.36

Table 4  Bias of estimated breeding values for the studied 
traits based on  pedigree-based best linear unbiased 
prediction (PBLUP), single-step genomic best linear 
unbiased prediction (ssGBLUP), structural equation 
PBLUP (SEPBLUP), and  the  structural equation ssGBLUP 
(SEssGBLUP))

Trait PBLUP SEPBLUP ssGBLUP SEssGBLUP

Feed conversion 
ratio

0.94 ± 0.17 0.94 ± 0.17 0.95 ± 0.17 0.95 ± 0.17

Residual feed intake 0.79 ± 0.12 0.79 ± 0.12 0.80 ± 0.12 0.81 ± 0.12

Body weight 0.82 ± 0.03 0.86 ± 0.03 0.83 ± 0.03 0.89 ± 0.03

Breast meat yield 1.41 ± 0.21 1.40 ± 0.20 1.38 ± 0.21 1.38 ± 0.20

Walking score 0.73 ± 0.04 0.78 ± 0.04 0.75 ± 0.04 0.82 ± 0.04
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for the three downstream traits (RFI, BW and WS) were 
higher with SEM than with MTM. The accuracy esti-
mates for RFI, BW, and WS increased by approximately 
5, 6, and 19%, from 0.21, 0.36 and 0.26 under PBLUP to 
0.22, 0.38 and 0.31, respectively, under SEPBLUP. Similar 
increases in accuracy were also observed between ssGB-
LUP and SEssGBLUP, with increases by approximately 7, 
5, and 20% for RFI, BW, and WS, respectively. Estimates 
of bias showed slight differences between the MTM and 
SEM models, with BW and WS having the largest differ-
ences (Table 4). The regression coefficients for BW were 
0.86 ± 0.03 and 0.89 ± 0.03 with SEPBLUP and SEssGB-
LUP, respectively, and 0.82 ± 0.03 and 0.83 ± 0.03 with 
PBLUP and ssGBLUP, respectively. With SEM, esti-
mates of bias for WS also tended to reach 1 for SEPBLUP 
(0.73 ± 0.04 to 0.78 ± 0.04) and SEssGBLUP (0.75 ± 0.04 
to 0.82 ± 0.04).

Our results indicate that the accuracy of EBV could be 
enhanced by incorporating causal relationships between 
traits. When traits share causal effects among them, 
breeding strategies based only on MTM analysis could 
lead to wrong selection decisions [5], which would result 
in slower selection progress than expected and the indi-
rect effects between traits would be ignored. As dis-
cussed in Abdalla et al. [9], in turkey breeding programs 
selection is not expected to be among selection candi-
dates from different generations. As a result, the biases 
in EBV can be neglected. However, biases should be 
adjusted for and carefully examined when selection can-
didates are from different generations. Incorporating the 
causal structures may slightly reduce the biases in EBV, 
but other techniques should be used to account for any 
potential bias of predictions that such models may yield.

The MTM and SEM resulted in similar rank correla-
tions of EBV for all traits for both pedigree-based and 
genomic analyses. While the EBV for the upstream 
traits (FCR and BMY) showed complete agreement 
between MTM and SEM, with rank correlations of 1.0, 
as expected, rank correlations for RFI, BW, and WS were 
0.88, 0.93 and 0.86, respectively. Although RFI was con-
ditioned by only one trait (FCR), it showed a lower rank 
correlation of EBV than BW (conditioned by FCR and 
RFI) and similar to WS (conditioned by all traits). This 
could be due to the number of selection candidates for 
each trait. Abdalla et  al. [32] compared rank correla-
tions between linear and threshold animal models using 
different numbers of selection candidates and reported 
that the similarity in rankings increased as the number 
of selection candidates increased. Depending on breed-
ing plans, the highest-ranking animals are more likely to 
be selected for breeding. Hence, selection of the best par-
ents to produce the next generation may not be as accu-
rate when ignoring causal relationships between traits.

In this study, males were phenotyped for all traits 
whereas females were only phenotyped for body weight 
and walking ability. As a result, analysis of only the female 
population would be limited to the connection between 
body weight and walking ability. Nevertheless, includ-
ing data on females enhances the accuracy of EBV and of 
estimates of genetic parameters [1]. This was even more 
beneficial  in this study because a large portion of the 
genotyped animals were females, which should improve 
the identification of the relationships between animals 
leading to a higher predictive ability for the genetic merit 
for the selection candidates [33]. It should be noted that 
EBV obtained from SEM are adjusted for both systematic 
effects and structural coefficients. In practice, it is quite 
important for turkey breeders to investigate the causality 
network between all traits in females and perform more 
accurate selection decisions, including traits that are not 
measured in the female population.

Descriptive statistical models that lack information 
about causal relationships among traits may not detect 
the changes in dependent phenotypes due to exter-
nal interventions on causal parents traits [5, 17]. This is 
where the inevitable ambiguity of relying on correlation 
information in making inferences about the association 
among a set of traits lies. One of the most common strat-
egies to assess dependencies and causal effects of interest 
is conditioning [34]. This can be done, as in this study, by 
using covariate adjustment to include realized values of 
explanatory variables in the linear predictor of a statisti-
cal model [35]. Investigating the phenotypic networks 
among physiological traits that may exert causal effects 
on each other is absolutely relevant for accelerating 
breeding programs. For instance, increased feed intake in 
high producing dairy cows enhances liver blood flow and 
metabolism, which in turn, influences the concentrations 
of circulating critical innate reproductive hormones, such 
as estradiol and progesterone, leading to negative effects 
on their reproductive performance [36]. Thus, ignoring 
the structural relationships between traits and apply-
ing selection based only on MTM models may result in 
slower genetic progress in economically important traits.

Conclusions
In this study, we investigated the functional relationships 
between five traits in a turkey line and their effects on 
the accuracy of EBV under pedigree-based and single-
step genomic evaluation models. Applying a 95% poste-
rior density interval for the posterior distribution of the 
residual partial correlation uncovered links between the 
traits, but some of them were not directed. A fully DAG 
was obtained with the use of a narrower (85%) HPD 
interval. The SEM based on this graph allowed the poten-
tial indirect genetic effects between the traits and their 
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magnitudes to be estimated. Differences in the estimates 
of genetic variance and the ranks of the EBV of selection 
candidates between the MTM and the SEM suggest that 
the rate of genetic improvement for the breeding goal 
could be reduced if selection decisions are based only 
on EBV derived from the MTM. These findings were 
supported by the higher prediction accuracies for con-
ditioned traits compared to assuming no connections 
between phenotypes. Our results also suggest that inter-
ventions on BW or BMY may block the indirect genetic 
effects through them on WS. Using structural equation 
models can accelerate genetic progress and enhance the 
accuracy of EBV for the selection of turkey candidates in 
both pedigree-based and single-step genomic models.
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