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Abstract 

Background:  In broiler production, breast muscle weight and intramuscular fat (IMF) content are important eco-
nomic traits. Understanding the genetic mechanisms that underlie these traits is essential to implement effective 
genetic improvement programs. To date, genome-wide association studies (GWAS) and gene expression analyses 
have been performed to identify candidate genes for these traits. However, GWAS mainly detect associations at the 
DNA level, while differential expression analyses usually have low power because they are typically based on small 
sample sizes. To detect candidate genes for breast muscle weight and IMF contents (intramuscular fat percentage and 
relative content of triglycerides, cholesterol, and phospholipids), we performed association analyses based on breast 
muscle transcriptomic data on approximately 400 Tiannong partridge chickens at slaughter age.

Results:  First, by performing an extensive simulation study, we evaluated the statistical properties of association anal-
yses of gene expression levels and traits based on the linear mixed model (LMM) and three regularized linear regres-
sion models, i.e., least absolute shrinkage and selection operator (LASSO), ridge regression (RR), and elastic net (EN). 
The results show that LMM, LASSO and EN with tuning parameters that are determined based on the one standard 
error rule exhibited the lowest type I error rates. Using results from all three models, we detected 43 candidate genes 
with expression levels that were associated with breast muscle weight. In addition, candidate genes were detected 
for intramuscular fat percentage (1), triglyceride content (2), cholesterol content (1), and phospholipid content (1). 
Many of the identified genes have been demonstrated to play roles in the development and metabolism of skeletal 
muscle or adipocyte. Moreover, weighted gene co-expression network analyses revealed that many candidate genes 
were harbored by gene co-expression modules, which were also significantly correlated with the traits of interest. The 
results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these 
modules are involved in muscle development and contraction, and in lipid metabolism.

Conclusions:  Our study provides valuable insight into the transcriptomic bases of breast muscle weight and IMF 
contents in Chinese indigenous yellow broilers. Our findings could be useful for the genetic improvement of these 
traits in broiler chickens.
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Background
Chicken and pork are the dominant meats consumed 
around the world. Global meat consumption is expected to 
increase as populations continue to grow, as is per person 
consumption of meat. White broiler chickens are the main 
type of chicken raised for consumption and their selection 
is mainly aimed on fast growth for breast muscle weight 
[1], which has improved by nearly 50% since the beginning 
of the twenty-first century [2]. Chinese indigenous yellow 
broilers are increasingly favored by consumers because 
of their good meat quality. In spite of their slower growth 
rate, they account for 38% of the chicken meat production 
in China [3]. Further enhancements to their breeding pro-
grams could further improve their breast muscle weight. 
In addition to weight, intramuscular fat (IMF) content 
in meat has also received much more attention in recent 
years. It is a major determinant of meat quality [4] that 
contributes to flavor, tenderness and juiciness [5, 6]. IMF 
quantifies the amount of lipids, i.e. triglycerides (TG), cho-
lesterol (CHO), and phospholipids (PL) [7], that are depos-
ited in the muscle, both between and within muscle fibers. 
Chicken meat with a high IMF content has gained popu-
larity with consumers.

Given the importance of breast muscle weight and IMF 
content, it is essential to understand their genetic bases 
to implement effective genetic improvement programs. 
With the development of high-density single nucleotide 
polymorphism (SNP) chips, genome-wide association 
studies (GWAS) have been performed to detect associa-
tions of SNPs with breast muscle weight [8–11] and with 
IMF percentage [8, 12, 13]. Based on the Animal Quan-
titative Trait Loci (QTL) database (accessed Feb 2021) 
[14], approximately 150, 25, 15, and 19 QTL have been 
identified in chickens for breast muscle weight, IMF per-
centage, TG level, and CHO level, respectively. Although 
these studies have advanced our understanding of the 
genetic bases of these traits, the mechanisms by which 
many of the identified QTL and SNPs act remain largely 
unknown. Gene expression analyses can provide a snap-
shot of actively expressed genes and transcripts under 
various conditions. Differentially expressed genes (DEG) 
have been uncovered for breast muscle weight and lipid 
contents using differential expression analysis in chick-
ens [7, 15–18]. While significantly associated SNPs are, in 
many cases, located in intergenic regions, the biological 
functions of DEG for the analyzed traits can be explored 
more directly. However, differential expression analy-
ses usually involve a small number of individuals, which 
explains their low detection power and poor reproduc-
ibility [19]. Furthermore, most traits of interest in animal 
breeding are quantitative traits. Differential expression 
analyses reveal genes that are differentially expressed 
in individuals that belong to different groups, e.g., a 

fast-growing group and a slow-growing group. In this 
case, quantitative traits are analyzed as categorical traits 
and their phenotypic information is not fully exploited in 
the analysis. However, similar to GWAS for quantitative 
traits that are performed with SNPs, association analyses 
based on gene expression levels and phenotypic records 
can be carried out to detect candidate genes for traits of 
interest. In addition to association studies, weighted gene 
co-expression network analysis (WGCNA) is widely used 
in gene expression analyses to explore the correlation 
patterns among expression levels of genes and to asso-
ciate gene co-expression network modules to traits [20], 
including breast muscle IMF [21].

In the current study, we collected breast muscle sam-
ples from approximately 400 Tiannong partridge chick-
ens at slaughter age for RNA-seq. The Tiannong partridge 
chicken is a commercially used three-way cross chicken 
produced using three pure lines of Qingyuan partridge 
chicken, which is an important Chinese indigenous slow-
growing yellow broiler and is well-known for its superior 
meat quality. We also measured their breast muscle weights 
and IMF contents (IMF percentage and relative content of 
TG, CHO and PL). Association analyses were performed 
between gene expression levels and breast muscle-related 
traits to identify candidate genes for these traits. The opti-
mal strategy to use the RNA-seq data in the association 
analysis was identified using a simulation study. Gene co-
expression network modules for candidate genes were 
investigated using WGCNA. To the best of our knowledge, 
this is the first large-scale transcriptome-wide investigation 
of breast muscle weight and IMF contents in chickens. The 
results not only facilitate the study of molecular genetic 
mechanisms underlying these traits but may also lay the 
foundation for their genetic improvement.

Methods
Animals and sampling
In total, 399 female Tiannong partridge chickens were 
obtained from Guangdong Tinoo’s Foods Group Co., 
Ltd. All birds were raised in one of the company’s farms 
from 1 to 125  days of age, following the commercial 
feeding standard. The chickens were randomly sampled 
from those raised in the farm and slaughtered on day 126 
using a mechanized slaughter line with moderate scald-
ing water (61 °C). Then, the left and right breast muscles 
of each bird were separated from the bones and weighed 
and the combined weight was used as the phenotype for 
breast muscle weight. Phenotypic values on 381 birds 
were accurately recorded and used in subsequent analy-
ses. Pectoral muscle samples were dissected from the 
same area of each chicken, snap-frozen using dry ice, 
and stored at − 80 °C for subsequent RNA isolation and 
measurement of biochemical indices.



Page 3 of 23Kang et al. Genet Sel Evol           (2021) 53:66 	

Measurement of biochemical indices
IMF content of each pectoral muscle sample was deter-
mined as crude fat using Soxhlet extraction (PN-ISO 1444: 
2000) with fat solvents (Soxtherm SOX 406, Gerhardt) 
[22]. The TG and CHO contents in pectoral muscle sam-
ples were measured using TG and CHO assay kits (Nan-
jing Jiancheng Bioengineering Institute, Nanjing, China). 
A sample of pectoral muscle (about 2 g) from each chicken 
was homogenized with absolute ethanol at room tempera-
ture and centrifuged (1000×g, 20 min). After centrifugation, 
the supernatant was used for TG and CHO measurement. 
A 2.5-μL aliquot of the supernatant and 250 μL of working 
reagent were co-incubated at 37 °C for 10 min. The absorb-
ance of each sample was measured using a Tecan Infinite 
200 microplate reader at 510 nm according to the manu-
facturer’s instructions. The PL content of each sample was 
evaluated using a Chicken PL ELISA Kit (Shanghai Enzyme 
Union Biotechnology Co., Ltd, Shanghai, China) by meas-
uring the absorbance of each sample using a Tecan Infinite 
200 microplate reader at 490 nm. Finally, PL level was cal-
culated based on a typical standard curve.

RNA extraction and sequencing
Total RNA of a sample of pectoral muscle from each 
chicken was isolated using TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA) and its quality was confirmed 
as described in [23]. RNA purity was assessed using the 
kaiaoK5500® Spectrophotometer (Kaiao, Beijing, China) 
and RNA integrity and concentration were assessed using 
the RNA Nano 6000 Assay Kit with the Bioanalyzer 2100 
system (Agilent Technologies, CA, USA). RNA sam-
ples with an A260/A280 ratio between 1.8 and 2.0 and 
an RNA integrity number higher than 7.5 were used for 
RNA sequencing.

The cDNA library was constructed according to the pro-
cedure described by Chen et al. [24]. mRNA samples were 
enriched by binding the mRNA poly-A tail to magnetic 
beads with Oligo (dT) and fragmented into small pieces. 
Using mRNA as a template, single- and double-stranded 
cDNA were synthesized. The double-stranded cDNA was 
purified using the QIAQuick PCR purification kit (QIA-
GEN, Valencia, CA, USA). After purification, end repair, 
and ligation to sequencing adapters, we used agarose gel 
electrophoresis for fragment size selection. Finally, PCR 
enrichment was performed to obtain the final cDNA 
library. RNA-sequencing was performed on an Illumina 
NovaSeq 6000 (Illumina, San Diego, CA, USA) and 150 bp 
paired-end reads were generated.

Phenotypic analysis
Means and standard deviations for breast muscle weight 
and IMF contents were calculated using the R functions 
mean and sd, respectively. Pearson correlations between 

traits were tested using the R function cor.test, which also 
estimated the 95% confidence intervals for correlations. 
A hierarchical clustering dendrogram for breast muscle-
related traits was generated using the R functions dist 
and hclust, with default values.

Data analysis of RNA sequencing
The software program FastQC [25] was used to assess the 
quality of raw sequence data. The sequence adapters were 
trimmed using the BBMap software [26] and then reads 
were filtered with the fastp program [27]. Sequenced reads 
were aligned to the chicken reference genome [GRCg6a 
(GCA_000002315.5)] using the HISAT2 program [28]. We 
used the program featureCounts [29] to count the number 
of reads that mapped to each gene and the input files were 
prepared using the samtools software [30]. Read counts 
were normalized using the DESeq2 software [31].

We performed WGCNA using the standard method 
[20]. For each module, we calculated eigengene values 
for gene expression and subsequently tested if there was 
a significant correlation (p < 0.05) between the eigengene 
expression value and the traits analyzed. Gene ontology 
(GO) enrichment analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis were performed for the significantly correlated mod-
ules using clusterProfiler [32], with the p-value adjusted 
by the Bonferroni correction method, and p- and q-value 
cutoffs of 0.05. For each co-expression network of inter-
est, hub genes were identified by the maximal clique 
centrality (MCC) algorithm, which was reported to be 
the most effective method of finding hub nodes [33]. 
The MCC of each gene was calculated by CytoHubba, a 
plugin in Cytoscape [33]. Genes with the top 10% MCC 
values were considered as hub genes.

Statistical models for association analyses
To select the most appropriate strategy for detecting asso-
ciations between gene expression levels and traits, the per-
formance of four commonly used linear regression models 
was evaluated using simulated data, i.e., linear mixed model 
(LMM), least absolute shrinkage and selection operator 
(LASSO), ridge regression (RR), and elastic net (EN). Then, 
candidate genes for traits related to breast muscle were 
detected using LMM, LASSO and EN with tuning param-
eters determined based on the one standard error rule (based 
on the results of the simulation study). All data, including 
phenotypic records and gene expression levels, were scaled to 
a mean of zero and one unit of variance prior to association 
analyses for both the simulation and the empirical studies.

First, we evaluated the single locus LMM, in which the 
association between gene expression and the trait under 
study is tested one gene at a time, using the following 
model for the vector of phenotypes for the trait:
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where µ is the population mean, 1 is a vector of 1s, the 
independent variable Xi is a vector of expression values 
of the i th gene, and bi is the effect of the i th gene on the 
trait under study, a is a vector of the random polygenic 
effects, assumed distributed N

(
0,Kσ 2

)
 , where σ 2 is the 

variance of this random effect, and K is the covariance 
structure inferred from all transcriptome data as follows:

where m is the number of genes and d is the average value 
of the diagonal of the matrix 

∑
m

i=1 XiX
′

i
 . The K matrix is 

analogous to the kinship matrix that is used in GWAS 
to capture genetic relationships among individuals. The 
residual error is assumed to be normally distributed as 
N
(
0, Iσ 2

e

)
.

The other three models investigated for association 
analyses were LASSO [34], RR [35], and EN [36]. These 
are multi-locus models, in which the expression levels 
of all genes are analyzed jointly. LASSO, RR, and EN are 
classified as regularized linear regression models, for 
which the basic linear regression model is:

The LASSO estimator obtains a sparse solution using 
l1 penalized least squares:

where � is the tuning parameter obtained via 
cross-validation.

The RR estimator solves this regression problem using 
l2 penalized least squares:

The EN model uses a mixture of l1 and l2 penalties and 
can be formulated as:

(1)y = µ1+ biXi + a + e,

(2)K =
1

d

m∑

i=1

XiX
′

i,

(3)y = µ1+

m∑

i=1

Xibi + e.

(4)

b̂(LASSO)

= argmin
b

{
(
y − µ1− Xb

)′(
y − µ1− Xb

)
+ �

m∑

i=1

|bi|

}
,

(5)

b̂(RR)

= argmin
b

{
(
y − µ1− Xb

)′(
y − µ1− Xb

)
+ �

m∑

i=1

b2i

}
.

(6)b̂(EN ) = argmin
b

{
(
y − µ1− Xb

)′(
y − µ1− Xb

)
+ �

m∑

i=1

[
(1− α)b2i + α|bi |

]}
,

where the value of the second parameter, α , is also deter-
mined via cross-validation.

The Wald test was used to test if estimates of bi from 
the four models were significantly different from zero. 
Under the null hypothesis that bi = 0, the Wald test sta-
tistic is:

and follows approximately a Chi-square distribution with 
one degree of freedom.

Association analysis using LMM was performed 
with the GEMMA package [37]. Since LMM tests one 
gene at a time, the p-value threshold for statistical sig-
nificance was determined using the Bonferroni correc-
tion method, i.e., 0.05/15,092, where 15,092 is the total 
number of genes identified. The GLMNET/R package 
was employed for RR, EN, and LASSO computation. In 
addition, we compared two commonly used methods 
to determine the tuning parameters ( � and α ) for these 
three models. One was minimizing cross-validated mean 
squared prediction error [38]. The corresponding mod-
els are referenced as LASSO-Min, EN-Min, and RR-Min. 
The other was the one standard error rule [39], which 
uses the tuning parameter values, resulting in errors that 
are not more than one standard error of the mean cross-
validated error above the minimum. The corresponding 
models are referred to as LASSO-1SE, EN-1SE, and RR-
1SE [40]. Since the GLMNET/R package does not pro-
vide var(bi) , we calculated the empirical error variance 
using the bootstrap method [41] for the Wald test in 
the association analyses using RR-Min and RR-1SE. The 
sample size was 200 and the number of bootstrap repli-
cations was 1000. Since RR tests all the genes simultane-
ously, no multiple-test correction is needed and p = 0.05 
was used as the threshold. Moreover, LASSO and EN 
automatically perform variable selection. We compared 
two strategies to declare candidate genes in the analyses 
using LASSO and EN, i.e., simply by selecting non-zero 
effect genes as candidate genes versus filtering genes 
using the Wald test, as for RR [42].

Simulation study
We compared the statistical properties of the models 
(LMM, LASSO-Min, EN-Min, RR-Min, LASSO-1SE, 
EN-1SE, and RR-1SE) by simulation experiments, using 

(7)Wi =
b
2
i

var(bi)
,
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the data for breast muscle weight. In the simulation 
study, genes were classified into two categories, i.e., trait-
relevant genes and trait-neutral genes, based on the anal-
ysis of breast muscle weight using EN-Min. Two genes 
were randomly selected from the category of trait-neutral 
genes and a non-zero effect of the gene on breast muscle 
weight was placed on the first gene. For the second gene, 
its expression level was shuffled by randomly assign-
ing different expression levels to each individual from 
among the set of actual observed expressions of this gene. 
The pseudo-phenotype for breast muscle weight was 
the sum of the original phenotypic value and the effect 
of the manipulated gene. We examined 23 scenarios, in 
which we set the proportion of phenotypic variance for 
breast muscle weight that was contributed by the expres-
sion of the selected gene (first gene) equal to 0.01, 0.02, 
0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 
0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0.34, 0.38, 0.42, 0.46, and 
0.50. For each scenario, the simulation was replicated 100 
times and the statistical power and type I error rate were 
computed. Statistical power was defined as the propor-
tion of selected genes with effects that were successfully 
detected, whereas the type I error was defined as the pro-
portion of the second selected trait-neutral genes that 
were incorrectly detected.

Results
In this study, genome-wide gene expression levels of 398 
chickens were measured using RNA-seq to detect candi-
date genes for breast muscle weight and IMF percentage, 
relative TG, CHO, and PL content (see Additional file 1: 
Figure S1). We obtained approximately 7.34 billion clean 
reads, with an average number of 18.41  million reads 
for each chicken (see Additional file  2: Table  S1). The 
reads were aligned to the reference genome [GRCg6a 
(GCA_000002315.5)], with mapping rates ranging from 
83.87 to 91.16% (see Additional file 2: Table S1). In total, 
15,092 coding genes were detected among all samples 
and used in subsequent analyses (non-coding genes were 
excluded).

Population variations of breast muscle weight and IMF 
contents and phenotypic correlation
Large variations in the traits analyzed were observed. 
While the coefficient of variation was high for breast 
muscle weight (CV = 13.9%), the variability levels were 
even higher for IMF contents (CV > 35%) (Table  1). 
According to the hierarchical clustering dendrogram, 
phenotypes for breast muscle weight were substantially 
different from IMF content (see Additional file  3: Fig-
ure S2). For IMF contents, only CHO content was sig-
nificantly correlated with breast muscle weight (r = 0.10, 

p < 0.05, 95% CI [0.00, 0.20]) (Table 2). Among TG, CHO, 
and PL, only TG content was significantly correlated 
with IMF percentage (r = 0.21, p < 0.05, 95% CI [0.11, 
0.31]), which can be attributed to the fact that TG is the 
main component of IMF. The correlation between TG 
and CHO content was also high (r = 0.49, p < 0.05, 95% 
CI [0.41, 0.57]). The close relationship between TG and 
CHO was also reflected by the dendrogram (see Addi-
tional file 3: Figure S2).

Comparison of association study strategies based on gene 
expression levels
To decide the optimal strategy for association analyses, 
we compared the statistical properties of various mod-
els through extensive simulations. These included LMM 
and three regularized methods that use different strate-
gies to determine the values of tuning parameters, i.e., 
LASSO-Min, LASSO-1SE, RR-Min, RR-1SE, EN-Min, 
and EN-1SE. Although LASSO and EN implement vari-
able selection automatically, we further explored whether 
significance testing benefited the association analyses. 
The conclusions were based on the average of 100 repli-
cates for each simulation scenario.

The results of the simulation study show that detection 
power increased with size of the simulated effect for all 
models (Fig.  1). When the level of expression of a gene 
contributed 50% of the phenotypic variance, all models 
achieved a statistical power equal to 1. When the level of 
expression of the gene contributed to a relatively small 
proportion of the variance (< 0.20), RR achieved the high-
est power and LASSO achieved the lowest power. For the 
regularized methods, selecting the model based on the 
one standard error rule decreased the detection power 
compared to minimizing the cross-validation error. As 
anticipated, the significance test reduced the detection 
power for LASSO and EN models. Moreover, for the 
variable selection methods LASSO and EN, even with an 
additional significance test, the models that minimized 
the cross-validated error achieved greater power than 

Table 1  Descriptive statistics for breast muscle weight and IMF 
contents

BMW breast muscle weight, IMF intramuscular fat percentage, TG relative 
triglycerides content, CHO relative cholesterol content, PL relative phospholipids 
content

Trait N Mean Standard 
deviation

Coefficient of 
variation (%)

BMW (g) 381 83.68 11.66 13.93

IMF (%) 398 1.97 0.76 38.77

TG (mg/g) 398 2.65 1.06 39.92

CHO (mg/g) 398 0.73 0.31 42.94

PL (mg/g) 398 0.22 0.08 37.84
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Table 2  Correlation between traits analyzed

Correlation coefficients are under the diagonal, 95% confidence intervals for correlation coefficient are in upper triangle

BMW breast muscle weight, IMF intramuscular fat percentage, TG relative triglycerides content, CHO relative cholesterol content, PL relative phospholipids content
a Correlation coefficients (and their 95% confidence intervals) significantly different from zero are in italics (p-value < 0.05)

Trait BMW (g) IMF% TG (mg/g) CHO (mg/g) PL (mg/g)

BMW (g) [0.00, 0.20] [− 0.04, 0.16] [0.00, 0.20] [− 0.04, 0.16]

IMF (%) 0.10 [0.11, 0.31] [− 0.07, 0.13] [− 0.06, 0.14]

TG (mg/g) 0.06 0.21 [0.41, 0.57] [− 0.09, 0.12]

CHO (mg/g) 0.10a 0.03 0.49 [− 0.17, 0.03]

PL (mg/g) 0.06 0.04 0.02 − 0.07

0.00

0.25

0.50

0.75

1.00
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Fig. 1  Empirical power of LASSO, EN, RR and LMM based on simulations. X-axis represents the proportion of variance explained by the simulated 
effect (range from 0.01 to 0.50). 1SE: in this model, the tuning parameters were determined based on the one standard error rule; Min: the tuning 
parameters were determined by minimizing cross-validated mean squared prediction error; P: the p-value threshold was used for statistical 
significance, which was set at 0.05/15,092 for LMM, and 0.05 for LASSO, EN, and RR. LASSO least absolute shrinkage and selection operator, EN elastic 
net, RR ridge regression
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the models that determined parameters based on the 
one standard error rule and without significance testing. 
The power of LMM was similar to that of LASSO with 
parameters determined based on the one standard error 
rule (LASSO-1SE).

We further compared these models by evaluating their 
false positive rates. The results showed that RR-min had 
the highest type I error rates (Table  3). LMM, LASSO-
1SE and EN-1SE had the lowest type I error rates, which 
were exactly zeros. EN-Min with an additional signifi-
cance test and LASSO-Min exhibited type I error rates 
less than 0.02. EN-Min without significance testing and 
RR-1SE exhibited high type I error rates, although lower 
than RR-Min. Taken together, results of the simulation 
study demonstrated that the EN-1SE without significance 
testing was the optimal method for association analyses 
of expression levels with traits, both in terms of control 
of type I error rate and detection power.

Identification of candidate genes for breast muscle weight 
and IMF contents
To improve the overall power and concurrently control 
the type I error rate in the empirical association analyses, 
we used three methods that exhibited the lowest type I 
error rates, i.e., LMM, LASSO-1SE (see Additional file 4: 
Table S2) and EN-1SE (see Additional file 4: Table S2), to 
identify candidate genes for the traits analyzed. Signifi-
cance tests were not performed for LASSO-1SE and EN-
1SE (based on the results of the simulation study).

Using LMM, expression of the FOXD3 gene was 
found to be significantly associated with breast muscle 
weight (Table  4 and Fig.  2). With LASSO-1SE, expres-
sions of three genes had non-zero effects on breast mus-
cle weight, i.e., PABPC1, AMY1A, and SERPINB6L. In 
accordance with the simulation study, EN-1SE detected 
more candidate genes than LMM and LASSO-1SE. The 
expression levels of 43 genes showed non-zero effects on 

Table 3  Type I error rates of different models in simulations

LASSO: least absolute shrinkage and selection operator; EN: elastic net; RR, ridge regression; LMM: linear mixed model; Min: tuning parameters determined by 
minimizing cross validated mean squared prediction error; 1SE: tuning parameters in the model determined based on one standard error rule; P: p-value threshold 
were used for statistical significance, which was 0.05/15092 for LMM, and 0.05 for LASSO, EN, and RR

Heritability LASSO EN RR LMM

Min (P) Min 1SE (P) 1SE Min (P) Min 1SE (P) 1SE Min (P) 1SE (P)

0.01 0 0 0 0 0 0.02 0 0 0.21 0 0

0.02 0 0 0 0 0.01 0.11 0 0 0.36 0.04 0

0.03 0 0 0 0 0.01 0.11 0 0 0.36 0.04 0

0.04 0 0 0 0 0 0.03 0 0 0.19 0.01 0

0.05 0 0.02 0 0 0.02 0.05 0 0 0.23 0.03 0

0.06 0 0.01 0 0 0.02 0.06 0 0 0.27 0.03 0

0.08 0 0.01 0 0 0.01 0.07 0 0 0.26 0.04 0

0.10 0 0 0 0 0 0.06 0 0 0.31 0.03 0

0.12 0 0 0 0 0 0.04 0 0 0.30 0.03 0

0.14 0.01 0.01 0 0 0.02 0.03 0 0 0.23 0.03 0

0.16 0 0 0 0 0.01 0.02 0 0 0.22 0.01 0

0.18 0 0.01 0 0 0.01 0.04 0 0 0.31 0.05 0

0.20 0 0 0 0 0 0.01 0 0 0.28 0.02 0

0.22 0 0 0 0 0 0.01 0 0 0.24 0.03 0

0.24 0 0.01 0 0 0 0.02 0 0 0.25 0.04 0

0.26 0 0 0 0 0 0 0 0 0.24 0.02 0

0.28 0 0 0 0 0 0.02 0 0 0.20 0.05 0

0.30 0 0 0 0 0 0 0 0 0.25 0.02 0

0.34 0 0.02 0 0 0 0.02 0 0 0.22 0.04 0

0.38 0 0 0 0 0 0 0 0 0.25 0.03 0

0.42 0 0.02 0 0 0 0.02 0 0 0.25 0.06 0

0.46 0 0 0 0 0 0 0 0 0.20 0.03 0

0.50 0 0.02 0 0 0 0.03 0 0 0.32 0.08 0
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breast muscle weight by EN-1SE (Table 4), including all 
genes that were identified using LMM and LASSO-1SE.

For IMF contents, EN-1SE found that the expression 
levels of THRA, PEA15L1, and SCFD1 were associated 
with IMF percentage, CHO content, and PL content, 
respectively (Table  4 and Figs.  3, 4, 5 and 6). The asso-
ciation between expression of THRA and IMF percentage 
was also detected by LMM. Although the associations of 
the expression level of the PEA15L1 gene with CHO con-
tent and the expression level of the SCFD1 gene with PL 
content were not significant using LMM, they had very 
low p-values in the LMM analyses, i.e. 7.13 × 10–5 and 
3.78 × 10–6, respectively. In addition, LMM revealed that 
the expression levels of the COMMD4 and HIST1H110 
genes were associated with TG content.

We also checked the quantile–quantile (QQ) plots for 
the LMM analyses, which compare the distribution of 
−  log(p-values) observed in the study with the expected 
distribution under the null hypothesis (see Additional 
file 5: Figure S3 and Additional file 6: Figure S4). The QQ 
plots show that the observed distribution of p-values was 
generally as expected, except for low p-values, suggesting 
that LMM effectively controlled type I error rates.

Characterization of candidate genes for breast muscle 
weight
In WGCNA, the soft-threshold process transforms 
the pairwise correlation to an adjacency matrix that 
mimics the scale-free topology. The soft-thresholding 
power is recommended as a noise filtering and is a key 
parameter for subsequent network construction and 
identification of modules. To optimize this power, the 
scale-free topology was estimated with the values of 
power ranging from 1 to 20. It is important to maxi-
mize scale-free topology model fit (R2) while main-
taining a relatively large mean number of connections 
(mean connectivity). When the scale-free topology 
model fit threshold was set equal to 0.9, the soft-thresh-
olding power was selected as 7 in WGCNA for breast 
muscle weight (Fig.  7a, b). Nineteen gene co-expres-
sion network modules were identified, which consisted 
of a median of 259 genes (Fig.  7c and see Additional 
file  7: Table  S3). Gene expression profiles were rela-
tively independent between modules (Fig.  7d). Among 
the 43 candidate genes for breast muscle weight, 35 
were located in nine co-expression network modules 
(Table 4), among which six were significantly correlated 
with breast muscle weight (p < 0.05) (Table 5). GO and 
KEGG pathway enrichment analyses were performed 
to determine the potential functions of the correlated 
modules (see Additional file  8: Tables S4 and S5). For 
significantly correlated modules (r > 0.10, p < 0.05) that 
included detected candidate genes, the MCC score was 

calculated for each gene and the candidate genes that 
ranked in the top 10% were recognized as hub genes 
(see Additional file 9: Table S6).

Thirteen candidate genes were located in the module 
‘pink’, which was significantly and negatively correlated 
with breast muscle weight (r = − 0.29, p < 0.05). Among 
the 13 genes, the GO terms of the RNPS1, EDC3, and 
UBP1 genes were enriched and were related to regulation 
of mRNA metabolic processing, ribonucleoprotein gran-
ule, and transcription corepressor activity, respectively. 
The gene RNPS1 ranked in the top 15% (47/324) in the 
module ‘pink’ by MCC, which indicates that it has a rela-
tively high connectivity with other genes (see Additional 
file 9: Table S6). The gene NSD1 was also identified as a 
hub gene and several NSD1 GO terms were over-repre-
sented among the genes in the module ‘pink’, including 
covalent chromatin modification, peptidyl-lysine modifi-
cation, nuclear hormone receptor binding, and transcrip-
tion corepressor activity. The thyroid hormone signaling 
pathway was also over-represented in the module ‘pink’.

The module ‘black’ included the candidate genes 
AKAP5, AMY1A, COQ7, FBP2, and PABPC1 and was 
significantly and positively correlated with breast muscle 
weight (r = 0.16, p < 0.05) (Table 4). For the module ‘black’, 
the over-represented GO terms and KEGG pathways 
were related to muscle tissue development and muscle 
contraction. The GO terms of the COQ7 gene were also 
enriched among the genes in module ‘black’ and related 
to coenzyme metabolic process and mitochondrial inner 
membrane. The GO terms and KEGG pathways of the 
FBP2 gene were also over-represented among the genes 
in module ‘black’, including those related to glucose met-
abolic processing and contractile fiber.

The candidate genes CETN1 and MZT1 were 
included in the module ‘turquoise’, which was signifi-
cantly associated with breast muscle weight (r = 0.14, 
p < 0.05). The inositol phosphate metabolism KEGG 
pathway was enriched in the module ‘turquoise’, which 
was associated with muscle contraction. In the module 
‘turquoise’, GO terms relating to protein degradation 
such as autophagy and proteasomal protein catabolic 
processing were also enriched. Finally, the spindle GO 
term of the candidate genes CETN1 and MZT1 was 
enriched among the genes in the module ‘turquoise’.

The candidate gene PA2G4 was located in the mod-
ule ‘cyan’ (r = − 0.11, p < 0.05), for which the ribosome 
KEGG pathway and GO terms related to both cytoplas-
mic and mitochondrial ribosome, translation, and focal 
adhesion were over-represented. In the module ‘cyan’, 
the functions of the gene PA2G4 were also enriched, 
including rRNA metabolic processing, ncRNA process-
ing, ribosome biogenesis, and regulation of translation.
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Table 4  Candidate genes for breast muscle weight and IMF contents

Trait Candidate gene Position Method Effect (SE)a Module

BMW PABPC1 chr2:128,496,930–128,511,621 EN-1SE − 1.46E−02 (6.90E−03) Black

LASSO-1SE − 2.70E−02 (2.70E−02)

BMW SCAF4 chr1:106,003,107–106,047,331 EN-1SE − 9.20E−03 (4.38E−03) Pink

BMW AMY1A chr8:11,450,028–11,459,763 EN-1SE 1.42E−02 (7.23E−03) Black

LASSO-1SE 2.93E−02 (2.96E−02)

BMW ATG9A chr7:22,223,873–22,232,130 EN-1SE − 4.27E-03 (2.27E−03) Blue

BMW SERPINB6L chr2:67,630,807–67,640,267 EN-1SE 8.84E−03 (4.75E−03) Pink

LASSO-1SE 7.09E−06 (1.75E−02)

BMW RNPS1 chr14:14,178,476–14,188,562 EN-1SE − 6.66E−03 (4.11E−03) Pink

BMW EDC3 chr10:2,903,180–2,929,046 EN-1SE − 4.88E−03 (3.08E−03) Pink

BMW NSD1 chr13:10,923,976–10,979,820 EN-1SE − 4.71E-03 (2.99E−03) Pink

BMW EEF2 chr28:1,553,588–1,561,522 EN-1SE − 5.95E−03 (3.91E−03) Blue

BMW TBC1D16 chr18:9,562,960–9,588,413 EN-1SE 9.20E−03 (6.21E−03) –

BMW GOLM1 chr35:40,775,848–40,812,641 EN-1SE 7.40E−03 (5.65E−03) –

BMW PTPN4 chr7:25,316,975–25,421,700 EN-1SE − 5.52E−03 (4.30E−03) Green

BMW FGFR1 chr22:2,646,704–2,665,806 EN-1SE − 7.92E−03 (6.30E−03) –

BMW FBP2 chr35:41,434,016–41,454,580 EN-1SE 4.99E−03 (3.99E−03) Black

BMW CETN1 chr4: 11,283,946–11,288,350 EN-1SE 4.95E−03 (4.01E−03) Turquoise

BMW SCYL3 chr8:5,441,379–5,454,438 EN-1SE − 4.33E−03 (3.52E−03) Pink

BMW TLK2 chr27:4,774,305–4,818,359 EN-1SE − 2.89E−03 (2.44E−03) Pink

BMW CMPK1 chr8:22,291,575–22,304,067 EN-1SE 3.73E−03 (3.20E−03) Blue

BMW EIF4EBP1 chr22:2,560,354–2,564,665 EN-1SE − 4.23E−03 (4.10E−03) Blue

BMW PFKP chr2:11,439,905–11,481,490 EN-1SE 4.29E−03 (4.77E−03) Yellow

BMW PA2G4 chr33:7,033,372–7,044,838 EN-1SE − 2.81E−03 (3.53E−03) Cyan

BMW MECP2 chr30:360,508–372,669 EN-1SE − 2.24E−03 (2.83E−03) Blue

BMW EP300 chr1:49,778,616–49,836,401 EN-1SE − 1.63E−03 (2.19E−03) Pink

BMW LOC107052698 chr2:99,744,162–99,754,138 EN-1SE 2.98E−03 (4.37E−03) –

BMW TCTN1 chr15:6,275,491–6,287,845 EN-1SE 2.95E−03 (4.44E−03) Pink

BMW FOXD3 chr8:28,132,659–28,134,130 EN-1SE − 2.78E−03 (4.38E−03) Blue

LMM − 3.86E−01 (6.73E−03) (p = 1.90E−08)

BMW SRPK2 chr1:13,957,491–14,095,954 EN-1SE 2.62E−03 (4.35E−03) –

BMW HNRNPA1 chr33:7,724,007–7,730,306 EN-1SE − 1.07E-03 (2.24E−03) Blue

BMW AP3B2 chr10:1,820,119–1,831,108 EN-1SE 3.30E−03 (7.23E−03) –

BMW GTF2IRD1 chr19:2,866,852–2,916,929 EN-1SE − 1.43E−03 (3.41E−03) Blue

BMW AKAP5 chr5:53,099,294–53,106,255 EN-1SE 1.95E−03 (4.84E−03) Black

BMW PURG​ chr4:34,642,974–34,668,274 EN-1SE 1.62E−03 (4.22E−03) –

BMW C5H15orf57 chr5:1,125,535–1,132,713 EN-1SE 1.38E−03 (4.10E−03) –

BMW BDH2 chr4:60,973,522–60,987,649 EN-1SE 1.17E−03 (3.85E−03) Pink

BMW CEBPG chr11:10,311,180–10,315,686 EN-1SE − 5.22E−04 (2.14E−03) Brown

BMW HELZ chr18:7,145,227–7,219,254 EN-1SE − 9.49E−04 (4.09E−03) Blue

BMW UBE2O chr18:4,379,218–4,428,651 EN-1SE − 2.71E−04 (1.40E−03) Pink

BMW COQ7 chr14:8,869,571–8,882,281 EN-1SE 3.96E−04 (2.39E−03) Black

BMW MSANTD3 chr2:89,075,200–89,090,503 EN-1SE 4.85E−04 (4.01E−03) Midnightblue

BMW VEZF1 chr19:8,866,657–8,883,692 EN-1SE − 2.47E−04 (2.49E−03) Blue

BMW UBP1 chr2:44,569,864–44,605,832 EN-1SE − 1.48E−04 (2.29E−03) Pink

BMW MZT1 chr1:157,641,451–157,646,198 EN-1SE 1.25E−04 (2.24E−03) Turquoise

BMW RBL2 chr11:4,992,998–5,010,973 EN-1SE − 3.24E−05 (2.34E−03) Pink

IMF THRA chr27:7,152,162- 7,163,448 EN-1SE − 1.04E−16 (9.23E−03) MEBrown

LMM − 2.77E−01 (5.30E−02) (p = 2.89E−07)
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BMW breast muscle weight, IMF Intramuscular fat percentage, TG relative triglycerides content, CHO relative cholesterol content, PL relative phospholipids content, 
LMM linear mixed model, EN-1SE elastic net with parameters determined based on one standard error rule, LASSO-1SE least absolute shrinkage and selection operator 
with parameters determined based on one standard error rule
a Estimated effects and SE (standard errors) are in standard deviation units

Table 4  (continued)

Trait Candidate gene Position Method Effect (SE)a Module

TG COMMD4 chr10:3,091,477–3,093,335 LMM 2.84E−01 (5.97E−02) (p = 2.87E−06) MEBrown

TG HIST1H110 chr1:48,103,557–48,104,467 LMM 2.31E−01 (4.89E−02) (p = 3.22E−06) –

CHO PEA15L1 chr23:6,137,230–6,144,560 EN-1SE 1.17E−17 (3.51E−03) MEGreen

PL SCFD1 chr5:34,370,974–34,415,640 EN-1SE 1.06E−16 (1.21E−02) MEYellow

−
(
)

Fig. 2  Estimated effect sizes and Manhattan plot of genes based on association analyses for breast muscle weight, using a LASSO-1SE, b 
EN-1SE, and c LMM. The red line for LMM indicates the thresholds for genome-wide association. LMM linear mixed model, EN-1SE elastic net 
with parameters determined based on the one standard error rule, LASSO-1SE least absolute shrinkage and selection operator with parameters 
determined based on the one standard error rule
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The candidate gene MSANTD3 was included in the 
module ‘midnight blue’ (r = 0.12, p < 0.05), in which the 
KEGG pathways related to cardiomyopathy, and the GO 
terms related to muscle such as muscle tissue develop-
ment and muscle contraction, were over-represented. 
The candidate gene CEBPG was included in the module 
‘brown’ (r = − 0.11, p < 0.05), which showed GO term 
and KEGG pathway enrichment for protein catabolic 
processing.

Characterization of candidate genes for IMF contents
We also set the correlation coefficient threshold equal 
to 0.9 and selected 7 as the soft-thresholding power for 
WGCNA analyses of IMF contents (Fig.  8a, b). Twenty 
network modules were identified by WGCNA, which con-
sisted of a median of 238 genes (Fig. 8c and see Additional 
file 10: Table S7). Figure 8d shows that gene expression pro-
files were relatively independent among these modules. The 
correlation coefficients of gene expression modules with 
IMF contents are in Table 6.

−
(
)

Fig. 3  Estimated effect sizes and Manhattan plot of genes based on association analyses for IMF percentage, using a LASSO-1SE, b EN-1SE, and 
c LMM. The red line for LMM indicates the thresholds for genome-wide association. LMM linear mixed model, EN-1SE elastic net with parameters 
determined based on the one standard error rule, LASSO-1SE least absolute shrinkage and selection operator with parameters determined based 
on the one standard error rule
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The candidate gene SCFD1 for PL content was 
located in the module ‘MEyellow’, which was signifi-
cantly and positively correlated with IMF percentage 
(r = 0.15, p < 0.05). The GO terms of the SCFD1 gene, 
i.e., autophagy and vacuole organization, were enriched 
in this module. Moreover, GO terms of membrane coat-
ing and regulation of lipid metabolic processing were 
enriched in the ‘MEyellow’ module (see Additional 
file 11: Table S8). The KEGG pathways of the FoxO sign-
aling pathway, the AMPK signaling pathway, insulin 

resistance, and autophagy were also over-represented in 
the ‘MEyellow’ module (see Additional file 12: Table S9).

The candidate gene PEA15L1 for CHO content was 
included in the ‘MEgreen’ module, which was signifi-
cantly and positively correlated with PL content (r = 0.11, 
p < 0.05). Many GO terms were enriched in the ‘MEgreen’ 
module, including those related to differentiation, pro-
liferation, and activation of leukocyte, coagulation, 
and membrane, etc. In the ‘MEgreen’ module, path-
way of leukocyte transendothelial migration was also 
over-represented.

−
(
)

Fig. 4  Estimated effect sizes and Manhattan plot of genes based on association analyses for relative TG content, using a LASSO-1SE, b EN-1SE, and 
c LMM. The red line for LMM indicates the thresholds for genome-wide association. LMM linear mixed model, EN-1SE elastic net with parameters 
determined based on the one standard error rule, LASSO-1SE least absolute shrinkage and selection operator with parameters determined based on 
the one standard error rule
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Discussion
In the recent decades, the demand for poultry has con-
tinuously increased. For broiler chicken production, 
both breast muscle weight and IMF content are impor-
tant economic traits. While linkage analyses and GWAS 
have successfully identified many relevant QTL in broiler 
chickens, the functional significance of these associa-
tions remains elusive due to the inability to accurately 
map them to tissue-specific and tissue-relevant genes. 
In recent years, some studies have performed differential 
gene expression analyses to identify candidate genes for 

breast muscle weight and IMF content [7, 15–18]. How-
ever, the sample sizes in these previous studies were rela-
tively small. Considering that sample size is an important 
factor that determines the power of detection, we used 
transcriptome sequences of approximately 400 chickens 
to detect candidate genes for breast muscle weight and 
IMF content (IMF percentage, TG content, CHO con-
tent, and PL content). Based on the results of extensive 
simulation analyses, optimized association analyses were 
conducted, and candidate genes were identified for breast 

−
(
)

Fig. 5  Estimated effect sizes and Manhattan plot of genes based on association analyses for relative CHO content, using a LASSO-1SE, b 
EN-1SE, and c LMM. The red line for LMM indicates the thresholds for genome-wide association. LMM linear mixed model, EN-1SE elastic net 
with parameters determined based on the one standard error rule, LASSO-1SE least absolute shrinkage and selection operator with parameters 
determined based on the one standard error rule
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muscle weight (43 genes), IMF percentage (1), TG con-
tent (2), CHO content (1), and PL content (1). Many of 
the identified genes were previously demonstrated to 
have effects on the corresponding traits.

Breast muscle weight and IMF content are complex 
traits and their genetic bases have not yet been compre-
hensively understood. Similar to the results in our study, 
Liu et al. [8] detected fewer associated SNPs for IMF in 
breast than for breast muscle weight. More specifically, 
they detected 19 SNPs that were significantly associated 

with breast muscle weight, of which 12 were significant 
at the genome level. For IMF, only two SNPs with sug-
gestive significance were detected. Therefore, the smaller 
number of candidate genes for IMF contents found in our 
study may be due to the more complex genetic basis or 
the smaller proportion of variance explained by individ-
ual genes for IMF content.

None of the associations between candidate genes and 
traits found in our study were catalogued for chicken 
in the animal QTLdb (accessed 21 Feb 2021) [14]. This 
could be because candidate genes were identified based 

−
(
)

Fig. 6  Estimated effect sizes and Manhattan plot of genes based on association analyses for relative PL content, using a LASSO-1SE, b EN-1SE, and 
c LMM. The red line for LMM indicates the thresholds for genome-wide association. LMM linear mixed model, EN-1SE elastic net with parameters 
determined based on the one standard error rule, LASSO-1SE least absolute shrinkage and selection operator with parameters determined based on 
the one standard error rule
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Fig. 7  Co-expression analyses of breast muscle weight: a analysis of the scale-free fit index for various soft-thresholding powers (β), b analysis of 
the mean connectivity for various soft-thresholding powers, c clustering dendrogram of genes and, d network heatmap plot
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on the association of their level with traits, while the can-
didate genes listed in the animal QTLdb are associated 
with traits at the DNA level.

Performance of statistical methods used in the association 
analyses
In association analyses based on gene expression levels, 
we compared commonly used GWAS methods, includ-
ing LMM, LASSO-Min, LASSO-1SE, EN-Min, EN-1SE, 
RR-Min, and RR-1SE. First, we evaluated the perfor-
mance of these methods through extensive simulations. 
As indicated by the results of WGCNA, expression 
levels of genes are correlated with each other. The RR 
method shrinks the coefficients of correlated predictors 
equally towards zero. In contrast, the LASSO method 
keeps only the strongest predictor among the corre-
lated group of genes [34]. The EN method is a compro-
mise between the RR and LASSO methods and results 
in a grouping effect that keeps strongly correlated pre-
dictors together in the model [36]. Our results showed 
that the EN method generally resulted in higher power 
than the LMM and LASSO methods, and in lower type 
I error rates compared to RR. These results are consist-
ent with the expected outcomes for these methods and 
with outcomes reported by other studies that tested 
these methods [43]. In our study, power of the LMM 
method was similar to that of the LASSO method, and 
lower than that of the EN method. This may be because 
the polygenic effect that comprises the effects of all 
genes absorbed the signal of the tested gene in the anal-
ysis using LMM and, thus, reduced power [44].

For the three regularized linear regression methods, 
using tuning parameters that minimized the mean 
squared prediction error (LASSO-Min, EN-Min, RR-
Min) resulted in both higher power and higher type I 

error rates compared to using tuning parameters that 
were determined based on the one standard error rule 
(LASSO-1SE, EN-1SE, RR-1SE). These results are con-
sistent with those from a previous GWAS [40]. More-
over, the one standard error rule has been favored 
because it acknowledges the fact that the tradeoff curve 
is estimated with error and hence takes a conservative 
approach [39].

The LASSO and EN regularized linear regression mod-
els implicitly performed variable selection. We inves-
tigated if it is necessary to also test the significance of 
predictors with non-zero effects for these methods, as 
in Wei et al. [42]. The results show that, for LASSO-Min 
and EN-Min, also selecting variables based on a Wald test 
decreased the type I error rate. However, both LASSO-
1SE and EN-1SE effectively controlled the type I error 
rates, and so conducting the additional step of the Wald 
test decreased their power of detection. Thus, for asso-
ciation analyses using LASSO-1SE and EN-1SE, genes 
with non-zero effect estimates can be directly recognized 
as candidate genes.

LASSO, EN, and RR shrink the coefficients towards 
zero, i.e., they introduce bias in the estimates. For exam-
ple, in our simulation study, when the gene effect was set 
to 0.50 standard deviation units, corresponding to 20% 
of the variance, the average estimate using EN-1SE was 
0.18 ± 0.08 (100 replicates) standard deviation units. As 
a result, the phenotypic variances explained by candidate 
genes could not be accurately estimated in the empiri-
cal analyses. In addition to identifying candidate genes, 
we were also interested in determining the direction of 
their effects. For a candidate gene with an effect that is 
significantly different from zero, we could determine the 
direction of its effect based on the sign of the estimated 
effect, with a certain low error rate. In addition, biologi-
cal functions of well-studied genes could be used to assist 
in determining the directions of the effects. For exam-
ple, the sign of the estimated effect of the THRA gene 
on IMF percentage was negative (Table  4). In addition, 
THRA encodes the receptor for thyroid hormone and is 
related to energy expenditure. Thus, a higher expression 
of THRA is expected to result in less IMF. Taken together, 
we could confidently infer that the expression of THRA 
had a negative effect on IMF percentage.

Transcriptome-wide association studies (TWAS) 
have been widely used to test the association between 
traits and genetically predicted gene expression levels in 
humans [45–47]. In these studies, cis-heritable expres-
sion levels of genes were computed based on local gen-
otype data. We did not perform a TWAS because the 
sampled individuals were not genotyped using a SNP 
chip or whole-genome resequencing. Moreover, a high 
false positive rate was found for variants discovered 

Table 5  Correlations between gene co-expression network 
modules and breast muscle weight

r: correlation coefficient
a Modules with correlation p-values < 0.05 are in italics

Module r p-value Module r p-value

Blacka 0.16 2E−03 Magenta 0.06 2E−01

Blue − 0.09 1E−01 Midnight blue 0.12 2E−02

Brown − 0.11 3E−02 Pink − 0.29 7E−09

Cyan − 0.11 3E−02 Purple 0.00 1E+00

Green − 0.02 8E−01 Red − 0.06 3E−01

Greenyellow 0.01 9E−01 Salmon − 0.15 4E−03

Grey − 0.27 9E−08 Tan − 0.03 6E−01

Grey60 0.03 6E−01 Turquoise 0.14 5E−03

Lightcyan 0.02 7E−01 Yellow 0.05 3E−01

Lightgreen 0.01 9E−01
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Fig. 8  Co-expression analyses of IMF contents: a analysis of the scale-free fit index for various soft-thresholding powers (β), b analysis of the mean 
connectivity for various soft-thresholding powers, c clustering dendrogram of genes, and d network heatmap plot
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by using RNA-seq, which was attributed in part to the 
effects of RNA editing [48]. When accurate SNPs of 
individuals are available, TWAS could be performed to 
detect associations between traits and cis-heritable gene 
expressions.

Candidate genes for breast muscle weight were mainly 
involved in muscle or adipocyte development
Breast meat consists mainly of skeletal muscle and IMF. 
For breast muscle weight, LMM identified FOXD3 and 
LASSO-1SE identified PABPC1, AMY1A, and SERPINB6 
as candidate genes. These four genes were also identi-
fied by EN-1SE. FOXD3 has been shown to have func-
tions upstream of genes required for skeletal muscle 
development [49]. The RNA binding protein PABPC1 
is known to have an important role in determining pro-
tein synthesis rates, and upregulation of PABPC1 in adult 
hearts increases heart size and heart-to-body weight 
ratio [50]. Hence, we speculate that PABPC1 has a simi-
lar positive effect on the development of breast skeletal 
muscle. AMY1A encodes salivary amylase and its copy 
number is associated with obesity risk [51]. SERPINB6 
encodes a protein of the serpin (serine proteinase inhibi-
tor) superfamily and of the ovalbumin-serpin subfamily. 
GO annotations related to SERPINB6 include serine-type 

endopeptidase inhibitor activity and protease binding. 
Further work is needed to understand how SERPINB6 
influences traits related to breast muscle.

EN-1SE detected 39 genes for breast muscle weight, in 
addition to FOXD3, PABPC1, AMY1A, and SERPINB6. 
Some of these genes were suggested to have effects on 
breast muscle weight based on previous studies. In gen-
eral, their functions can be classified into two catego-
ries, i.e., genes associated with muscle development, and 
genes associated with obesity or adipocyte development.

Previous studies reported or indicated that eight 
genes directly or indirectly regulate muscle develop-
ment (TBC1D16, FGFR1, EIF4EBP1, PA2G4, HNRNPA1, 
GTF2IRD1, VEZF1, SRPK2). The TBC1D16 gene has 
been reported to be differentially methylated and differ-
entially expressed in samples of subcutaneous adipose 
tissue between obese and non-obese human individuals 
[52, 53]. Jacobsen et al. [54] compared TBC1D16 protein 
levels in adipocytes of obese and lean pigs and found that 
the level of the protein translated from its short transcript 
tended to be higher in obese pigs. The fibroblast growth 
factor (FGF) signal transduction cascade has been shown 
to regulate myogenic cell proliferation and differentiation, 
which is mediated by a fibroblast growth factor receptor 
(FGFR) [55, 56]. Regulation of FGFR1 gene expression is 
known to have a critical role in the development of skeletal 

Table 6  Correlations between gene co-expression network modules and IMF contents

r: correlation coefficient
a Modules with correlation p-values < 0.05 are in italics

Module IMF percentage TG content CHO content PL content

r p-value r p-value r p-value r p-value

MEblack 0.00 9E−01 0.02 7E−01 0.05 3E−01 0.02 7E−01

MEblue 0.09 7E−02 − 0.03 6E−01 0.02 4E−01 − 0.06 1E−01

MEbrown − 0.08 1E−01 − 0.03 6E−01 − 0.03 7E−01 0.06 2E−01

MEcyan 0.05 3E−01 0.03 4E−01 − 0.04 6E−01 0.08 8E−01

MEgreen 0.00 1E+00 − 0.02 9E-−01 − 0.09 5E−01 − 0.09 2E−02

MEgreenyellow 0.03 5E−01 − 0.06 7E−01 − 0.01 1E−01 − 0.03 8E−03

MEgreya − 0.20 7E−05 0.04 4E−01 0.02 4E−01 0.01 9E−06

MEgrey60 0.01 9E−01 0.09 8E−01 0.05 5E−01 − 0.01 7E−01

MElightcyan 0.06 2E−01 0.04 2E−01 0.06 5E−01 0.01 2E−01

MElightgreen − 0.02 7E−01 0.00 4E−01 0.03 3E−01 0.11 9E−01

MElightyellow 0.01 8E−01 0.02 2E−01 0.03 9E−01 − 0.01 6E−01

MEmagenta 0.12 2E−02 0.01 7E−02 0.03 3E−01 0.02 8E−01

MEmidnightblue 0.03 6E−01 0.00 6E−01 0.09 5E−01 0.07 9E−01

MEpink − 0.01 9E−01 0.02 1E+00 − 0.04 9E−02 0.01 2E−01

MEpurple 0.03 5E−01 − 0.03 5E−01 − 0.02 7E−01 0.04 5E−01

MEred 0.09 8E−02 0.00 1E+00 − 0.01 9E−01 0.06 3E−01

MEsalmon − 0.02 7E−01 0.06 6E−01 0.04 5E−01 − 0.06 2E−01

MEtan − 0.03 6E−01 0.02 5E−01 − 0.08 6E−01 − 0.13 3E−02

MEturquoise − 0.06 2E−01 − 0.03 7E−01 − 0.03 8E−02 − 0.11 6E−02

MEyellow 0.15 2E−03 − 0.04 6E−01 − 0.04 4E−01 − 0.22 8E−01
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muscle [57]. EIF4EBP1, the binding protein and silencer 
of a key elongation factor in protein synthesis (EIF4), is 
involved in the mammalian target of rapamycin signaling, 
which regulates muscle protein synthesis [58, 59]. More-
over, EIF4EBP1 was identified as a key TOR-dependent 
regulator of muscle fiber size in response to muscle activ-
ity [60]. In chickens, the gene was also shown to be dif-
ferentially expressed in leg muscle at two developmental 
stages during early growth, suggesting that it has a func-
tion in regulating chicken growth and development [61]. 
PA2G4, also named EBP1, is a ubiquitously expressed 
DNA and RNA binding protein that regulates embryonic 
muscle progenitors and adult muscle stem cells. Down-
regulation of PA2G4 has been shown to prohibit myogenic 
differentiation of muscle progenitors in chick embryos 
[62]. HNRNPA1, which is involved in various cellular func-
tions related to RNA processing, has been reported to have 
a role in smooth muscle differentiation [63]. Similarly, 
GTF2IRD1 may be a transcription regulator involved in 
cell-cycle progression and skeletal muscle differentiation 
[64]. VEZF1 has recently been identified as a novel tran-
scription factor necessary for β-adrenergic stress-induced 
increases in cardiac growth and contraction [65]. Serine‐
arginine protein kinase (SRPK) is well known for its role in 
regulation of alternative splicing [66]. The chicken genome 
includes three SRPK genes (SRPK1, SRPK2, SRPK3). 
Expression of SRPK3 has been reported to promote the 
splicing of the MEF2Cα2 isoform, which plays an impor-
tant role in normal myogenesis [67]. Moreover, SRPK3 has 
been shown to be differentially expressed and alternatively 
spliced in four muscle tissues collected from two chicken 
breeds at different ages, suggesting its function in muscle 
development [68].

Three candidate genes (CEBPG, UBE2O and RBL2) were 
identified to be involved in the metabolism of adipocytes. 
The transcription factor CEBP family is known to have a 
role in cell proliferation and differentiation of several cell 
types [69]. Among them, CEBPG has been identified as an 
activator of TORC2, which plays a key role in adipogenesis 
[70]. UBE2O has been previously implicated in regulation 
of adipogenesis in vitro [71]. RBL2 plays a role in preadi-
pocyte proliferation and differentiation [72] and it has 
been suggested that a variant in the FTO gene is strongly 
associated with obesity and influences RBL2 expression, 
which impacts obesity risk [73].

The candidate genes RNPS1, EDC3, and UBP1 were 
co-expressed in the module ‘pink’ and their common 
functions related to regulation of transcription and trans-
lation were enriched in this module. More specifically, 
RNPS1 has been recognized as an activator of pre-mRNA 
splicing and shown to regulate alternative splicing in vivo 
[74, 75]. Furthermore, the encoded protein facilitates the 
3′ end processing of mRNA and improves translational 

activity [76, 77]. Based on its MCC value rank in the 
module ‘pink’, RNPS1 was also found to have a relatively 
high connectivity with the other genes (see Additional 
file 9: Table S6), which suggests that it may exert a regula-
tion function on many genes. The EDC3 gene affects the 
decay rates and/or steady-state levels of multiple mRNAs 
[78, 79] and is thought to play a scaffolding role in the 
assembly of a larger decapping complex [80]. UBP1, 
together with TFCP2 and TFCP2L1, constitute a distinct 
subfamily of grainyhead-like transcription factors [81]. 
UBP1 has been demonstrated to play a crucial role in 
regulation of extraembryonic angiogenesis and mice that 
lack UBP1 expression exhibited growth retardation at 
embryonic day 10.5 and died 1 day later [82]. In addition 
to these three genes, the candidate gene NSD1 is a critical 
regulator of transcription through histone modification 
and chromatin modelling [83]. As the hub gene in the co-
expression network module ‘pink’ (see Additional file 9: 
Table S6), NSD1 may regulate the transcription of many 
genes in this module. Therefore, RNPS1, EDC3, UBP1, 
and NSD1 may indirectly affect muscle or adipocyte 
development by regulating the transcription and transla-
tion of key genes involved in the corresponding biological 
process, similar to the functions of the candidate genes 
HNRNPA1, GTF2IRD1 and VEZF1.

Candidate genes for IMF content were marginally related 
to lipid metabolism
The thyroid hormone receptor alpha (THRA) gene was 
found to be associated with IMF percentage by EN-1SE 
and LMM. Thyroid hormones influence not only skel-
etal muscle homeostasis and functions but also nearly 
all the other major metabolic pathways, including syn-
thesis, mobilization and degradation of lipids [84]. The 
COMMD4 and HIST1H110 genes were found to be asso-
ciated with TG content by LMM. Although the molecular 
function of HIST1H110 is poorly studied, it has previ-
ously been identified as a differentially expressed gene 
in chickens with divergent residual feed intakes [85]. 
The HIST1H110 gene was also included in two gene 
sets that were shown in a previous study to interact 
with other gene sets involved in body weight at birth in 
chickens [86]. Further study is needed to investigate how 
COMMD4 influences lipid metabolism.

The genes SCFD1 and PEA15L1 were found to be asso-
ciated with PL and CHO content, respectively. SCFD1 was 
located in the ‘MEyellow’ module, for which the GO term 
autophagy of SCFD1 was enriched. Autophagy has previ-
ously been demonstrated to have a role in lipid metabolism 
[87, 88]. Moreover, enriched GO terms in the ‘MEyellow’ 
module included other terms related to lipid metabolism, 
including membrane coating and regulation of lipid meta-
bolic processing. The KEGG FoxO [89] and AMPK [90] 
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signaling pathways were also over-represented in the ‘MEy-
ellow’ module and are also involved in lipid metabolism. 
The PEA15L1 gene was located in the ‘MEgreen’ mod-
ule, for which GO terms and KEGG pathways related to 
immune cells (leukocyte differentiation, proliferation, acti-
vation, etc.) were significantly enriched. It has been shown 
that lipids affect innate and adaptive immune responses, 
since the alteration of the lipid metabolism affects the acti-
vation, differentiation, and function of immune cells [91]. 
Therefore, the relationship between the ‘MEgreen’ module 
and lipid content may result from the PL content affecting 
the expression of genes in this module.

Evaluating candidate genes identified by gene expression 
microarrays in other species
De Jager et al. [92] and Guo et al. [93] performed genome-
wide gene expression analyses to detect candidate genes 
for IMF percentage using microarray data in cattle and 
sheep, respectively. Guo et al. [93] also incorporated the 
results from De Jager et  al. [92] and found that 30 lipid 
metabolism genes were correlated with IMF percentage 
in both cattle and sheep. Among these, the orthologs 
of 22 genes were found for chicken using Biomart in 
Ensembl (http://​www.​ensem​bl.​org/​bioma​rt/​martv​iew). 
Of these, only ACER3 ranked in the top 100 genes in 
our study based on Pearson’s correlations between gene 
expression and IMF percentage (rank = 58/15092) (see 
Additional file  13: Table  S10). Consistently, ACER3 had 
the smallest p-value for IMF percentage using LMM 
(7.66E−3), but it was not significant at the genome level 
(threshold = 0.05/15092 = 3.31E−6).

Two factors may explain the different results from these 
two previous studies and from our study. On the one hand, 
compared with ruminants, it is possible that in chickens, dif-
ferent candidate genes and biological processes are involved 
in lipid metabolism. On the other hand, the two previous 
studies used a simple Pearson’s correlation and additional 
biological information to control high false positive and false 
negative rates in the detection of candidate genes. Com-
pared to the simple Pearson’s correlation, the LMM used in 
our study also considered random polygenic effects to cor-
rect for population structure. This strategy is similar to that 
used in GWAS, which could decrease the false positive rate. 
Moreover, as indicated by our simulation study, LMM could 
not achieve a power of 1 when the simulated gene explained 
less than 26% of the phenotypic variance, which is often the 
case. Hence, it is possible that most of the 22 genes were 
false negatives in our study. Therefore, the different results 
may also be due to the use of different statistical methods 
with different false positive and false negative rates.

Conclusions
We identified 43 genes for which total expression was 
associated with breast muscle weight, as well as genes the 
expression of which was associated with IMF percentage 
(1), TG content (2), CHO content (1), and PL content (1), 
making them candidate genes for these respective traits. 
Additional research is required to validate the associa-
tions and to further unravel the molecular mechanisms of 
the identified candidate genes. These results provide new 
candidate genes and clues for deciphering the molecular 
mechanisms that underlie muscle development and lipid 
deposition of breast muscle in chickens.
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