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Abstract 

Next-generation sequencing is a promising approach for the detection of causal variants within previously identified 
quantitative trait loci. Because of the costs of re-sequencing experiments, this application is currently mainly restricted 
to subsets of animals from already genotyped populations. Imputation from a lower to a higher marker density could 
represent a useful complementary approach. An analysis of the literature shows that several strategies are available 
to select animals for re-sequencing. This study demonstrates an animal selection workflow under practical condi‑
tions. Our approach considers different data sources and limited resources such as budget and availability of sam‑
pling material. The workflow combines previously described approaches and makes use of genotype and pedigree 
information from a Landrace and Large White population. Genotypes were phased and haplotypes were accurately 
estimated with AlphaPhase. Then, AlphaSeqOpt was used to optimize selection of animals for re-sequencing, reflect‑
ing the existing diversity of haplotypes. AlphaSeqOpt and ENDOG were used to select individuals based on pedigree 
information and by taking into account key animals that represent the genetic diversity of the populations. After 
the best selection criteria were determined, a subset of 57 animals was selected for subsequent re-sequencing. In 
order to evaluate and assess the advantage of this procedure, imputation accuracy was assessed by setting a set 
of single nucleotide polymorphism (SNP) chip genotypes to missing. Accuracy values were compared to those of 
alternative selection scenarios and the results showed the clear benefits of a targeted selection within this practical-
driven approach. Especially imputation of low-frequency markers benefits from the combined approach described 
here. Accuracy was increased by up to 12% compared to a randomized or exclusively haplotype-based selection of 
sequencing candidates.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Next-generation sequencing (NGS) experiments provide 
data that are of increasing importance in animal genetics 
with the potential to improve knowledge of the genetic 
background of complex traits with societal and economi-
cal interest (e.g., [1]). In addition, human genetics can 
benefit from insights into the porcine genome due to 
physiological similarities [2].

Until now, many of the genetic analyses in pigs 
are based on single nucleotide polymorphism (SNP) 

genotype data from chip arrays (e.g., [3, 4]). However, 
as costs for re-sequencing decrease [5], NGS becomes 
increasingly important [6]. The ratio between genetic 
gain and costs needs to be considered [7], as costs are a 
central issue in pig breeding [8].

Available NGS data are used to enhance information 
content of routinely phenotyped and genotyped animals, 
especially in terms of imputation from a lower to a higher 
marker density. An efficient approach is to select a highly 
informative and representative subset of animals for re-
sequencing and to use it as reference panel for imputa-
tion of a population that is genotyped at a lower marker 
density (e.g., [9]). Several studies have described how 
the final selection criteria were determined for selecting 
the animals to be resequenced, e.g., how frequently they 
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are used for artificial insemination and the availability of 
sampling material or special phenotypes (e.g., [10–12]). 
Within the 1000 Bull Genomes Project, selection based 
on pedigree-based algorithms has been described [13, 
14].

In a simulated data set, five approaches to select can-
didates for re-sequencing were discussed by Druet et al. 
[13]. Results were evaluated by considering minor allele 
frequency (MAF) and effects on imputation accuracy and 
genomic prediction [13].

NGS data and imputed whole-genome sequence data 
are assumed to include causative variants and to ena-
ble their detection (e.g., [1, 14, 15]). In this context, the 
composition of the resequenced subset is of high impor-
tance [15]. Verification, validation and fine-mapping of 
quantitative trait loci (QTL) derived from genome-wide 
association studies can benefit from imputed sequence 
data [14], although the relatively high level of linkage 
disequilibrium in pig breeding populations makes detec-
tion of causative variants more difficult. Combining sta-
tistical, bioinformatic, and functional information, such 
as genetic associations, linkage disequilibrium, annota-
tion, and functional genomic data, might optimize such 
detection (e.g., [16–18]) and, in addition, will increase the 
number of QTL and the proportion of variance explained 
by these QTL, compared to the use of a lower marker 
density [19].

The aim of this study was to evaluate alternative strat-
egies for the choice of animals for re-sequencing in the 
maternal Landrace (LR) and Large White (LW) pig lines. 
Selection was conducted by applying several theoreti-
cal concepts and approaches under practical conditions. 
Selection steps were built on existing pedigree and real 
SNP genotype information within the pigFit project 
which focuses on piglet survival and immunocompetence 
[20, 21]. Performance of the different selection strate-
gies was assessed based on the accuracy of imputation 
of masked genotypes from SNP chip data. The resulting 
NGS data are expected to enable a highly accurate impu-
tation within the LR and LW population and to discover 
the causative genetic variants for previously detected 
QTL regions.

Methods
Animals and data sets
The aim of the project ’pigFit-Molecular genetic and 
immunological analysis of survival and postnatal growth 
of piglets’ is to identify biological relevant regions associ-
ated with survivability, health and immune traits in pig-
lets and growing pigs. Within this project, phenotyping 
and genotyping were performed in the two maternal pig 
lines LR and LW. Blood and tissue samples were collected 
from piglets and their biological dams. SNP genotype 

data, based on the PorcineSNP60v2 BeadChip (Illumina 
Inc., San Diego, CA, USA), were used to conduct the 
animal selection process. In total, SNP genotype infor-
mation for 944 LR and 800 LW animals that were geneti-
cally linked to the pigFit data set was available. Before 
starting the analysis, breed-specific quality control was 
performed for SNPs on autosomes. Markers showing a 
high linkage disequilibrium ( r2 >0.8) within a region of 
3 kb and markers with a low MAF (<1%) or a low call rate 
(<95%) were excluded. In addition, breed-specific pedi-
gree information for 2871 LR animals and 1965 LW ani-
mals was available.

Theoretical principles for selection of animals 
and implementation
Druet et  al. [13] have explained the impact of differ-
ent strategies to choose individuals for sequencing on 
imputation accuracy and genomic prediction based on 
simulated sequence data. These approaches can be sum-
marized as pedigree-based, haplotype-based, and rand-
omized selection of individuals.

Based on the principles and results presented by Druet 
et  al. [13], the current study applied a combined, heu-
ristic approach (C) to select animals for re-sequencing. 
This approach combined haplotype- and pedigree-based 
methods according to their theoretical benefits, which 
are described below.

Random selection
Compared to targeted selection, random selection has 
been demonstrated to be a non-competitive approach 
[13]. In the current study, random selection of animals 
for sequencing was used for comparative purposes in 
validation steps.

Haplotype‑based (H) approach
Haplotype-based selection aims at maximizing the diver-
sity of haplotypes with or without weighting the hap-
lotype frequency [13]. Our haplotype-based selection 
strategy made use of 60k SNP genotype information. SNP 
genotypes were processed using the software AlphaPhase 
[22] to construct haplotypes by phasing. Phasing was per-
formed by breed and chromosome. Chromosomes were 
divided into fragments of 100 consecutive SNPs (Gener-
alCoreLength), as recommended for a 60k SNP density 
[22]. Hickey et al. [22] demonstrated that the highest per-
centage of alleles correctly phased were obtained for this 
setting. The average percentage of genotypes phased was 
>99%, indicating that phased genotypes can be used in 
subsequent analyses.

In general, the aim of the H approach is to cover the 
maximum proportion of haplotype diversity within the 
population. The results obtained with simulated data led 
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to the assumption that these animals will enable accurate 
imputation from chip genotype data to sequence data 
[13].

To carry out the selection step, we used the AlphaSeqOpt-
Method 1 [23]. In a nutshell, haplotype libraries were 
constructed and animals with the most high-frequency 
haplotypes in the investigated population were identi-
fied as candidates for re-sequencing to enable exact and 
complete imputation [23]. Appropriate haplotypes were 
masked and 100-fold repetition was performed.

The settings for the AlphaSeqOpt software were modi-
fied according to the porcine genome structure with 18 
autosomes and to the chip structure with a varying num-
ber of SNPs per chromosome. The call rate of SNPs and 
individuals had to exceed 90% to be included in the con-
struction of the haplotype library. Information on the 
number of cores and the core length was adapted to the 
GeneralCoreLength used in the AlphaPhase software. 
Since the H approach aimed at covering a large amount 
of haplotypes, the threshold for haplotype frequency in 
the population was set to 0 to take all the haplotypes into 
account, regardless of their frequency. In both lines, the 
availability of sample material was a key limiting factor, 
particularly in previous generations. Thus, the target 
number of animals to select for re-sequencing was set 
to 100. Animals were added to the candidate set in an 
iterative manner. Although the AlphaSeqOpt software 
includes an additional approach, Method 2 [24], this 
method was not implemented because of uncertainties in 
defining the cost parameters due to technical innovations 
and because of known difficulties in the analysis of spe-
cific regions in the porcine genome.

Pedigree‑based (P) approaches
One of the strategies discussed by Druet et  al. [13] 
maximizes the expected genetic relationship between 
sequenced animals and the population based on pedigree 
data. For implementing the P approach in our study, the 
AlphaSeqOpt software (P1) [23] was used and the algo-
rithm was as described by Goddard et al. [25]. Basic set-
tings were comparable with those in the H approach but 
the parameter OptimisationMethod was set to Pedigree. 
A subset of 100 candidates from the genotyped animals 
was selected based on pedigree relationships [23, 25].

The ENDOG v.4.8 software [26] was used to determine 
the underlying population structure and to characterize 
each population. Unlike all other approaches, this soft-
ware makes use of the entire pedigree of the pigFit popu-
lation and available relatives, covering 17 generations. 
Ancestors (P2) were identified as the animals that best 
explained the genetic variability of both populations con-
sidering their unbalanced use in breeding [26, 27].

Selection of animals for re‑sequencing by the combined (C) 
approach
As the starting point for the C approach, all animals from 
the H, P1, and P2 approaches were taken into account to 
select animals for re-sequencing. According to the avail-
able budget, the target number of animals was set to 57, 
divided into 28 LR and 29 LW animals. The C approach is 
practical-driven and aims at optimizing imputation accu-
racy of common and low-frequency variants by combin-
ing haplotype- and pedigree-based criteria. The findings 
shown by Druet et al. [13] provided an indication for the 
prioritization between the three approaches. As a con-
sequence, we defined steps 1 to 4 for the final selection 
of candidates for re-sequencing. These steps were con-
ducted successively and included the availability of sam-
ple material as a requirement.

Step 1: Animals that were selected by the H approach 
and at least by one of the P approaches (P1, P2)
Step 2: Animals that were selected in both P 
approaches (P1, P2)
Step 3: Animals that were selected by the H 
approach and both parents, sire and dam, were 
identified as important ancestors (P2)
Step 4: Animals that were selected by the H approach 
and one parent was identified as an important ances-
tor (P2)

Validation
Evaluation of alternative selection strategies was per-
formed based on the 60k SNP genotype data in a 0, 1, 2 
coding as obtained from the PorcineSNP60v2 BeadChip 
(Illumina Inc., San Diego, CA, USA). The workflow for 
the validation is shown in Fig. 1. Breed-specific data sets 
were split into a reference panel with high marker density 
(HD) and a target panel with low marker density (LD). 
The reference panel with high marker density included 
28 LR animals and 29 LW animals. Three sets of candi-
dates for re-sequencing were analyzed. The set compris-
ing candidates selected by the C approach (combined 
sample) was compared to the set of the top candidates 
from the H approach (haplotype sample) and a set of ran-
domly selected animals in a 30-fold repetition (random 
sample). Genotype data in the reference panel contained 
information on all markers that passed quality control  
(LR nSNPs=43,325, LW nSNPs=43,248).

The remaining animals (LR n=777, LW n=668) were 
allocated to the target panel. The assessed imputation 
scenarios are shown in Fig. 1. LD genotype data was sim-
ulated by setting 10,000 SNPs/ 23.1% (LD1) or half of the 
number of SNPs (LD2) to missing. Imputation was per-
formed from LD to HD for each of the reference panels 
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combined sample, haplotype sample, and random sam-
ple, using FImpute v3 [28]. Imputation accuracy was cal-
culated as the correlation (r) between true and imputed 
genotypes. Mean accuracies were averaged over a 20-fold 
repetition of imputation.

Results and discussion
Haplotype‑based (H) approach
The H approach resulted in 100 candidates per breed that 
maximized the  diversity of haplotypes across the popu-
lation. As shown in Fig. 2, in LR, 60% of the candidates 
belonged to the most recent generation. The remaining 
40% were distributed among the three previous genera-
tions, with decreasing proportions. In LW, the propor-
tion of animals in the most recent generation was slightly 
higher (66%). The remaining candidates had a distribu-
tion similar to that for LR.

Pedigree‑based (P) approaches
The P1 and H approaches are based on the same animals 
originating from the most recent generations. Within the 

Fig. 1  Workflow for the evaluation of imputation accuracies. Number 
of animals and SNP genotypes after quality control included in 
imputation steps; HD: high marker density, LD: low marker density, LR: 
Landrace, LW: Large White, LD1: Imputation scenario 1 (Imputation of 
10,000 SNPs), LD2: Imputation scenario 2 (Imputation of 50% of the 
SNP set)
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P1 approach, generations 3 and 4 (relative to the most 
recent generation being generation 1) comprised about 
two thirds of the 100 candidates in each breed (see Fig. 2).

The P2 approach included 17 generations of pedi-
gree for both populations. In total, 148 LR and 117 
LW animals were selected based on pedigree relation-
ships. Selected LR animals were from 13 of the 17 gen-
erations, with the largest number from generations 6 to 
8 (see Fig. 2), which were not selected by the H and P1 
approaches. LW candidates were more equally distrib-
uted in generations 6 and older.

Concordance between the two P approaches was 
observed for four LR animals and two LW animals (see 
Fig. 3). Strongly diverging results between the P1 and P2 
approaches were expected due to the differences in data-
bases and purposes of the methods. The P1 approach 
selected animals by focusing on the pedigree relation-
ships in genotyped animals of recent generations, while 
the P2 approach identified animals that explained the 
genetic variability of both populations, based on pedigree 
information going back 17 generations.

Subset of animals for re‑sequencing selected 
by the combined (C) approach
Figure  3 provides the number of selected animals 
from the H, P1, and P2 approaches. These results were 

condensed to the target number of 57 animals within our 
C approach with respect to optimizing imputation.

Selection steps 1 and 2 (see “Methods” section) are 
the overlaps of two approaches. Step 1 (H ∩ P1 or H ∩ 
P2) is based on both, haplotype- and pedigree-based 
approaches, whereas step 2 (P1 ∩ P2) is solely based on 
pedigree-based criteria. In total, steps 1 and 2 identified 
nine and four LR animals as well as nine and two LW 
animals for re-sequencing, respectively. In order to com-
plete the target number, steps 3 and 4 were implemented. 
The resulting animals fulfilled the haplotype-based crite-
ria and were progeny of animals which were selected by 
one of the pedigree-based approaches. In comparison to 
steps 1 and 2, the importance of the pedigree-based cri-
teria is downgraded in steps 3 and 4, but still effective in 
the representation of the diversity within the LR and LW 
populations. The resulting subset of animals is hereafter 
denoted as combined sample.

The combined sample included 28 LR and 29 LW ani-
mals, divided into 30 males and 27 females. These ani-
mals were born between 2012 and 2016 and can be 
assigned to six generations (see Table 1). 

Validation
Imputation accuracy was calculated to evaluate and 
quantify the performance of the selected animals for 
re-sequencing in a practical data set based on 60k SNP 
genotypes. The detailed results are in Table 2 with MAF 
grouped in the classes 1 to 3%, 3 to 5% and >5%. In sum-
mary, imputation accuracy was high using the combined 
sample as the reference panel. The mean accuracy ranged 
from 83.6 to 93.1% in LR and from 86.2 to 93.9% in LW 
across both imputation scenarios (LD1, LD2) and all MAF 
classes (1–3%, 3–5%, >5%). Imputation using the random 
sample (LR 74.1–87.8%, LW 78.7–89.9%) and haplotype 
sample (LR 81.2–94.1%, LW 83.4–94.0%) as reference 
panel had a lower mean accuracy.

Assessment of the imputation accuracy was per-
formed by imputing masked genotypes from the Porcin-
eSNP60v2 BeadChip (Illumina Inc., San Diego, CA, USA) 
in a 20-fold repetition and reflect the accuracy of imputa-
tion to a HD density in these populations. However, this 
study cannot make a conclusive statement regarding the 
accuracy for imputation to sequence data.

Fig. 3  Venn diagram of animals selected by the haplotype-based 
(H) and pedigree-based (P) approaches. Total number of animals 
per method: H approach n = 100, P1 approach (AlphaSeqOpt [25]) 
n = 100, P2 approach (ENDOG v.4.8 [26]) n = 148(LR)/117(LW)

Table 1  Distribution among breeds and generations of animals selected for re-sequencing using the combined (C) approach

Generation 1: most recent generation of animals

Generation 1 2 3 4 5 6

Landrace 8 8 7 4 1 0

Large White 8 12 5 2 1 1
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Overall, imputation of 10,000 masked SNPs (LD1) led 
to higher accuracies compared to imputation of 50% of 
the SNP set (LD2). Exceptions were found for the ran-
dom sample in LR and the MAF class >5% in the com-
bined sample in LR.

The strategy for selecting animals is very important, 
especially to enable an accurate imputation of low-
frequency variants [13]. As expected from previous 
studies (e.g., [13, 29]), imputation tended to be more 
accurate as the MAF of markers increased. Although 
imputation of low-frequency markers is less accurate 
(e.g., [13, 29]), imputation using the combined sample 
as the reference panel reached the highest increase in 
accuracy for low-frequency markers, compared to the 
alternative reference panels (haplotype sample, random 
sample). This may be due to the prioritization of haplo-
type diversity in the selection process for the combined 
sample and to the imputation to 60k level. However, 
in terms of low-frequency variants, imputation to the 
sequence level remains a major challenge, especially 
with a small number of sequenced animals.

In addition, our study observed differences in impu-
tation accuracy between LR and LW. For low-frequency 
(1–3%) and higher-frequency markers (>5%), impu-
tation performance was better in LW. In addition to 
breed-specific genetic aspects, one possible explanation 
is the larger number of animals within the reference 
panel for LW. It is important to underline that both 
nucleus populations are genetically distinct and differ 
in their breeding objectives to a considerable extent. 

Moreover, genotyped animals were assumed to be rep-
resentative samples of both nucleus populations.

Compared to random selection, targeted selection 
approaches achieved up to 12.4% higher imputation 
accuracy using the combined sample as reference panel 
for LR (see Fig.  4). The highest increase in imputation 
accuracy compared to random selection was reached 
with markers that had a MAF of 1 to 3%. The advan-
tage of the combined sample compared to the random 
sample was more evident for LR than for LW except for 
markers with a MAF >5% in LD1 and a MAF of 3 to 5% 
in LD2. The gain in accuracy through targeted selection 
was mainly achieved when imputing a larger number of 
markers (LD2).

In general, imputation accuracy varied a lot between 
replicates of randomly selected reference panels. This 
emphasizes the importance of the structure of reference 
panels for re-sequencing experiments, especially when 
resources are limited [15]. Our results are consistent with 
those of Druet et al. [13], who showed the advantages of 
haplotype-based selection over randomized selection in a 
simulated data set.

Assuming the availability of sample material from all 
prioritized candidates, the H approach was tested as an 
alternative approach, by considering haplotype-based 
criteria, only. It should be noted that the C approach is 
a heuristic, practical-driven approach and its results dif-
fer slightly from those using exclusively the H approach. 
For markers with a higher MAF (>5%), we observed no 
improvement in imputation accuracy of the C approach 
compared to the H approach. The latter achieved an even 

Table 2  Imputation accuracy (r) of masked chip genotype data from lower (LD1, LD2) to higher marker density in Landrace (LR) and 
Large White (LW) using different reference panels

Imputation accuracy (r): correlation between true and imputed genotypes, com: combined sample, ran: random sample, hap: haplotype sample, LD1: 10,000 SNPs 
(23.1%) were set to missing, LD2: 50% of the SNPs were set to missing, MAF: Minor allele frequency

Breed Reference panel Imputation 
scenario

MAF 1–3% MAF 3–5% MAF >5%

∅ Min. Max. ∅ Min. Max. ∅ Min. Max.

LR com LD1 86.53% 83.97% 88.95% 86.30% 84.51% 87.73% 86.30% 84.51% 87.73%

LD2 83.63% 82.26% 85.23% 83.60% 82.00% 85.77% 93.13% 92.88% 93.29%

ran LD1 74.13% 63.52% 84.26% 75.86% 66.82% 81.95% 86.81% 71.26% 88.66%

LD2 75.35% 70.80% 80.38% 77.65% 73.68% 81.18% 87.83% 87.23% 88.28%

hap LD1 82.81% 80.38% 85.43% 84.64% 81.24% 86.83% 94.10% 93.88% 94.52%

LD2 81.21% 78.81% 83.31% 82.14% 80.74% 84.30% 92.98% 92.79% 93.20%

LW com LD1 92.68% 92.47% 92.85% 88.68% 86.37% 89.97% 93.94% 93.70% 94.16%

LD2 86.52% 85.22% 88.23% 86.20% 84.93% 87.47% 92.71% 92.59% 92.90%

ran LD1 83.30% 76.37% 88.20% 82.24% 76.15% 86.73% 89.90% 77.65% 90.86%

LD2 79.22% 73.35% 83.88% 78.68% 74.33% 83.88% 88.35% 87.41% 88.94%

hap LD1 84.59% 81.45% 87.05% 87.36% 85.79% 89.46% 93.97% 93.77% 94.17%

LD2 83.37% 81.34% 85.35% 85.46% 84.05% 86.54% 92.86% 92.66% 93.03%
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slightly higher accuracy for LD1 in LR. Nevertheless, an 
increase of about 2.4 to 8.1% was found with low-fre-
quency markers of the C over the H approach.

Targeted selection using the C approach with haplo-
type- and pedigree-based selection criteria, as described 
in this paper, shows that it is superior compared to 
alternative approaches to select animals for a re-
sequencing experiment using data from the LR and LW 
populations investigated here.

The respective characteristics of the LR and LW popu-
lations are common for commercial maternal nucleus 
breeding populations. Moreover, we had to consider the 

practical constraints (data and sample availability, and 
budget, which lead to a trade-off between the number of 
animals and coverage) within our C approach. Against 
this background, our practical-driven approach and its 
results could be considered for similar situations in pig 
breeding using the data of nucleus herds.

Data from re-sequencing the combined sample will be 
used to supplement the pigFit project in future investiga-
tions. Making use of highly informative genotype data, 
genome-wide association studies (GWAS) that use highly 
informative genotypes are a highly efficient approach 
to map loci and to detect QTL and candidate genes for 

Fig. 4  Imputation accuracy using the combined sample and the random sample as reference panels in Landrace (a) and Large White (b)
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complex traits (e.g., [1]). This approach enables fine map-
ping [19] and validation of previously identified regions 
in a GWAS for important traits (e.g., [21]).

Conclusions
Targeted animal selection for re-sequencing is recom-
mended. Taking into account all available informa-
tion on population structure, when selecting animals 
for re-sequencing, including pedigree information and 
additional SNP genotype information, increased the 
imputation accuracy of masked SNP chip genotypes, 
measured as the correlation between true and imputed 
genotypes, by an average of around 7.3 to 12.4% for low-
frequency markers and up to 5.3% for markers with a 
MAF >5%. The combined use of pedigree- and genotype-
based approaches in practical data sets is particularly 
suitable for improving imputation accuracies for low-fre-
quency markers.
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