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Abstract 

Background:  Genomic estimated breeding values (GEBV) by single-step genomic BLUP (ssGBLUP) are affected by 
the centering of marker information used. The use of a fixed effect called J factor will lead to GEBV that are unaffected 
by the centering used. We extended the use of a single J factor to a group of J factors.

Results:  J factor(s) are usually included in mixed model equations (MME) as regression effects but a transformation 
similar to that regularly used for genetic groups can be applied to obtain a simpler MME, which is sparser than the 
original MME and does not need computation of the J factors. When the J factor is based on the same structure as 
the genetic groups, then MME can be transformed such that coefficients for the genetic groups no longer include 
information from the genomic relationship matrix. We illustrate the use of J factors in the analysis of a Red dairy cattle 
data set for fertility.

Conclusions:  The GEBV from these analyses confirmed the theoretical derivations that show that the resulting GEBV 
are allele coding independent when a J factor is used. Transformed MME led to faster computing time than the origi-
nal regression-based MME.
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Background
Single-step genomic BLUP (ssGBLUP) [1, 2] requires that 
the pedigree and genomic relationship matrices are com-
patible [3]. Two measures of similarity have been consid-
ered [4]: averages of diagonal and all elements. These two 
statistics are affected by the completeness of pedigree 
information. In pedigree-based animal model evalua-
tions, incomplete pedigree information is often modeled 
by genetic groups [5]. Elements of the genomic relation-
ship matrix are typically computed using centered and 
scaled marker genotypes [6]. Both centering and scaling 
often depend on allele frequencies and are affected by 
the available animal genotypes and, when pedigree infor-
mation is used in the allele frequency estimation, by the 

completeness of the pedigree. Thus, incomplete informa-
tion can affect both the pedigree and the genomic rela-
tionship matrix.

Fernando et  al. [7] proposed a marker-based single-
step model using Bayesian regression. When all the vari-
ance components are known, this model, hereafter called 
ssSNPBLUP, is equivalent to ssGBLUP. In their ssSN-
PBLUP, the genomic estimated breeding values (GEBV) 
are made independent of the allele frequencies that are 
used for centering marker genotypes by a regression 
effect, hereafter called J factor, which adjusts the breed-
ing values to the appropriate level [8]. This is similar to 
a simple genomic model without pedigree information, 
often called SNP-BLUP, where the marker effect solu-
tions are independent of allele coding but, for the GEBV 
to be independent of allele coding, their level needs to be 
adjusted by a general mean [9]. Thus, in both ssGBLUP/
ssSNPBLUP and SNP-BLUP, estimating a fixed effect and 
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adding its solution to the estimated genetic values allows 
the calculation of GEBV that are independent of the 
allele coding or centering of the genotypes used. Fitting 
a J factor in a single-step model has improved prediction 
accuracy when selection acted on the evaluated trait [8]. 
Furthermore, the use of a J factor has been observed to 
increase accuracy and lower bias in the analysis of simu-
lated data [10].

In practice, the pedigrees are incomplete and animals 
with information descend from different base popula-
tions. For the pedigree-based animal models, Thomp-
son [11] suggested the use of parent genetic groups to 
account for differences in genetic levels of the base popu-
lations. The genetic groups were modeled by regression 
coefficients. The resulting EBV were functions of genetic 
group solutions and additive genetic effects, similar to 
the J factor being part of the breeding value. Quaas and 
Pollak [12] showed that the so-called QP transformation 
can be used to model the genetic groups as unknown 
parent groups (UPG) in mixed model equations (MME). 
The use of the QP transformation allows a computation-
ally efficient approach to include the regression effects 
of genetic groups in MME by augmenting the UPG into 
the inverse relationship matrix. Furthermore, the breed-
ing values from MME by the QP transformation include 
the effect of genetic group information and, hence, there 
is no need to add the group effect solutions afterward 
to the estimated genetic effects. Misztal et al. [13] noted 
the computational difficulties of full QP transformation 
in ssGBLUP MME and discussed alternative approaches 
to fit genetic groups. Matilainen et al. [14] implemented 
the full QP transformation in multiple trait ssGBLUP 
of national dairy cattle fertility data with 11 traits. They 
observed that the full QP transformation guaranteed 
good convergence of the iterative method when solving 
the MME.

In this study, we use the J factor in the original ssGB-
LUP model and extend the J factor approach to include 
the same structure as for the genetic groups. We derive 
simple MME by applying a QP-like transformation to the 
J factor and consider computational aspects of genomic 
relationship matrices in the transformed MME. We 
illustrate the effects of including the genetic groups and 
extended J factors on ssGBLUP using a Nordic Red dairy 
cattle fertility data set.

Methods
Single‑step GBLUP model with genetic groups and J 
factors

We consider a single-trait single-step GBLUP (ssGBLUP) 
model:

where b is a vector of fixed effects, c is an s by 1 vector 
of fixed genetic centering, i.e., J factor, regression effects 
[7], J is a q by s matrix of known coefficients, g is an r by 1 
vector of random genetic group regression effects, Q is a 
q by r matrix of known coefficients, a is a q by 1 vector of 
random additive genetic effects, and e is a random resid-
ual vector. Matrix X relates fixed effects b and matrix 
W relates effects of centering Jc , genetic groups Qg and 
additive genetics a to appropriate observations in vector 
y . Matrix J has coefficients of genetic proportions in the s 
centering groups for the genotyped animals but imputed 
proportions for the non-genotyped animals. This matrix 
will be described below. The estimated fixed effects c 
allow to compute GEBV that will be unaffected by the 
centering of marker genotypes used when building the 
genomic relationship matrix, i.e., the GEBV will be free 
from the used allele coding. We assume Var(a) = Hσ 2

a  
and Var(e) = R . In the following derivations, we assume 
that the genetic groups are random with an expectation 
of zero and variance S . When fixed genetic groups are 
assumed, the resulting MME (below Eqs. (2–6)) contain 
neither S nor S−1.

Matrix H−1 in the MME of ssGBLUP is according to [1, 
2]:

where A is the full pedigree relationship matrix, G is the 
genomic relationship matrix, and A22 is the pedigree-
based relationship matrix of the genotyped animals. The 
genomic relationship matrix can be formed, for example, 
as G = ZD−1Z′ , where Z = M − P is a (centered) marker 
matrix of size n by m and D is a diagonal scaling matrix 
[6]. Each genotype value in the marker genotype matrix 
M is the number of alleles, with a value of 0 when the 
individual is homozygous for the first allele, 1 when the 
individual is heterozygous, and 2 when the individual is 
homozygous for the second allele. Matrix D is a diago-
nal scaling matrix. For example, the so-called VanRaden 
method 1 has D = kI , where k =

∑m
l=1 2pl(1− pl) and 

pl is the (base) population allele frequency for marker l . 
Here, we assume the ZD−1Z′ matrix to be non-singular 
but the following derivations allow more general defini-
tions of the G matrix, and we will consider them later.

Values in the centering matrix P = 1v′ often depend on 
the allele frequencies of the markers. For example, 
v = 2p′ where p is an m by 1 vector of base population 
allele frequencies [9]. Fernando et  al. [7] proposed to 
include a fixed regression effect in ssSNPBLUP such that 

(1)y = Xb+WJc+WQg +Wa + e,

H−1 = A−1 +

[
0 0

0 G−1 − A−1
22

]
,
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the GEBV are unaffected by the chosen centering matrix 

P . They defined J =
[
−A12A

−1
22 1

−1

]
 as a vector having 

minus one for the genotyped animals and −A12A
−1
22 1 for 

the non-genotyped animals where A12 is the pedigree-
based relationship matrix between the non-genotyped 
(subscript 1) and genotyped (subscript 2) animals. A ran-
dom J factor approach was presented for ssGBLUP in 
Vitezica et al. [3] and will be considered in the "Discus-
sion" Section.

The ssSNPBLUP model by Fernando et  al. [7] is a 
model equivalent to the ssGBLUP Model Eq. (1). Thus, 
following Fernando et al. [7], GEBV in Model Eq. (1) are 
computed as âd = Jĉ+Qĝ + â , i.e., the J factor and the 
genetic groups are added to the additive genetic effects. 
GEBV âd are independent of the centering of marker 
genotypes used, i.e., allele coding, due to the presence of 
the fixed J factor solutions Jĉ . In ssSNPBLUP, the marker 
genotypes are used as regression coefficients where the 
marker genotypes for the non-genotyped animals are 
imputed from the genotyped animals using the linear 
imputation formula A12A

−1
22 M . The coefficients A12A

−1
22  

in the imputation formula are used in the fixed J factor 
to “impute” the general mean from the genotyped ani-
mals to the non-genotyped animals. Consequently, any 
changes in the centering of the genotypes will change 
the additive genetic effect estimates â but changes due 
to the J factor estimates Jĉ allow the GEBV âd to remain 
unchanged. This is like any linear model that has a fixed 
general mean, a linear shift in the regression coefficients 
will change the general mean estimate but lead to the 
same predicted observations as shown for SNP-BLUP 
in [9]. The independence of allele coding can be proved 
formally by generalizing the derivations for SNP-BLUP 
in [9]. The allele coding independence will also be real-
ized in ssGBLUP, because ssSNPBLUP and ssGBLUP are 
equivalent.

We generalize the fixed J factor approach from a single 
regression effect to s regression effects that may depend 
on the pedigree structure or predefined group status such 
as birth year or breed. Let the coefficient matrix J of the 
regression effect c be minus one times matrix Qc for the 
genotyped animals and −A12A

−1
22 Qc for the non-geno-

typed animals: J =
[
−A12A

−1
22

−I

]
Qc where Qc is an ng by s 

matrix having coefficients for the genotyped animals in 
the J factor groups and ng is the number genotyped ani-
mals. We assume that the sums of the rows of the Qc 
matrix equal 1, i.e., Qc1 = 1 , and every element in Qc is 
within the interval [0,1]. The generalization from a single 

to multiple J factors makes the need to account for differ-
ences in centering the genotypes between genotyped 
individuals simple. Explicit centering of the genotype 
matrix M using the Qc matrix, i.e., Z = M − 2QcPc

′ , 
where Pc is an m by s matrix that has allele frequencies in 
the s groups for the m markers, becomes void using the 
multiple group J factor by the Qc matrix and follows from 
generalizing the development of Fernando et al. [7] and 
Strandén and Christensen [9]. For example, when the Qc 
matrix has breed proportions, the use of breed-wise allele 
frequencies for centering in the genomic relationship 
matrix [15] will give the same GEBV as those that use an 
allele frequency of 0.5 for all markers provided the same 
scaling is used.

Rows in the Qc coefficients matrix can have fractions 
of the base group proportions for the genotyped ani-
mal, which are calculated using pedigree information 
similarly to the coefficients in the Q2 matrix for the geno-
typed animals in the Q matrix for the unknown genetic 
groups. The J factor effects become confounded with the 
genetic group effects when Qc equals Q2 , and all pheno-
typed animals have been genotyped. When the number 
of phenotyped animals without genotype information is 
small, there may be a situation close to collinearity with 
the genetic group and J factor effects since these effects 
will try to model the same effect. This is unlikely in many 
current breeding populations with long recording history 
and with many phenotyped animals without genotype 
information. However, some new traits such as green-
house gas emission measurements have been recorded 
only recently and are likely to be from genotyped animals 
only. In the case when almost all the phenotyped animals 
have been genotyped, the J factor effect could be treated 
as operationally random. Otherwise, the J factor would 
be inseparable from the overall mean and the results may 
be meaningless. However, the Qc and Q2 matrices do not 
need to be the same. For example, the Q2 matrix can have 
genetic groups based on breed, birth year, country of ori-
gin, and sex but the Qc matrix can have fewer classes due 
to a pedigree that traces back far with distinct sub-popu-
lations, which can lead to the J factor coefficients in the 
A12A

−1
22 Q2 matrix for some genetic groups to be zero or 

close to zero. In the extreme, when Qc equals 1 , our gen-
eralization reduces to the J factor in Fernando et al. [7].

Transforming mixed model equations
MME for the ssGBLUP Model Eq. (1) are:
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After solving the MME Eq. (2), the estimates of the 
breeding values are âd = Jĉ+Qĝ + â [7, 11]. The QP 
transformation [3, 12] of MME Eq. (2) will provide MME 
where the breeding values âd are estimated explicitly. Let 

P =





I 0 0 0
0 I 0 0
0 0 I 0
0 J Q I



 , P−1 =





I 0 0 0
0 I 0 0
0 0 I 0
0 −J −Q I



 , and �v =





�b
�c
�g
�a



 . 

(2)





X′R−1X X′R−1WJ X′R−1WQ X′R−1W

J′W′R−1X J′W′R−1WJ J′W′R−1WQ J′W′R−1W

Q′W′R−1X Q′W′R−1WJ Q′W′R−1WQ + S−1 Q′W′R−1W

W′R−1X W′R−1WJ W′R−1WQ W′R−1W +H−1
σ
−2
a









�b
�c
�g
�a



 =





X′R−1y

J′W′R−1y

Q′W′R−1y

W′R−1y





The solution vector of all unknowns is �vd =





�b
�c
�g
�ad



 = P�v , 

where the left-hand side has the breeding value estimates 
âd calculated as linear function of the J factor, genetic 
group and genetic effect solutions. Let C and r be the 
coefficient matrix and the right-hand side vector in MME 
Eq. (2), respectively. In the QP transformation, the MME 
are transformed to be 

(
P−1

)′
CP−1v̂d =

(
P−1

)′
r . MME of 

the QP transformed ssGBLUP are:

The term H−1J in the MME Eq. (3) can be simplified. 
First, note that:

 because A12A
−1
22 = −

(
A11

)−1
A12 [7] and A−1

22
= A22−

A21
(
A11

)−1
A12A−1

22
= A22 − A21

(
A11

)−1
A12 . Then, 

(3)





X′R−1X 0 0 X′R−1W

0 J′H−1Jσ−2
a J′H−1Qσ

−2
a −J′H−1

σ
−2
a

0 Q′H−1Jσ−2
a Q′H−1Qσ

−2
a + S−1 −Q′H−1

σ
−2
a

W′R−1X −H−1Jσ−2
a −H−1Qσ

−2
a W′R−1W +H−1

σ
−2
a









�b
�c
�g
�ad



 =





X′R−1y
0
0

W′R−1y



.

A−1J =

[
A11 A12

A21 A22

][
−A12A

−1
22

−I

]
Qc

=

[
A11 A12

A21 A22

][ (
A11

)−1
A12

−I

]
Qc

=

[
0

A21
(
A11

)−1
A12 − A22

]
Qc

=

[
0

−A−1
22

]
Qc,

H−1J =

[
0

−A−1
22

]
Qc +

[
0

−

(
G−1 − A−1

22

)
]
Qc =

[
0

−G−1

]
Qc, and 

J′H−1J = J′

[
0

−G−1

]
Qc = Qc

′
[
− A−1

22 A21 −I

][ 0

−G−1

]
Qc = Qc

′G−1Qc.

Thus, the MME Eq. (3) can be written as:

 where F =

[
0

−G−1

]
 and Q2 are the rows of matrix Q 

pertaining to the genotyped animals. Thus, the coeffi-
cients to the regression effect ĉ involve only functions of 
Qc and G−1 , and no longer neither matrix J as in the 
MME Eqs. (2) and (3), nor the pedigree-based relation-
ship matrix as in the MME Eq. (3).

Assuming that Qc
′G−1Qc is non-singular, MME Eq. (4) 

can be further simplified by absorption of the c effect to 
the other effects. Let Cc,−c = −σ

−2
a

[
0 Qc

′G
−1

Q2 Qc
′F′

]
 , 

i.e., the rows in the MME Eq. (4) coefficient matrix 
for the J factor effect ĉ excluding columns hav-
ing coefficients for ĉ . This can be rewritten as 
Cc,−c = −σ

−2
a Qc

′G−1
[
0 Q2 0 I

]
= −σ

−2
a Qc

′G−1KQ   , 
where KQ =

[
0 Q2 0 I

]
 has non-zero elements only 

at columns for the genetic groups ( Q2 ) and breed-
ing values of genotyped animals ( I ). Because the right-
hand side values in the MME Eq. (4) corresponding 
to ĉ are zero, the absorption changes only the coef-
ficient matrix. The change due to the absorption is 
−σ 2

aCc,−c
′
(
Qc

′G−1Qc

)−1
Cc,−c = −σ

−2
a KQ

′G−1Qc
(
Qc

′G−1Qc

)−1
Qc

′G−1KQ = σ
−2
a KQ

′KcKQ, where Kc = −G−1 
Kc = −G−1Qc

(
Qc

′G−1Qc

)−1
Qc

′G−1 . Because matrix KQ 
operates only on the coefficients of the genotyped animals 

(4)





X′R−1X 0 0 X′R−1W

0 Qc
′G−1Qcσ

−2
a −Qc

′G−1Q2σ
−2
a −Q′

cF
′
σ
−2
a

0 −Q2
′G−1Qcσ

−2
a Q′H−1Qσ

−2
a + S−1 −Q′H−1

σ
−2
a

W′R−1X −FQcσ
−2
a −H−1Qσ

−2
a W′R−1W +H−1

σ
−2
a









�b
�c
�g
�ad



 =





X′R−1y
0
0

W′R−1y



,
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and the genetic groups through Q2 , the MME Eq. (4) after 
absorption of the J factor effect is changed as:

 where H∗
J = A−1 +

[
0 0

0 G∗
J − A−1

22

]
 and G∗

J = G−1 + Kc . 

Thus, the J factors can be accounted in MME by changing 
the G−1 matrix without having to solve explicitly the 
regression effects c and to calculate the J matrix.

The absorption of the J factor effect in MME Eqs. 
(4) and (5) requires that the Qc

′G−1Qc matrix can be 
inverted. Matrix Qc

′G−1Qc is singular when rank(Qc) 
is less than the number of groups, i.e., there are linearly 
dependent groups. Observe also that G∗

JQc = 0 and that 
G∗
JGG

∗
J = G∗

J  . Thus, the G matrix is by definition a gener-
alized inverse of G∗

J .
Note that the G∗

J  matrix in the MME Eq. (5) is a com-
putational result from absorbing the J factor effect, not 
an inverse of a genomic relationship matrix. In par-
ticular, G∗

J  is singular as can be easily proved by observ-
ing that application of the Woodbury formula to invert 
G∗
J = G−1 −G−1Qc

(
Qc

′G−1Qc

)−1
Qc

′G−1 will require 
the inversion of a singular matrix, i.e., a matrix of zeros.

Special cases
An important special case in MME Eq. (5) is to have 
Qc = Q2 , i.e., the same groups are used for center-
ing and for the unknown genetic groups. Because now 
G∗
JQ2 = G∗

JQc = 0 , MME Eq. (5) can be written as:

where E = A−1 +

[
0 0

0 −A−1
22

]
 and G∗

J = G−1 + KQ in 

H∗
J , where KQ = −G−1Q2

(
Q2

′G−1Q2

)−1
Q2

′G−1 . Note 
that in MME Eq. (6) the genomic relationship matrix G 
makes no contribution to the coefficients involving the 
genetic group effects ĝ because matrices E and Q are not 
functions of the G matrix.

Another special case is the original J factor model in [7] 
with Qc = 1 , where ĉ is a scalar valued regression effect. 
This will illustrate the MME in ssGBLUP when the origi-
nal J factor of Fernando et al. [7] is used. Then, the absorp-
tion of the ĉ effect in MME Eq. (4) gives MME Eq. (5) but 
with G∗

J = G−1 + K1 and K1 = −G−111′G−1/
(
1′G−11

)
 . 

(5)




X′R−1X 0 X′R−1W

0 Q′H∗
JQσ

−2
a + S−1 −Q′H∗

J σ
−2
a

W′R−1X −H∗
JQσ

−2
a W′R−1W +H∗

J σ
−2
a









�b
�g
�ad





=




X′R−1y

0

W′R−1y





(6)




X′R−1X 0 X′R−1W

0 Q′EQσ
−2
a + S−1 −Q′Eσ−2

a

W′R−1X −EQσ
−2
a W′R−1W +H∗

J σ
−2
a








�b
�g
�ad



 =




X′R−1y

0

W′R−1y



,

As before, G∗
J 1 = 0 , i.e., matrix G−1 has been replaced by 

G∗
J  , where the rows and columns sum to zero. However, 

when Q2  = 1 , the G∗
JQ2 product can be different from 

zero. Thus, genomic data can influence coefficients of the 
genetic groups and the diagonal matrix for the genetic 
groups is Q′H∗

JQσ
−2
a + S−1 as in MME Eq. (5).

Computational considerations
In the derivations above, the genomic relationship matrix 
has the form G = ZD−1Z′ . When the number of geno-
typed animals is larger than the number of SNPs, this G 
matrix becomes singular. Common non-singular forms 
of the genomic relationship matrix are GC = G+ C , 
where the regularization matrix C is non-singular, easy 
to invert and independent of genomic information [16, 
17]. Examples of such constrained genomic relationship 
matrices are Gε = G+ εI and Gw = (1− w)G+ wA22 , 
where ε is a small number and w is the so-called resid-
ual polygenic proportion. There is always an equivalent 
single-step SNP-BLUP type of model for these ssGBLUP 
models [18]. Although the regularization matrix is not 
needed to avoid the singularity problem in single-step 
SNP-BLUP, a counterpart to the regularization matrix 
C is an independent random effect having a covariance 
matrix C . In case C = wA22 , the genotyped animals have 
genomic and pedigree information weighted by a residual 
polygenic proportion, and in case C = εI , an independ-
ent and identically distributed random effect is added to 
each genotyped animal. Thus, the earlier derivations for 
the J factor are valid and allow to account for any differ-
ences due to centering in G by the different allele coding 
by ssGBLUP models using Gε or Gw . However, note that 
differences in scaling, i.e., the D matrix, can lead to dif-
ferences in GEBV. We will illustrate computational per-

formance and consequences of the derivations using a Gw 
matrix in analysis of a small data set.

Data
Approaches were tested using a subset of dairy cat-
tle fertility data from Nordic Cattle Genetic Evaluation 
(NAV, Aarhus, Denmark). The data set is described in 
Matilainen et al. [14]. We considered only the two heifer 
fertility traits, i.e., nonreturn rate within 56  days after 
first service (NRR0) and days from first to last insemi-
nation (IFL0). The numbers of NRR and IFL0 observa-
tions were 6.5 million and 6.2 million, respectively. The 
pedigree included 5.4 million animals of which 33,969 
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were genotyped. There were 332 genetic groups which 
accounted for genetic level by breed, country of origin, 
and birth year. In the computations, we calculate the G∗

J  
matrix and solve MME Eq. (5) for different J factor mod-
els, where one of them has Qc equal to Q2 . Computation 
of G∗

J  requires that the Qc
′G−1Qc matrix is not singular. 

In other words, the genetic group matrix Qc cannot have 
linearly dependent rows/columns. The original groups 
defined and used in Matilainen et al. [14] led to a singu-
lar Qc

′G−1Qc matrix. Thus, for our study, we combined 
several adjacent birth year groups and reduced the num-
ber of groups from 332 to 232. The bulls were genotyped 
using the Illumina BovineSNP50 chip and the cows were 
genotyped using the BovineLD Bead Chip with the geno-
types imputed to the 50K chip (Illumina Inc., San Diego, 
CA, USA).

Study design
The residual polygenic proportion w was 20% in the 
genomic relationship matrix Gw = (1− w)G+ wA22 , 
where G = ZD−1Z

′ was as in VanRaden’s method 1 [6]. 
Two sets of allele frequencies to center the Z matrix were 
tested. In the first approach, an allele frequency of 0.5 
was used for all markers ( p = 0.5 ). The second approach 
used base population allele frequencies which were esti-
mated using the generalized least square (GLS) approach 
assuming a single breed [19] as implemented in the Bpop 
program [20]. The first approach is denoted by 101 and G 
101 matrix, and the second approach by PvR1 and G PvR1. 
Both G matrices used the same scaling factor k = m/2 
where m is equal to the number of markers. The same 
scaling factor k allowed a scale independent comparison 
of the centering approaches.

The data were analyzed using three ssGBLUP models 
which had the same genetic groups. Two of the models 
had J factors, either as a single J factor (J1) or genetic 
group-based J factors (JQ), i.e., Qc = 1 or Qc = Q2 , 
respectively. In the MME, the J factors and the genetic 
groups were either regression coefficients (reg) or 
pedigree groups after QP transformation as described 

earlier. Thus, we performed six ssGBLUP model analy-
ses (Table 1). These models are referenced by the names 
QP, QPJ1, QPJQ, reg, regJ1, and regJQ. The term J1 will 
refer to both QPJ1 and regJ1, and JQ will refer to both 
QPJQ and regJQ. The reg model solved MME (2) and the 
QP model solved MME (5) with or without a J factor. The 
computational performance of the ssGBLUP approaches 
was measured by the number of iterations until conver-
gence and computing time per iteration.

Computations

The MiX99 software was used to solve MME to calculate 
GEBV using iteration on data and the PCG method [20] 
with a block diagonal preconditioner. The computations 
accounted for the inbreeding coefficients in A−1 and A22 . 
The PCG method was assumed to be converged when 
Cr < 10−7 where Cr is defined as the Euclidean norm of 
the difference between the right-hand side (RHS) of the 
MME and the one predicted by the current solutions rel-
ative to norm of the RHS:

 where s[k]1  is the solution vector at round k , C is the MME 
coefficient matrix, and r is the MME right-hand side 
vector.

In the reg models, the regression coefficient matri-
ces WQ for the genetic groups and WJ for the J factors 
were precomputed and read from disk. The Q matrix 
was calculated based on pedigree information and this 
computation was fast (17s) using the RelaX2 program 
[22]. Two implementations for the WQ matrix in solv-
ing MME Eq. (2) were tested. In the first approach, the 
WQ matrix was considered as a dense matrix, and in 
the second approach, it was read to memory as a sparse 
matrix.

Cr =

√√√√
(
Cs

[k]
1 − r

)
′
(
Cs

[k]
1 − r

)

r′r
,

Table 1  Single-step model names and model differences in the mixed model equations

The models had either no J factors (None), one J factor ( Qc = 1 ) or multiple J factors as defined by the genetic groups ( Qc = Q2)

Name J factor Mixed model equations

reg None Regression effects for genetic groups

regJ1 Qc = 1 Regression effects for genetic groups and one J factor

regJQ Qc = Q2 Regression effects for genetic groups and many J factors

QP None QP transformation of genetic groups

QPJ1 Qc = 1 QP transformation of genetic groups and an absorbed J factor

QPJQ Qc = Q2 QP transformation of genetic groups and absorbed J factors



Page 7 of 12Strandén et al. Genetics Selection Evolution           (2022) 54:38 	

Two of the MME needed covariables in WJ for the J 
factors (regJ1 and regJQ). The values in the J matrix  

can be calculated using equality J =

[
−A12A

−1

22

−I

]

Qc =

[ (
A11

)−1
A12

−I

]
Qc . Consider a column in Qc denoted 

as v and calculate 
[
j1
j2

]
=

[ (
A11

)−1
A12

−I

]
v , where vec-

tors j1 and j2 have J factors for the non-genotyped and 
genotyped animals, respectively. A direct computational 
approach can be used in the calculation of the J factors 
[23]. However, we used standard genetic evaluation soft-
ware in the calculation of the J factors by solving the fol-
lowing linear system of equations:

 where Aij is the sub-matrix ij of A−1 , � = .001/.999 . 
Thus, the equations need to be solved for every J factor 
group. The equations were solved by MiX99 using the 
convergence limit Cr < 10−9 . The � ratio corresponds 
to the ratio of residual and genetic variances in an ani-
mal breeding MME. We used a small � value, which cor-
responds to having a high heritability. Consequently, the 
solutions j∗2 will be close to the right-hand side −v . For 
safety’s sake, the precomputed values in −v were used as J 
factors for the genotyped animals instead of the j∗2 vector 
values.

[
�A11

�A12

�A21 I+ �A22

][
j1
j∗2

]
=

[
0
−v

]
,

Results
Correlations of GEBV between the corresponding regres-
sion and QP transformation models for the genotyped 
and for all the animals were 100.00% for QP and QPJ1, 
but 99.99% for QPJQ, and the linear regression of GEBV 
by the QP model on the reg model had an intercept of 
0 and a slope of 1. Thus, the regression and QP models 
resulted in the same GEBV. Correlations between GEBV 
solutions from different allele coding approaches were 
100.00% between the J1 factor models and between the 
JQ models. Correlations of GEBV between the QP/reg 
and the J1 models were high, 100.00% for all animals and 
99.99% for the genotyped animals. However, the JQ mod-
els gave GEBV that were distinctly different to those of 
the other models, the correlations ranged from 98.78 to 
98.96% for all animals and from 83.95 to 85.74% for the 
genotyped animals. In other words, the use of either 
allele coding ( G101 or GPvR1) did not affect GEBV results 
when a J factor was included in the model, and the full 
QP and reg models gave the same GEBV, as expected.

In the JQ models, using either the 101 or PvR1 allele 
coding, the GEBV were the same. Likewise, the G−1

J  
matrix was the same irrespective of allele coding. How-
ever, the G−1 matrices were different by allele coding. 
The change needed in the G−1 matrix by allele coding to 
arrive to the G−1

J  matrix is measured by the KQ matrix. 
Figure 1 illustrates differences in the elements of the KQ 
matrix values between the two allele coding approaches. 
Values close to 0 on the x-axis mean that the elements 
have not changed much from the G−1

101 matrix. The 
change from G−1

101 to G−1
J  was mostly between – 1 and 1 

with an average of 0. The y-axis shows differences in the 
KQ matrix elements of PvR1 minus 101 allele coding, 
i.e., elements of KQ,PvR1 − KQ,101 . Values on the y-axis 
are mostly lower than 0. Thus, the G−1 matrix calculated 
by using base population allele frequencies had to be 

Fig. 1  Non-zero values in the off-diagonal elements of the difference 
in the K matrix values (y axis) from VanRaden’s method 1 using base 
population allele frequencies (PvR1) or allele frequencies of 0.5 (101) 
for the JQ model. The x axis has the K matrix element value in the 101 
JQ matrix

Table 2  Number of iterations until convergence in single-step 
GBLUP when the centering of the markers for the genomic 
relationship matrix used base population allele frequencies 
(before the “/” sign) or an allele frequency of 0.5 for all markers 
(after the “/” sign)

Groups: the model had genetic groups; Groups + J1: the model had genetic 
groups and a single J factor; Groups + JQ: the model had genetic groups and 
group-wise J factors; reg, dense: regression coefficients for genetic groups and J 
factors in a dense matrix; reg, sparse: regression coefficients for genetic groups 
in a sparse matrix and J factors in a dense matrix; QP: genetic groups and J 
factors by QP transformation

Model Groups Groups + J1 Groups + JQ

Reg, dense 1999/2908 1646/1531 2979/2448

Reg, sparse 1991/2929 1647/1555 2961/2426

QP 1990/2134 2149/2051 2227/2207
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changed more than the G−1
101 matrix in order to arrive to 

the same G−1
J  matrix.

The average absolute diagonal and off-diagonal ele-
ments of the KQ,PvR1 ( KQ,101 ) matrix were 8.99 × 10–4 
(8.97 × 10–4) and 4.47 × 10–2 (4.42 × 10–2), respectively, 
with standard deviations of 2.58 × 10–3 (2.50 × 10–3) and 
0.234 (0.229), respectively. One would have expected the 
base population-based genomic relationship matrix G
PvR1 to show smaller change than the G101 matrix. A rea-
son for G−1

PvR1 to show slightly larger changes than G−1
101 

can be due to the use of an incorrect scaling factor in G
PvR1 to allow the JQ models to reach the same GEBV. 
The used scaling factor m/2 is larger than the more 
correct 

∑m
l=1 2pl(1− pl) , which would lead to KQ,PvR1 

that equals multiplying the current KQ,PvR1 matrix by 

∑m
l=1 2pl(1− pl)

2
m when there is no RPG component. 

This multiplier is 0.69 using marker information from our 
data.

The number of iterations until convergence varied from 
1531 to 2979 (Table 2). Note that the results are based on 
fertility data and a two-trait model for complex low herit-
able traits. The number of iterations varied more with the 
regression-based models than with the QP models. The 
reason is that the convergence criterion showed larger 
round-to-round changes in the regression models than in 
the QP models which led the convergence statistic to be 
reached more sporadically (Fig. 2). The larger variation in 
the convergence statistic with the regression models sug-
gests that they could benefit from a better preconditioner. 
In all the analyses, the preconditioner was a block diago-
nal matrix with two-by-two trait blocks within each level 
of each effect. Apparently, compared to the QP models 
the reg models had larger off-diagonal values relative to 
the diagonal in the MME. Nevertheless, the regression 
model with J1 showed the smallest number of iterations 
until convergence.

Computing times per iteration for solving GEBV were 
shorter for the QP models than for the regression mod-
els (Table  3). The WQ matrix was sparse with 6% of 
its elements being non-zero while the WJ matrix was 
dense with 95% of its elements being non-zero. When 
sparse matrix computations were used for the WQ 
matrix, the regression models were almost as fast as 
the QP model except for JQ because of the dense WJ 
matrix computations.

Discussion
We used data on dairy cattle fertility and a two-trait 
model to illustrate the computational performance of 
the equivalent MME Eqs. (2) and (5). The observed dif-
ferences in computing times per iteration (Table  3) are 
due to the number of multiplications in the MME coef-
ficient matrix times a vector product that is needed 
in the PCG iteration. Differences in the numbers of 
multiplications per iteration for the QP and reg mod-
els in the computation of the MME coefficient matrix 
times a vector can be estimated. In MME Eq. (5) of the 
QP model, the difference in the number of multiplica-
tions is mostly due to the genetic groups related to the 
coefficient matrices Q2

′G−1Q2 , −Q2
′G−1 and −G−1Q2 

which were precomputed in our study. The precomputa-
tion allows a computationally simple implementation of 
the solver program where these precomputed matrices 
can be included into the G−1 matrix file and used with 
the same pedigree groups in many evaluations without 
the need for the solver to compute them for each evalu-
ation. In the PCG iteration, the number of multiplica-
tions in the product of these matrices times a vector is 

Fig. 2  Logarithm of the convergence statistic Cr for the model that 
has JQ-based J factors. Black = PvR1 regression, red = 101 regression, 
blue = PvR1 QP + JQ, green = 101 QP + JQ

Table 3  Computing time (seconds) per iteration to solve single-
step GBLUP with base population allele frequencies in the 
genomic relationship matrix

Computing times in parentheses use an allele frequency of 0.5 for all markers

Groups: the model had genetic groups; Groups + J1: the model had genetic 
groups and a single J factor; Groups + JQ: the model had genetic groups and 
group-wise J factors; reg, dense: regression coefficients for genetic groups and J 
factors in a dense matrix; reg, sparse: regression coefficients for genetic groups 
in a sparse matrix and J factors in a dense matrix; QP: genetic groups and J 
factors by QP transformation

Model Groups Groups + J1 Groups + JQ

reg, dense 3.18 (2.94) 3.09 (2.98) 4.31 (4.44)

reg, sparse 1.56 (1.49) 1.55 (1.59) 3.76 (4.07)

QP 1.30 (1.33) 1.38 (1.52) 1.51 (1.36)
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r
(
r + 2ng

)
 , where r is the number of genetic groups and 

ng is the number genotyped animals. In MME Eq. (2) of 
the reg model, the difference in the numbers of multi-
plications is due to the regression coefficient matrices 
WJ and WQ , which are not present in the QP model. 
In order to estimate the number of multiplications, note 
that the implemented PCG iteration used computation 
by parts in iteration on data as described in Strandén and 
Lidauer [21]. For the genetic groups in the reg model, 
every PCG iteration required the product Q′W′R−1dy , 
where dy = Xdb +WJdc +WQdg +Wda . The terms 
with WJ and WQ are not included in the QP model. Let 
us assume that the data file has the rows in the J and Q 
matrices corresponding to the observations, i.e., ny by s 
matrix JW = WJ and ny by r matrix QW = WQ . Then, in 
the calculation of dy , the J factors ( JWdc ) and the genetic 
groups ( QWdg ) require nys and nyr multiplications, 
respectively, where ny is the number of observations. The 
multiplication QW

′R−1dy requires nyr multiplications 
when the multiplications by the R−1 matrix are ignored. 
Thus, in total ny(s + 2r) multiplications are required. 
When J factor computations are not present in the reg 
model, i.e., s is equal to zero, the number of multiplica-
tions in the reg model ( = 2nyr ) is larger than in the QP 
model ( = r

(
r + 2ng

)
 ) when ny > ng +

1
2 r . Thus, in prac-

tice, the number of multiplications per PCG iteration in 
a ssGBLUP model with QP is often smaller than in the 
corresponding reg model.

A sparse WQ matrix allows to decrease the reg model 
solver computing time. Let us consider the differences in 
the number of multiplications in PCG between the QP 
and reg models. When there are no J factors and the WQ 
matrix has a sparsity of p , the reg model has 2nyrp multi-
plications not included in the QP model. Thus, the QP 
model has less multiplications than the reg model when 
ny >

1
png +

1
2p r . For example, assuming 5% of non-zeros 

in the WQ matrix would have ny > 20ng + 10r , i.e., 
when the ratio between the number of genotyped and 
phenotyped animals is higher than the density of non-
zeros in the Q matrix, the QP model has more multipli-
cations than the reg model. However, in practice, the 
difference in computing time can be small when the 
number of genotyped animals is large. In this case, most 
of the computing time is due to the genomic relationship 
matrix.

The QP model has an added computational preprocess-
ing cost due to the calculation of Q2

′G−1Q2 , −Q2
′G−1 

and −G−1Q2 . The number of multiplications to calculate 
these matrices is rng

(
r + ng

)
 when we note that the com-

putational result from the two latter matrices ( G−1Q2 ) is 
an ng by r matrix and can be used in the computation of 
the first matrix. This computational cost is small, because 
inversion of the G matrix is much more demanding since 

there are typically more genotyped animals than groups. 
Furthermore, these matrices are calculated only once 
but the numbers of multiplications given in the previ-
ous paragraphs are computed for each PCG iteration. 
Both of our genomic data sets were so small that we did 
not see any practical difference in computing time due 
to QP when making the augmented G−1 matrix having 
Q2

′G−1Q2 , −Q2
′G−1 and −G−1Q2 . The same was true 

when making the J1 adjustment to G−1 . However, making 
the JQ adjustment to G−1 doubled the computing time. 
This increase in computing time was not significant com-
pared to the total computing time.

Previous studies have recommended making the 
genomic relationship matrix compatible with the ped-
igree-based relationship matrix [3, 13]. The use of a J 
factor allows the calculation of allele-coding-free GEBV. 
Hence, the compatibility in a ssGBLUP model with a J 
factor means compatibility in scaling the marker matrix, 
which was the same in all our G matrices. Thus, while 
the J factor removes the necessity to center the marker 
matrix, proper scaling is still required. When center-
ing and scaling use base population allele frequencies, 
the recommended scaling factor for a single breed in [6] 
is 
∑m

l=1 2pl(1− pl) instead of m/2 as used in our study. 
The use of a J factor will give GEBV that differ from those 
based on a G matrix where the base population allele fre-
quencies have been estimated using the GLS approach as 
in this study. There is some evidence that a J factor can 
have a positive impact on the accuracy of prediction [8]. 
Correlations of GEBV for the genotyped animals between 
the JQ and J1 models were only about 85%, suggesting 
a notable difference in prediction ability. However, the 
accuracy of prediction in a multiple J factor model has 
not yet been studied. Thus, further work is necessary 
to assess the effect of a J factor on the predictability of 
GEBV but also the theoretical consequences of its use.

We used J factors to be able to calculate allele-coding-
free GEBV, which parallels the work in [9] for the GBLUP 
and SNP-BLUP models. As in their study, the allele-cod-
ing-free GEBV calculated by the J1 and JQ models do 
not allow the computation of individual animal-based 
reliabilities that are allele-coding-free because the J fac-
tor effect cannot be included into the individual animal 
genetic variance term that is used as a denominator in 
the reliability equation. Diagonals of the G matrix from 
the J1 or JQ model depend on allele coding, likewise, the 
H matrix depends on allele coding even in the J1 and JQ 
models. Thus, computation of individual animal reli-
abilities of GEBV for the ssGBLUP model is relative to 
allele coding as in GBLUP and SNP-BLUP models even 
if allele-coding-free GEBV can be computed. When the 
J factor is considered random, then we can include the 
J factor into the G matrix and have well-defined genetic 
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variances but then the model no longer produces allele-
coding-free GEBV [10].

Tier et  al. [24] suggested adding an implied founder 
animal as a genotyped animal in GBLUP. The founder 
animal will have its genotypes equal to the assumed 
allele frequencies in the founder population. The implied 
founder animal acts as the implied single genetic group 
for the base population animals in the pedigree-based 
relationship matrix A . A desirable consequence of the 
Tier et al. [24] approach is that both the GEBV and their 
reliabilities are free from allele coding in GBLUP. In prac-
tice, the use of an additional random effect class allows 
the approach to achieve allele-coding-free reliabilities.

J factors can be random. Assuming that the J factor is a 
random effect allows inversion of the G−1

J  matrix. A ran-
dom J factor will only slightly change the MME derived in 
the Methods section. Consider Model (1) but assume the 
J factor c to be random with expectation zero and vari-
ance SJσ 2

a  . The MME are like MME Eq. (2) but the diago-
nal block pertaining to the J factor is 
J′W′R−1WJ+ S−1

J σ
−2
a  . Use of the QP transformation 

gives MME Eq. (3) but with the matrix for the J factor 
equations as 

(
J′H−1J+ S−1

J

)
σ
−2
a  . The simplification of 

the H−1J product leads to MME Eq. (4) but with the 
matrix for the J factor equations as (
Qc

′G−1Qc + S−1
J

)
σ
−2
a  . Absorption of the random J fac-

tor effect c to the other effects gives MME Eq. (5) except 
that now Kc = −G−1Qc

(
Qc

′G−1Qc + S−1
J

)−1
Qc

′G−1 . 
The new matrix G−1

J ,S = G−1 + Kc has an inverse unlike 
when the J factor was fixed: GJ ,S = G+QcSJQc

′ . Using 
different assumptions, Vitezica et  al. [3] arrived to the 
same genomic relationship matrix, when Qc = 1 and 
SJ = α by assuming breeding values of the genotyped ani-
mals ( a2 ) to have mean µ and variance Gσ 2

a  , i.e., 
a2|µ ∼ N

(
1µ,Gσ 2

a

)
 , where the mean µ was assumed to 

be a random variable with expectation zero and variance 
ασ 2

a  , i.e., µ ∼ N
(
0,ασ 2

a

)
 , with α = 1

n2g

(
1′A221− 1′G1

)
 . 

Note that their MME Eq.  (2) after absorption has 
G−1
1,α =

(
G+ 11′α

)−1 which, after applying the Wood-
bury matrix identity, is 
G−1 −G−11

(
1′G−11+ α−1

)−1
1′G−1 , i.e., the expression 

G−1
J ,S = G−1 + Kc given above with Qc = 1 and SJ = α.
Metafounders (MF) can be used to make the pedi-

gree-based relationship matrices A and A22 more com-
patible with the G matrix [25] that is constructed using 
the allele frequency of 0.5 in VanRaden’s method 1. In 
the MF approach, unknown parents are assigned to 
MF or pseudo-individuals in the A matrix. MF increase 
the relationships in the pedigree and allow the assign-
ment of a self-relationship to the MF. Thus, MF are like 
UPG but allow a related base population with non-zero 

inbreeding coefficients. Consequently, genetic groups are 
not included as effects in an MF model. Likewise, there 
is no justification for J factors in an MF model because a 
J factor would change the centering of the fixed 0.5 allele 
frequency in the G matrix.

We suggested that the number of J factors could equal 
the number of genetic groups, i.e., Qc = Q2 . However, 
this can lead to collinear J factors with estimation prob-
lems similar to those for the estimation of many base 
population allele frequencies for the MF approach when 
applied to dairy cattle breeding (e.g., Kudinov et al. [26]). 
Their long pedigrees from the base population to the 
genotyped animals and the limited number of genotyped 
individuals in the pedigree can lead to poorly estimated 
base population allele frequencies. Consequently, the 
number of MF is typically smaller than the number of 
genetic groups in the analysis of the same data set using 
genetic groups. In this study, we had to limit the num-
ber of genetic groups such that they were fewer than in 
the original study by Matilainen et al. [14] due to the Q2 
matrix having a lower rank than its number of columns 
when using the original number of genetic groups. So, in 
practice the absorption from MME Eq. (4) to MME Eq. 
(5) does not need to take all genetic groups into account 
but only those that are relevant to the genotyped animals 
such that the KQ = G−1Q2

(
Q2

′G−1Q2

)−1
Q2

′G−1 matrix 
can be computed. Thus, the number of J factor groups is 
unlikely to exceed the number of genetic groups for the 
complete pedigree and even a smaller number of J factor 
groups may give equally good breeding value predictions.

The genomic relationship matrix G does not contribute 
to the coefficients of the genetic group equations in MME 
Eq. (6) where it is assumed that the fixed J factors are 
composed using the same groups as the genetic groups. 
In fact, contributions to the UPG equations include only 
the terms due to the inverse pedigree relationship matri-
ces A−1 and A−1

22  . Thus, when the J factors and genetic 
groups have the same group structure for the genotyped 
animals, the genetic groups no longer have contributions 
due to genomic information. In the literature, the use of 
such MME to solve ssGBLUP breeding values has been 
advocated in some studies [27, 28]. These studies did not 
adjust the inverse genomic relationship matrix by the 
genetic group matrix Q2 to make and use the G∗

J  matrix. 
However, the Kc matrix can have average values close to 
zero (Fig. 1). In our model, the Kc matrix can never have 
all its elements zero because this would lead to a singu-
lar Qc

′G−1Qc matrix. However, many elements in the 
absorbed term Kc = −G−1Qc

(
Qc

′G−1Qc

)−1
Qc

′G−1 can 
be close to zero. For example, in our case, the proportion 
of off-diagonal elements in the Kc matrix with an abso-
lute value less than 10–4 was 75% for the 101 coding and 
6% for the PvR1 coding. Thus, in some cases omitting the 
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Kc term can be negligible or give even better predictabil-
ity than the QP transformation model without a J factor.

The presented QP transformation for the J factor and 
consequent absorption yielding MME Eq. (5) is com-
putationally simple for the single-step type of models 
where the inverse of the genomic relationship matrix 
G−1 is explicitly computed. When the number of geno-
typed animals is large, the G matrix will take too much 
memory and the G−1

J  matrix can no longer be calcu-
lated. A memory efficient single-step model alterna-
tive is ssGTBLUP [16], where the genomic relationship 
matrix is assumed to have the form G = ZD−1Z′ + C 
and its inverse is G−1 = C−1 − T′T with the rectan-
gular matrix T of size equal to number of SNPs times 
number of genotyped animals. The absorption term Kc 
in MME Eq. (5) can be implemented for ssGTBLUP. 
Note that when G−1 = C−1 − T′T as in [16]:

where TK = L−1Qc
′
(
C−1 − T′T

)
 is an s by ng matrix 

and L is an s by s matrix from Cholesky decomposition 
of Qc

′
(
C−1 − T′T

)
Qc . Thus, G∗

J = C−1 − T′T− TK
′TK , 

which allows an easy and efficient PCG implementation. 
An alternative approach is to use MME Eq. (4). Then, as 
described for genetic groups in Koivula et al. [29], the T 
matrix can be augmented with TQc in order to have the 
c effect. However, some additional computations are 
needed because the T matrix does not contain the com-
putations due to the C−1 matrix of G−1 . The required 
computations due to the terms Qc

′C−1Qc and C−1Qc can 
be done by using precomputed matrices.

Conclusions
The use of a J factor effect allows to compute GEBV in 
ssGBLUP and ssSNPBLUP that are independent of 
the allele coding used to center the marker matrix. We 
extended the single J factor regression to multiple group-
based J factor regression effects. We used transforma-
tion in the MME of the ssGBLUP model to change the 
regression effect-based J factors to be correlated with 
genetic effects only. This showed a conceptual similar-
ity of the J factors with the genetic groups which after a 
similar transformation can be used to augment the rela-
tionship matrix information. Furthermore, the trans-
formation gave MME where the J factor coefficients do 
not need to be computed. When the number of J factor 
groups is large, solving the regression effect-based J fac-
tor MME can be computationally much more demanding 
than the transformed MME. Using the same regression 

Kc = −

(
C−1 − T′T

)
Qc

(
Qc

′
(
C−1 − T′T

)
Qc

)−1

Qc
′
(
C−1 − T′T

)
= −

(
C−1 − T′T

)
Qc

(
LL′

)−1

Qc
′(C−1 − T

′

T) = −TK
′TK ,

coefficients for the J factor coefficients of the genotyped 
animals as for the genetic groups, we showed that the 
transformed MME in ssGBLUP no longer required the 
genomic relationship matrix to be accounted for in the 
genetic group equations when the J factor effects had 
been absorbed. We tested different J factor models for 
the analysis of a dairy fertility data set. We observed that 
GEBV were the same within a J factor model regardless 
of the allele coding approach as predicted by our deriva-
tions and that the QP transformed MME were computa-
tionally more efficient than the original regression-based 
MME. Further work is needed to assess predictability and 
proper individual reliability of GEBV when the model has 
a J factor.
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