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Abstract 

Background:  The algorithm for proven and young (APY) has been suggested as a solution for recursively comput‑
ing a sparse representation for the inverse of a large genomic relationship matrix (G). In APY, a subset of genotyped 
individuals is used as the core and the remaining genotyped individuals are used as noncore. Size and definition of 
the core are relevant research subjects for the application of APY, especially given the ever-increasing number of 
genotyped individuals.

Methods:  The aim of this study was to investigate several core definitions, including the most popular animals (MPA) 
(i.e., animals with high contributions to the genetic pool), the least popular males (LPM), the least popular females 
(LPF), a random set (Rnd), animals evenly distributed across genealogical paths (Ped), unrelated individuals (Unrel), 
or based on within-family selection (Fam), or on decomposition of the gene content matrix (QR). Each definition was 
evaluated for six core sizes based on prediction accuracy of single-step genomic best linear unbiased prediction 
(ssGBLUP) with APY. Prediction accuracy of ssGBLUP with the full inverse of G was used as the baseline. The dataset 
consisted of 357k pedigreed Duroc pigs with 111k pigs with genotypes and ~ 220k phenotypic records.

Results:  When the core size was equal to the number of largest eigenvalues explaining 50% of the variation of G 
(n = 160), MPA and Ped core definitions delivered the highest average prediction accuracies (~ 0.41−0.53). As the core 
size increased to the number of eigenvalues explaining 99% of the variation in G (n = 7320), prediction accuracy was 
nearly identical for all core types and correlations with genomic estimated breeding values (GEBV) from ssGBLUP with 
the full inversion of G were greater than 0.99 for all core definitions. Cores that represent all generations, such as Rnd, 
Ped, Fam, and Unrel, were grouped together in the hierarchical clustering of GEBV.

Conclusions:  For small core sizes, the definition of the core matters; however, as the size of the core reaches an opti‑
mal value equal to the number of largest eigenvalues explaining 99% of the variation of G, the definition of the core 
becomes arbitrary.
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Background
Single-step genomic best linear unbiased prediction 
(ssGBLUP) has been adopted as a standard for genomic 
evaluation in many livestock species. ssGBLUP is an 

extended version of the conventional BLUP that inte-
grates the inverses of the genomic ( G ) and pedigree ( A ) 
relationship matrices into a new matrix represented by 
H−1 [1]. Matrix inversion has a cubic cost; therefore, 
inverting G for more than 100K genotyped individuals 
is a barrier for the application of ssGBLUP [2]. Several 
approaches have been proposed to resolve this issue 
[3–5]. Faux et  al. [3] attempted to approximate the 
inverse of G with incomplete Cholesky factorization. 
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However, the approximation was not accurate enough 
and the steps suggested to increase accuracy were time-
demanding. Liu et al. [5] proposed the single-step sin-
gle nucleotide polymorphism (SNP)-BLUP, but there 
was a lack of convergence with real data. Fernando 
et al. [4] developed a version of single-step SNP-BLUP 
in the Bayesian framework. Although convergence rates 
were satisfactory, imputation of genotypes for non-
genotyped animals requires large memory for big pop-
ulations, and computations need graphics processing 
units (GPU) for efficient parallelization. However, these 
drawbacks were resolved by Fernando et al. [6] and the 
single-step SNP-BLUP approach has been implemented 
for genomic evaluation with large genotype data sets. 
In addition, Vandenplas et al. [7] proposed an improved 
preconditioner to accelerate the convergence rate in 
single-step SNP-BLUP models, making them feasible 
for large-scale genomic evaluations.

Misztal et al. [8] proposed an algorithm called “algo-
rithm for proven and young” (APY) based on genomic 
recursions to create a sparse representation of the 
inverse of G . In APY, genotyped animals are partitioned 
into two groups, representing core and noncore ani-
mals. Genomic estimated breeding values (GEBV) of 
noncore animals are conditioned on the GEBV of core 
animals. The cost of computing G−1 based on APY is 
cubic to the number of core animals and linear to the 
number of noncore animals [8]. The core size depends 
on the dimensionality of G , which has been addressed 
by the eigenvalue decomposition of G [9]; the dimen-
sionality is a function of effective population size and 
genome length [10]. However, the choice of core ani-
mals is of interest, and there is a question on whether a 
pre-defined choice (e.g., based on the amount of infor-
mation available for the animals or their impact on 
the population) would allow a further reduction in the 
number of core animals.

In a seminal study, Misztal [11] hypothesized that the 
accuracy of APY depends on how well animals in the 
core group represent the independent chromosome 
segments (ICS) that are present in the population. Sev-
eral studies have investigated the core definition in 
APY ssGBLUP [2, 12–17]. Some have reported that, in 
cattle, using proven bulls as core led to nearly identical 
accuracy as using randomly selected core sets [2, 13, 
18]. However, in pigs and sheep, several studies have 
reported different EBV and accuracies of prediction 
by different core definitions [14, 16, 17]. In all these 
studies, the number of genotyped animals per breed 
was less than 22k, and none investigated the inter-
play between core size and definition, especially for 
larger genotyped populations. Therefore, the aim of 
this study was to assess the performance of eight core 

definitions for six core sizes based on the eigenvalue 
decomposition of G , on the prediction accuracy of 
ssGBLUP using 111k genotyped Duroc pigs.

Methods
Data structure
We used a dataset collected from 2012 to 2021 that 
consisted of 357,220 pedigreed Duroc pigs, of which 
111,583 were genotyped for 32,824 SNPs after qual-
ity control. The studied traits included average daily 
gain (ADG) from birth to the end of the nursery period 
at 11  weeks of age (ADGn, N = 221,955), ADG dur-
ing the finishing period until 23  weeks of age (ADGf, 
N = 195,946), and backfat (BF, N = 195,967). Descrip-
tive statistics of the studied traits are in Table  1. The 
proportion of genotyped animals increased over time 
from 8% for pigs born in 2012 to 42% for pigs born in 
2020. All males born from 2017 to 2020 at 11  weeks 
of age were genotyped but only a subset of females, 
selected based on body weight, was genotyped during 
this period. This population has been under genomic 
selection since 2018 [19].

Statistical analyses
The statistical model used for genetic evaluation in a 
multiple-trait animal model framework was:

where yt is the vector of observations for trait t , which 
refers to ADGn, ADGf, or BF; bt is the vector of fixed 
effects; lt (45,185 levels), pet (9923 levels), and at (357,220 
animals) are the vectors of random effects for litter, pen, 
and of direct additive genetic effects, respectively; et is 
the vector of residuals. X , W1 , W2 , and W3 are design 
matrices for the effects in b , lt , pet , and at , respectively. 
Direct additive genetic and litter effects were fit for three 
traits and the pen effect was fit for ADGf and BF. The 
fixed effects were sex for all traits, herd-year-week for 
ADGn, and barn for ADGn and BF. Age at final weight 
was considered as a covariate for ADGn and ADGf.

The (co)variance structure assumed for the random 
effects was:

(1)yt = Xbt +W1lt +W2pet +W3at + et,

Table 1  Descriptive statistics of the data and estimates of 
heritability used in the analyses

SD standard deviation, ADGn average daily gain in nursery, ADGf average daily 
gain in finishing, BF backfat

Trait Number of records Mean SD Heritability

ADGn (g) 221,955 347.50 64.36 0.20

ADGf (g) 195,946 959.92 123.62 0.21

BF (mm) 195,967 10.39 2.56 0.34
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where σ2l  , σ
2
pe , and σ2a are variances of the effects of litter 

size, pen, and additive genetics; σij denotes the covariance 
components of the i-th effect for the j-th combination 
of traits, R is a 3 ×  3 matrix with residual (co)variance 
between the traits; H is the realized relationship matrix 
used in ssGBLUP, and I is an identity matrix with dimen-
sions equal to the number of levels of the corresponding 
random effects. The (co)variance component estimates 
were those used in the official genetic evaluations of this 
population.

The relationship matrix H was constructed by com-
bining relationship matrices based on pedigree ( A ) and 
genomics ( G ), following [1]. The G matrix was con-
structed as follows:

where Z is the gene content matrix coded as 0, 1, and 
2 for AA, AB, and BB genotypes, respectively, and then 
centered by subtracting twice the frequency of the major 
allele of SNP j ( pj ), following [20]. To avoid singularity 
problems, 95% of G was blended with 5% of A22 [20]. 
Genetic evaluation using ssGBLUP was conducted using 
the BLUPF90 family of programs [21].

APY algorithm
Computing G−1 , which is part of H−1 , becomes expen-
sive as more genotyped animals are available. Alterna-
tively, a sparse representation of G−1 can be created using 
APY [8], in which animals are categorized as either core 
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or noncore. A brief description of the APY algorithm is 
given below. See Misztal [11] for a more detailed descrip-
tion. In APY, the structure of G and G−1

APY  is as follows:

where Gcc is the genomic covariance between animals in 
the core set, Gcn is the genomic relationship between core 
and noncore animals and Gnn is the genomic relationship 
between noncore animals. For all core definition analyses 
described below, G−1 was obtained using APY ( G−1

APY  ), 
with the direct inverse computed only for core animals 
and the elements of G−1 related to core and noncore ani-
mals obtained using the recursion formula presented by 
Misztal et al. [8]:

where Mnn is a diagonal matrix of genomic Mendelian 
sampling terms, with diagonal elements equal to:

where gii is the i th diagonal element of Gnn.

Core sizes
The number of animals in the core (i.e. core size) was 
determined using the singular value decomposition of 
the gene content matrix Z [9]. The numbers of largest 
eigenvalues that explained 50, 80, 90, 95, and 99% of the 
variation of G represent the core sizes and were equal to 
160, 700, 1363, 2344, and 7320 individuals. An additional 
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core size of 10,000 was also studied to assess the changes 
in prediction accuracy when the core size is greater than 
the number of largest eigenvalues explaining over 99% of 
the variation in G.

Core definitions
Most popular animals (MPA)
This consisted of animals with a progeny size larger than 
a threshold (i.e., 400, 125, 35, 30, 20), with both parents 
known and own performance records. We considered 
MPA to test whether a core with stronger connections to 
other animals in the pedigree can result in a G−1

APY  that 
results in GEBV that are closer to those of ssGBLUP with 
direct inversion of G.

Random set (Rnd)
Core animals were randomly sampled from all genotyped 
animals. This core definition was considered because pre-
vious studies demonstrated that sampling core animals at 
random would deliver identical prediction accuracy as 
ssGBLUP with direct inversion of G , provided that the 
core size is equal to the number of eigenvalues explaining 
98% of the variation in G [9, 10].

Uniformly distributed across pedigree (Ped)
Animals were sorted in genealogical order and then core 
animals were uniformly sampled across the pedigree. 
Since G−1

APY  is a sparse representation of G−1 [14, 16, 17], 
sampling animals across generations has the potential to 
capture all (co)variation in G.

Within family selection (Fam)
Only one progeny within each full-sib family was ran-
domly assigned to the core group. The data contained 
43,367 full-sib families. This approach minimizes the 
relationships among core animals but ensures genetic ties 
between core and noncore animals.

Unrelated animals (Unrel)
Different genomic relationship thresholds were used (i.e.,  
< 0.10, < 0.15, < 0.20, < 0.22, and < 0.27) to select unrelated 
individuals for the core group. If a pair of individuals had 
genomic relationships greater than the threshold, one 
was randomly excluded from the core. The aim of this 
core definition was to increase the genetic diversity in the 
core.

Least popular males (LPM)
Males with both parents known, without progeny, and 
without own performance records were included in the 
core. Considering that a GEBV is a combination of par-
ent average, yield deviation, progeny contribution, and 
genomic information, animals with an own record or a 

progeny contribution already have an accurate EBV and 
consequently do not benefit much from genomic infor-
mation. Hence, for this core definition, animals without 
progeny and own records were included in the core set 
and the remainder of genotyped animals were considered 
noncore.

Least popular females (LPF)
Females with both parents known, without progeny and 
own performance records were used as core. The justifi-
cation behind this core definition is the same as for LPM.

QR decomposition (QR)
The gene content matrix ( Z ) was decomposed into 
Z = QR [22], where Q is an orthogonal matrix and R is 
an upper triangular matrix, and genotyped animals that 
correspond to the largest diagonal elements of R were 
selected as the core. The aim of this core definition was 
to select core animals with a high contribution to the (co)
variation of G , to enable faster convergence when solving 
the mixed model equations.

Regular ssGBLUP
Direct inversion of G , i.e. all genotyped animals were 
included in the core, was used in ssGBLUP as the base-
line for comparisons.

Comparison of scenarios
Prediction accuracy
For each scenario, the accuracy of GEBV was calculated 
for young pigs born in 2020. On average, 17,594 geno-
typed pigs with phenotypes and born in 2020 were used 
as the validation set. The formula for computing the pre-
diction accuracy was as follows:

where yadj is the vector of phenotypes adjusted for all 
non-genetic effects estimated using regular ssGBLUP, 
û is the vector of GEBV from ssGBLUP, and h is the 
square root of the estimate of trait heritability. The mean 
squared error of prediction (MSE) was calculated as 
MSE =

1
n

∑n
k=1 (yadj,k − ûk)

2 , where n is the number of 
animals in the validation set. The advantage of the MSE 
over other metrics is that it takes both variance and bias 
of the estimator into account.

Hierarchical clustering of GEBV
Dissimilarities of GEBV obtained using different core 
definitions were evaluated using a hierarchical clustering 
method. All core definitions were compared with a core 
size equal to the number of largest eigenvalues explain-
ing 99% of the variation of G ( n = 7320). For each trait, a 

̂acc =
corr(yadj , û)

h
,
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dissimilarity matrix of pairwise Euclidean norms between 
GEBV obtained from different core definitions was com-
puted and entered into the “hclust” function in R [23] for 
clustering purpose. At each iteration of the hierarchical 
clustering method, we grouped the two most similar core 
definitions in order to identify hierarchical groups of core 
definitions with similar genomic signals, as captured by 
ssGBLUP. The distance between the newly merged group 
and each of the original core definitions was calculated by 
Ward’s criterion [24]. The idea follows Morota et  al. [25], 
who studied dissimilarities between predictions from dif-
ferent genomic annotation models. However, our focus is 
on dissimilarities between GEBV from different core defi-
nitions in APY ssGBLUP.

Features of genomic relationships and allele frequency 
spectrum
Descriptive statistics of all elements and row sums of the 
absolute elements of the genomic relationship matrix 
between core and noncore animals ( Gcn ) were investigated 
for a core size of 160 individuals, which equals the number 
of largest eigenvalues explaining 50% of the variation of G . 
We hypothesized that core animals that have a higher con-
tribution to the gene pool of the population show greater 
genomic relationships with noncore animals.

The overlap between minor allele frequency (MAF) 
spectrum of SNPs using core animals and the MAF spec-
trum for all genotyped individuals was investigated for 
each core definition and core size. For this purpose, SNPs 
were classified into five groups and coded as 1, 2, 3, 4 and 
5 based on their MAF, i.e. 0–0.10, 0.10–0.20, 0.20–0.30, 

0.30–0.40, and 0.40–0.50. Next, we quantified the pro-
portion of overlap in MAF bins calculated using all geno-
typed individuals as B against MAF bins calculated using 
l-th core set in each core definition at a given core size 
as Cl . Then, the proportion of overlap between B and Cl 
(overlap ( B , Cl )) was calculated as follows:

where m denotes the total number of SNPs and ∩ is the 
intersection. A larger overlap(B,Ci) corresponds to a 
greater chance of tracking ICS in the population based on 
animals in the l-th core.

Results
Correlations of GEBV from regular ssGBLUP with 
those from APY ssGBLUP with each of the eight core 
definitions was greater than 0.99 when the core size 
equaled the number of largest eigenvalues explaining 
99% of the variation in G (eigen99). For core definitions 
that distributed core animals across generations, i.e., 
Rnd, Ped, Fam, and Unrel, correlations for genotyped 
animals ranged from 0.994 to 0.997 (Table 2). For core 
definitions that did not prioritize across-generation 
distribution, i.e., MPA, LPM, LPF, and QR, correlations 
for genotyped animals ranged from 0.992 to 0.995. The 
smallest and largest numbers of iterations needed for 
APY ssGBLUP to reach the convergence criterion of 
10–12 with each core definition at eigen99 were for the 
MPA and QR core definitions, respectively.

overlap(B,Cl) =
B ∩ Cl

m
,

Table 2  Distribution of genotyped pigs across years for different core definitions when the core size was equal to the number of 
largest eigenvalues explaining 99% of variation in the genomic relationship matrix (n = 7320 animals)

MPA: popular animals with more than 15 progeny, both parents known and with own performance record; Rnd: a random subset of animals is sampled from all 
genotyped animals; Ped: animals were evenly selected from the pedigree sorted in genealogical order; Fam: from each full sib family, one progeny was allowed to 
be in the core group; Unrel: animals with ≤ 0.27 genomic relationship were assigned to the core group; LPM: males with both parents known, without progeny, and 
without own performance records were used as core; LPF: females with both parents known, without progeny and own performance records were used as core; QR: 
animals selected based on a QR decomposition of the gene content matrix
a Some core definitions resulted in less than 7320 individuals because of missing birth year

Year Total Core definition

MPA Rnd Ped Fam Unrel LPM LPF QR

2012 198 73 11 15 31 27 NA NA 165

2013 866 312 47 54 134 85 1 1 510

2014 1731 749 108 118 275 137 3 2 918

2015 2968 922 204 205 442 309 1 1 1677

2016 7911 796 490 552 795 652 91 92 3444

2017 13,269 1766 866 926 1064 695 182 181 203

2018 27,766 1676 1819 1938 1667 1475 181 180 NA

2019 28,701 1014 1910 1915 1592 1565 1538 1538 NA

2020 27,184 12 1803 1529 1320 2163 5315 5317 NA

Suma 110,594 7320 7258 7252 7320 7108 7312 7313 6917
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The base line prediction accuracies from regular 
ssGBLUP were 0.85, 0.80, and 0.77 for ADGn, ADGf, 
and BF, respectively (Fig.  1) and the values of MSE 
for were 2.65, 2.97, and 1.53 for ADGn, ADGf, and 
BF, respectively (Fig. 2). When the number of animals 
in the core was equal to eigen99, all core definitions 
delivered similar prediction accuracies, slightly lower 
than the baseline (Fig.  1). In addition, at eigen99, all 
core definitions showed the same MSE as regular ssG-
BLUP (Fig. 2).

Prediction accuracies with different core sizes 
and definitions
When the core size was less than the number of larg-
est eigenvalues explaining 95% of the variation of G (i.e., 
eigen90), MPA delivered the highest prediction accuracy 
of all core definitions (Fig. 1). For this core size, QR and 
Unrel attained the lowest prediction accuracy. The results 
showed that differences in accuracy between core defi-
nitions disappeared as the core size increased, to nearly 
zero as the number of animals in the core set increased to 
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Fig. 1  Prediction accuracy of genomic estimated breeding values from algorithm for proven and young single-step GBLUP (APY ssGBLUP) with 
different core definitions and core sizes for average daily gain in nursery (ADGn), average daily gain in finishing (ADGf ), and backfat (BF). Core 
sizes were determined based on the number of largest eigenvalues explaining 50% (n = 160), 80% (n = 700), 90% (n = 1363), 95% (n = 2344), 
99% (n = 7320) and > 99% (n = 10,000) of the genomic relationship matrix. The solid black line is the prediction accuracy estimated using regular 
ssGBLUP. MPA: most popular animals, both parents known and with own performance record; Rnd: a random subset of animals is sampled from all 
genotyped animals; Ped: animals were evenly selected from the pedigree sorted in genealogical order; Fam: from each full sib family, one progeny 
was allowed to be in the core group; Unrel: unrelated animals based on the genomic relationship were assigned to the core group; LPM: males with 
both parents known, without progeny, and without own performance records were used as core; LPF: females with both parents known, without 
progeny and own performance records were used as core; QR: animals selected based on a QR decomposition of the gene content matrix
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the number of largest eigenvalues explaining 99% of the 
variation in G.

Regardless of the trait and core definition, accuracy of 
APY increased by 47% from eigen50 to eigen99, by 18% 
from eigen80 to eigen99, by 8% from eigen90 to eigen99, 
and by 3% from eigen95 to eigen99. The improvement 
in the prediction accuracy when increasing the core size 
from eigen99 to 10,000 core animals was minimal (< 1%). 
When the core size was determined based on eigen99, 
the difference in prediction accuracy between APY ssG-
BLUP and regular ssGBLUP was less than 1% for three 
traits. For a core size of 10,000, differences in accuracy 
between regular ssGBLUP and APY scenarios were 
negligible.

For a core size of eigen50, prediction accuracies ranged 
from 0.46 (Unrel) to 0.52 (MPA) for ADGn, from 0.36 
(Fam) to 0.40 (MPA, Rnd, and Unrel) for ADGn, and 
from 0.37 (Unrel) to 0.43 (MPA) for BF. However, as core 
size increased to eigen80, prediction accuracies ranged 
from 0.69 (Unrel, LPA) to 0.72 (MPA) for ADGn, from 
0.60 (QR and Unrel) to 0.64 (MPA and Ped) for ADGf, 
and from 0.60 to 0.66 for BF. The difference in prediction 
accuracy among core definitions from eigen90 to eigen99 
was less than 3%.

When increasing the core size from eigen50 to eigen99, 
MSE decreased dramatically (23%) (Fig.  2). Averaged 
across traits and core definitions, MSE declined by about 
6% when core size increased from eigen80 to eigen99, by 
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Fig. 2  Mean squared error of genomic estimated breeding values from algorithm for proven and young single-step GBLUP (APY ssGBLUP) with 
different core definitions and core sizes for average daily gain in nursery (ADGn), average daily gain in finishing (ADGf ), and backfat (BF). Core sizes 
determined based on the number of largest eigenvalues explaining 50% (n = 160), 80% (n = 700), 90% (n = 1363), 95% (n = 2344), 99% (n = 7320) 
and > 99% (n = 10,000) of the genomic relationship matrix. The solid black line is the prediction accuracy estimated using regular ssGBLUP. All 
symbols are defined in Fig. 1
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2% from eigen90 to eigen99, and by 1% from eigen95 to 
eigen99. Increasing the core size beyond eigen99 did not 
change MSE significantly.

For a core size of eigen50, the difference in MSE 
between the best (MPA) and the worst core definition 
(QR) was 25% of one additive genetic standard devia-
tion (SDa) for ADGn and 65% for ADGf. For BF at 
eigen50, LPF delivered the lowest MSE, and the other 
core definitions were similar in terms of MSE. As the 
core size increased to eigen80, differences in MSE 
between core definitions decreased, such that the dif-
ference in MSE between the core definition with the 
lowest (MPA) and that with the highest MSE (QR) 

was 12% SDa for ADGn and 16% SDa for ADGn. For 
a core size of eigen99, MSE was similar as for regular 
ssGBLUP.

Hierarchical clustering of predicted genetic values
Results of hierarchical clustering of GEBV obtained with 
a core size of eigen99 are shown in Figs. 3, 4, and 5. For 
both ADGn and ADGf, GEBV from regular ssGBLUP 
were at the top hierarchy on the dendrogram and GEBV 
from all other core definitions were its subdivisions.

Core definitions MPA and QR produced the most 
similar GEBV to those from ssGBLUP. The GEBV from 
Rnd, Ped, Fam, and Unrel were clustered in one group. 
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Fig. 3  Hierarchical clustering of genomic estimated breeding values obtained from different core definitions for average daily gain in nursery. Core 
size was equal to the number of largest eigenvalues explaining 99% of the variation in the genomic relationship matrix. MPA: most popular animals, 
both parents known and with own performance record; Rnd: a random subset of animals is sampled from all genotyped animals; Ped: animals 
were evenly selected from the pedigree sorted in genealogical order; Fam: from each full sib family, one progeny was allowed to be in the core 
group; Unrel: unrelated animals based on the genomic relationship were assigned to the core group; LPM: males with both parents known, without 
progeny, and without own performance records were used as core; LPF: females with both parents known, without progeny and own performance 
records were used as core; QR: animals selected based on a QR decomposition of the gene content matrix
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The GEBV from LPM and LPF were most distant from 
the regular ssGBLUP. The trait BF had a slightly differ-
ent dendrogram topology than ADGn and ADGf. For 
BF, GEBV from regular ssGBLUP and MPA were clus-
tered together and GEBV from all other core definitions 
were gathered into a different cluster. Similar to ADGn 
and ADGf, GEBV from Rnd, Ped, Fam, and Unrel were 
grouped together and GEBV from LPM and LPF were 
classified far from regular ssGBLUP.

Characteristics of genomic relationships between core 
and noncore animals
Row sums of the absolute elements of G between core and 
noncore animals (i.e., Gcn ) for a core size of 160 (eigen50) 
is shown in Fig.  6. The results showed that, on average, 

MPA and Unrel resulted in the largest and smallest sum 
of rows in Gcn , respectively (Fig.  6). The mean ± SD of 
row sums of absolute elements in Gcn was 3588 ± 514 for 
MPA and 3190 ± 182 for Unrel. The range of row sums 
of absolute elements in Gcn was fourfold larger for MPA 
than for the other core definitions.

Overlaps of MAF spectra based on all individuals 
(= base line) and MAF spectra based on core animals 
are in Table 3 for each core definition and core size. In 
agreement with results for predictive ability and hier-
archical clustering, the Rnd core definition had the 
largest overlap in MAF with the base line scenario, 
followed by Ped and Fam. In contrast, LPM, LPF, and 
QR showed the smallest overlap with the base line. 
As expected, increasing the core size from eigen50 to 
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eigen99 increased the overlap in MAF spectra for core 
definitions with those of the baseline scenario.

Discussion
The APY approach computes a sparse representation of 
G−1 by dividing genotyped animals into core and noncore 
animals and ignoring relationships between noncore ani-
mals, which reduces computational costs. To thoroughly 
assess the effect of choice of the core on the prediction 
accuracy of GEBV from the APY approach, we investi-
gated eight different core definitions, each one for six 
core sizes based on the number of largest eigenvalues 
explaining 50, 80, 90, 95, 99, and > 99% of the variation in 
G . Therefore, this study may be the most comprehensive 
investigation of the effect of different core definitions and 
sizes on the performance of the APY approach.

Core size
When the core size was smaller than the number of 
largest eigenvalues explaining 95% of the variation in 
G , the difference in prediction accuracy between core 
types was more visible than when the core size was 
equal to or greater than eigen95. We found that the 
choice of core animals is important for the accurate 
prediction of GEBV using the APY approach when the 
core size is less than the number of largest eigenval-
ues explaining 95% of the variation in G . However, as 
the core size increased to the number of largest eigen-
values explaining 98% or more of the variation in G , 
all core definitions converged to a similar prediction 
accuracy and MSE. Pocrnic et al. [9] showed that the 
core size required to have as accurate GEBV as regular 
ssGBLUP is related to the dimensionality of G , which 
depends on the number of ICS in the population, 
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the number of SNPs, and the number of genotyped 
animals.

Pocrnic et  al. [10] demonstrated that the most 
accurate GEBV based on APY ssGBLUP were 
obtained when the core size was equal to the num-
ber of largest eigenvalues explaining 98% of the vari-
ation in G . In this regard, for simulated crossbreed 
pig populations, Vandenplas et  al. [16] obtained the 
highest prediction accuracy when the core size was 
between the numbers of largest eigenvalues explain-
ing 98% and 99% of the variation in G . In a simulation 

study, Bradford et  al. [15] reported that for a small 
core size (90% of the variation in G ), prediction accu-
racies of GEBV were lower than for regular ssGBLUP. 
Hence, a decrease in prediction accuracy is expected 
with small core sizes because some of the ICS are 
ignored in the calculation of G−1

APY  . The increase in 
the overlap between MAF spectra based on all indi-
viduals and only core animals with increasing core 
size for a given core definition, indicates that the 
ability to track rare alleles improves as the number of 
core animals increases.
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Fig. 6  Distribution of the row sums of absolute elements of Gcn (genomic relationship between core and noncore animals) for different core 
definitions. Core size was equal to the number of largest eigenvalues explaining 50% of the variation in the genomic relationship matrix (n = 160). 
MPA: most popular animals, both parents known and with own performance record; Rnd: a random subset of animals is sampled from all 
genotyped animals; Ped: animals were evenly selected from the pedigree sorted in genealogical order; Fam: from each full sib family, one progeny 
was allowed to be in the core group; Unrel: unrelated animals based on the genomic relationship were assigned to the core group; LPM: males with 
both parents known, without progeny, and without own performance records were used as core; LPF: females with both parents known, without 
progeny and own performance records were used as core; QR: animals selected based on a QR decomposition of the gene content matrix
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Assuming that the number of ICS in this study is 
around 8000, it is surprising that relatively high accu-
racies were obtained with 700 core animals (eigen80). 
Pocrnic et  al. [26] found that the accuracy with n ran-
domly chosen core animals is almost as high as that 
considering only the n largest eigenvalues in G . They 
hypothesized that only a small number of core animals 
was required to identify clusters of the most popular 
chromosome segments in the population. Subsequently, 
the accuracy would be highest with the most popular 
animals, which was the case in our study when core size 
was small.

Core definition
The correlation between GEBV obtained by regular ssG-
BLUP and by APY ssGBLUP with different core defi-
nitions at a core size of eigen99 was greater than 0.99. 
For the Rnd, Ped, Fam, and Unrel core definitions, the 
genotyped animals were well distributed across genera-
tions (Table  1). Rnd and Ped ensure across-generation 
representation of core animals. Therefore, when the core 
definition represents all generations, the likelihood that 
all ICS that segregate in the population are represented 
is high. Misztal [11] pointed out that the prediction per-
formance of the APY approach depends on how well 
the core animals represent the ICS. The required num-
ber of core animals in APY to achieve the highest pre-
diction accuracy is equal to the effective number of ICS, 
which can be computed as ICS = 4NeL [10, 11], where 
Ne is the effective population size and L the length of the 
genome in Morgans. Some studies have pointed out that 
core definitions that represent all generations and that 
maximize the number of genotyped offspring of core 
animals deliver the highest prediction accuracy [14, 16]. 

Including animals from all generations in the core set 
was also proposed by Bradford et al. [15].

Based on the clustering analyses, GEBV from MPA 
core were more similar to those from the regular ssGB-
LUP, followed by those from QR core. Fragomeni et al. [2] 
found that a core consisting of bulls with more than 10 
daughters delivered a similar prediction accuracy as reg-
ular ssGBLUP. Ostersen et  al. [14] reported that GEBV 
from APY ssGBLUP with core definitions involving ran-
dom sampling of genotyped animals with large numbers 
of genotyped offspring had a high correlation with GEBV 
from regular ssGBLUP. They argued that when the core 
group represents a large proportion of ICS in the popu-
lation, G constructed using this core has similar charac-
teristics as the regular G . However, the concept of ICS is 
hard to validate and deserves further research. Without 
costly computations of ICS/haplotype content of each 
core at each size, the proportion of SNPs with similar 
MAF based on a core set and based on all individuals 
can also indirectly provide some information about the 
possibility that the core captures the ICS in the popula-
tion. As expected, the Rnd, Ped, and Fam core definitions 
showed the largest overlap between MAF spectra com-
puted using all genotyped individuals and only those in 
the core due to an equal representation of genotyped ani-
mals across generations.

Although the prediction accuracy and MSE of GEBV 
for LPM and LPF at eigen99 were similar to those of other 
core definitions, the hierarchical clustering put the GEBV 
from these two core definitions in a separate group that 
was distant from that of the regular ssGBLUP. These two 
core definitions predominantly include young animals 
without progeny and phenotype records in the core and 
may, therefore, not capture a large proportion of the ICS 

Table 3  Proportion of overlap between minor allele frequency spectra calculated using all individuals and using core animals for each 
core definition and size

Eigen50, Eigen80, Eigen90, Eigen95, Eigen99 and Eigen > 99 denote core sizes equal to the largest number of eigenvalues explaining 50% (n = 160), 80% (n = 700), 
90% (n = 1363), 95% (n = 2344), 99% (n = 7320) and > 99% (n = 10,000) of the genomic relationship matrix, respectively

MPA: popular animals with more than15 progeny, both parents known and with own performance record; Rnd: a random subset of animals is sampled from all 
genotyped animals; Ped: animals were evenly selected from the pedigree sorted in genealogical order; Fam: from each full sib family, one progeny was allowed to 
be in the core group; Unrel: animals with ≤ 0.27 genomic relationship were assigned to the core group; LPM: males with both parents known, without progeny, and 
without own performance records were used as core; LPF: females with both parents known, without progeny and own performance records were used as core; QR: 
animals selected based on a QR decomposition of the gene content matrix

Core size Core definition

MPA Rnd Ped Fam Unrel LPM LPF QR

Eigen50 0.85 0.84 0.85 0.84 0.81 0.80 0.79 0.73

Eigen80 0.93 0.94 0.92 0.92 0.87 0.85 0.85 0.78

Eigen90 0.94 0.95 0.95 0.94 0.90 0.86 0.86 0.79

Eigen95 0.93 0.96 0.96 0.96 0.91 0.86 0.86 0.79

Eigen99 0.93 0.98 0.98 0.96 0.92 0.87 0.87 0.80

Eigen > 99 0.93 0.98 0.98 0.97 0.93 0.89 0.88 0.81
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segregating in the population because of recombination 
events that may have occurred across generations [15].

Regardless of the studied trait, the GEBV from APY 
ssGBLUP with the QR core at eigen99 were highly cor-
related with those from the regular ssGBLUP (0.992) 
but required the largest number of iterations to reach 
convergence. In contrast to the Rnd and Ped core defini-
tions, the QR core included old animals born from 2012 
to 2016. Hence, an unequal distribution of core animals 
across years or generations and a genetic lag between the 
core and recent genotyped populations is expected to 
result in poor convergence performance of APY. Further-
more, choosing old animals based on QR decomposition 
reduces the sparsity of H−1 , possibly increasing the con-
dition number and expanding the number of iterations to 
convergence. Thus, it is crucial to include animals from 
all generations in the core set.

Overall, we observed that the size of the core is more 
important than its definition. Sampling genotyped ani-
mals randomly from the available pool or evenly selecting 
animals across generations with the core size equal to the 
number of largest eigenvalues explaining 99% the varia-
tion in G provided accurate predictions of GEBV in this 
pig population. In multibreed or admixed populations 
with heterogeneous structure, the core definition may 
become more important. Mäntysaari et al. [27] observed 
that a core size greater than the number of largest eigen-
values explaining 98% of the variation in G was needed to 
achieve a high prediction accuracy in a multibreed beef 
cattle population. According to Cesarani et al. [28], more 
accurate predictions are obtained in multibreed evalua-
tions when the core considers the dimensionality of G 
within each breed.

It is worth noting that the similarity of prediction accu-
racies for different core definitions can also be the result 
of the relationships between individuals in the core and 
noncore sets, provided that the core size is large enough 
to capture most of the (co)variation in G . Fragomeni et al. 
[2] also found that a core of 20k young animals from a 
large pool of genotyped Holstein cattle resulted in a simi-
lar prediction accuracy than a core of proven bulls with 
more than five progeny. Although GEBV from APY and 
regular ssGBLUP have similar prediction accuracies and 
their correlations are higher than 0.99, individual GEBV 
may differ between core definitions. Concerns about 
changes in individual GEBV from changes in core defini-
tion and size can be alleviated by including selection can-
didates in the core [29].

Conclusions
This study investigated the effect of core definition and 
size on the prediction accuracy of GEBV from APY 
ssGBLUP. When the core size is less than optimum, i.e. 

smaller than the number of largest eigenvalues explain-
ing 98% to 99% of the variation in G , the core definition is 
important. In such a case, core definitions for which core 
animals are well distributed across generations (i.e., most 
popular animals, randomly sampled, and evenly distrib-
uted across the pedigree) outperformed other core defi-
nitions in terms of prediction accuracy. However, as the 
core size reached or surpassed the optimum value, pre-
diction accuracies were identical and the core definition 
became irrelevant.
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