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Abstract 

Background:  In genomic prediction including data of 3- or 4-way crossbred animals, line composition is usually 
fitted as a regression on expected line proportions, which are 0.5, 0.25 and 0.25, respectively, for 3-way crossbred 
animals. However, actual line proportions for the dam lines can vary between  ~ 0.1 and 0.4, and ignoring this varia-
tion may affect the genomic estimated breeding values of purebred selection candidates. Our aim was to validate a 
proposed gold standard to evaluate different approaches for estimating line proportions using simulated data, and to 
subsequently use this in actual 3-way crossbred broiler data to evaluate several other methods.

Results:  Analysis of simulated data confirmed that line proportions computed from assigned breed-origin-of-alleles 
(BOA) provide a very accurate gold standard, even if the parental lines are closely related. Alternative investigated 
methods were linear regression of genotypes on line-specific allele frequencies, maximum likelihood estimation 
using the program ADMIXTURE, and the genomic relationship of crossbred animals with their maternal grandparents. 
The results from the simulated data showed that the genomic relationship with the maternal grandparent was most 
accurate, and least affected by closer relationships between the dam lines. Linear regression and ADMIXTURE per-
formed similarly for unrelated lines, but their accuracy dropped considerably when the dam lines were more closely 
related. In almost all cases, estimates improved after adjusting them to ensure that the sum of dam line contributions 
within animals was equal to 0.5, and within dam line and across animals the average was equal to 0.25. Results from 
the broiler data were much more similar between methods. In both cases, stringent linkage disequilibrium pruning 
of genotype data led to a relatively low accuracy of predicted line proportions, due to the loss of too many single 
nucleotide polymorphisms.

Conclusions:  With relatively unrelated parental lines as typical in crosses in pigs and poultry, linear regression of 
crossbred genotypes on line-specific allele frequencies and ADMIXTURE are very competitive methods. Thus, linear 
regression may be the method of choice, as it does not require genotypes of grandparents, is computationally very 
efficient, and easily implemented and adapted for considering the specific nature of the crossbred animals analysed.
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Background
The implementation of genomic selection in pig and 
poultry breeding programs has renewed the interest to 
use crossbred information to estimate breeding values of 
purebred selection candidates for crossbred performance 

[1]. Depending on the type of crossbreeding, there may 
be variation in the line composition of crossbred animals. 
While F1 crossbred animals have exactly 50% of their 
alleles obtained from the sire and dam line, for 3-way 
crossbred animals the contribution of the dam lines 
varies around the expected value of 0.25. Likewise, for 
4-way crossbred animals this variation is present for all 
four lines involved. In breeding value estimation models, 
fixed effects for each line composition type can be mod-
elled as a regression on the expected proportions for each 
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of the lines involved in the crossbreeding scheme, as a 
class effect when using a univariate model, or as separate 
mean effects in a multivariate model that specifies sepa-
rate traits for different purebred and crossbred categories 
of animals [2, 3]. In all cases, it is typically assumed that 
animals belonging to a particular type of cross have the 
same line composition.

When the crossbred animals included in the breeding 
value estimation are genotyped, then their genotypes 
can be used to estimate their actual line proportions, 
which in turn can be included in the model instead of the 
expected line proportions. Actual line proportions can 
be estimated using efficient maximum-likelihood based 
methods such as ADMIXTURE [4], or linear regression 
of allele counts of an animal on frequencies of the cor-
responding allele in different breeds [5, 6]. Alternatively, 
methods can be used that identify different haplotypes in 
crossbred animals, and then estimate for each haplotype 
from which ancestral breed or line it was inherited. Sub-
sequently, the estimated breed-origin-of-alleles (BOA) 
can be assigned for all alleles within a haplotype, and line 
proportions can be derived as the proportion of alleles 
assigned to a particular line [7]. By tracing the inherit-
ance of long-range haplotypes from purebred to cross-
bred animals, BOA aims at avoiding confusion between 
breeds due to common short-range linkage disequilib-
rium (LD). Thus, line proportions that are derived from 
BOA arguably reflect identical-by-descent relationships 
to the purebred ancestor of a particular line. In contrast, 
linear regression and ADMIXTURE directly estimate 
the line proportions of crossbred animals as an aver-
age across the genome, and as such, at best, reflect the 
identical-by-state relationships to the purebred ancestor 
of a particular line. The more sophisticated modelling 
through BOA is expected to yield more accurate esti-
mated line compositions than the other methods, espe-
cially for closely-related populations that may still share 
long haplotypes. Of all these methods, the linear regres-
sion approach is the easiest to implement, and likely also 
the most computationally efficient [8].

Empirical validation of methods to estimate line pro-
portions in real data is challenging in the sense that a gold 
standard is needed to evaluate the estimated line propor-
tions. In unstructured crosses, expected line proportions 
that can be computed from pedigree data vary across ani-
mals, and as such can be used to evaluate the line propor-
tions that are estimated from genomic data [6, 9, 10]. This 
allows to verify whether the estimated line proportions 
are unbiased, both in terms of average level and disper-
sion of the estimates, but not whether they estimate the 
actual line proportions accurately. In addition, in struc-
tured 3- and 4-way crosses, expected values of animals 
in the same cross are all the same, and can only be used 

to evaluate average estimates within a cross. Therefore, 
there is a need to identify a method that can be used in 
applications to real data to generate results that can be 
considered as a gold standard, enabling to validate other 
methods that may be easier to implement and are com-
putationally cheap.

Thus, our objective was to compare the performance 
of five methods in the estimation of dam line composi-
tion in 3-way crossbred animals using different methods. 
First, we validate the use of line composition computed 
from estimated BOA as a gold standard, using simulated 
data of 3-way crossbred pigs. Second, we develop two 
approaches: one based on the genomic relationship with 
the corresponding grandparent, and a linear regression 
approach that takes advantage of the expectations of the 
contributions of the different lines. Finally, the perfor-
mance of these newly developed approaches is compared 
to the performance of ADMIXTURE, both on simulated 
pig data, and on real data of 3-way crossbred broilers.

Methods
To evaluate the various methods to estimate line propor-
tions for the dam lines (B and C) in 3-way crossbred ani-
mals [A(BC)], both simulated pig and actual 3-way broiler 
data were used. In this section, we start by describing the 
methods used, how they are compared to each other, and 
finally the datasets used.

Methods to estimate dam line composition
Five different methods were considered to estimate the 
dam line composition of 3-way crossbred animals. The 
first method used is based on the estimated breed-origin-
of-alleles, and hereafter referred to as BOA. The BOA 
method is described in detail by Vandenplas et  al. [7], 
and involves three steps: (1) phasing genotype data of 
both purebred and crossbred animals simultaneously, (2) 
assigning the breed-of-origin to each of the haplotypes of 
the crossbred animals, and (3) finally assigning breed-of-
origin to all single nucleotide polymorphism (SNP) alleles 
of the crossbred animals, based on the assigned breed-of-
origin of the haplotype in which they reside. The com-
puted line proportions obtained from the BOA results, 
are then computed as the proportion of SNP alleles com-
ing from lines B and C. Note that this implicitly assumes 
that the SNPs used, are equally spaced throughout the 
genome. Small deviations from this assumption are 
expected to hardly affect the results when the number of 
SNPs used is sufficiently large.

The second method used the ADMIXTURE software 
[4, 11] in its “supervised” mode. Because ADMIXTURE 
assumes linkage equilibrium between the SNPs, it is 
recommended to prune the genotype data based on LD 
[4]. To test the sensitivity of the results to pruning of the 
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data, we evaluated estimated line proportions using the 
full datasets against those obtained after pruning for r2 
thresholds of 0.1, 0.3, 0.5, 0.7 or 0.9, respectively. Prun-
ing was performed against an r2 threshold of 0.1, within 
a sliding window of 50 SNPs that was shifted by 10 SNPs 
each time, using the statement “--indep-pairwise 50 10 
0.1” in PLINK [12].

The third method, hereafter referred to as LR, involves 
a linear regression of all SNP allele counts (coded as 0, 1, 
and 2) of each crossbred animal on the line-specific fre-
quencies of the corresponding alleles computed in each 
of the purebred lines involved in the cross [6, 8]:

where gi is a vector of SNP allele counts of crossbred 
animal i , xA , xB and xC are vectors of the frequencies of 
the corresponding allele computed in purebred line A, 
B, and C animals, bA,i , bB,i and bC,i are regression coef-
ficients corresponding to the line proportions for lines A, 
B and C, and ei is a vector of error terms. Since we know 
that the line A proportion is 0.5 for all A(BC) animals, 
we can fill in this value for bA,i and adjust gi as follows: 
g∗i = gi − xA∗0.5 . The adjusted regression equation to 
compute line B and C proportions, then becomes:

The fourth method, hereafter referred to as REL_GP, 
takes advantage of the fact that in an A(BC) crossbred 
animal, all line B alleles originate from the line B mater-
nal grandsire, and all line C alleles originate from the line 
C maternal granddam. Thus, the realized line proportions 
are equivalent to the proportion of their genome that they 
have inherited from their grandparents. Consequently, the 
line B (C) proportion is equal to the genomic identity-by-
descent relationship between an A(BC) crossbred animal i 
and its maternal grandsire (granddam) j , if this grandpar-
ent is not inbred. Therefore, as a proxy, we used the iden-
tity-by-state relationships between A(BC) crossbreds and 
their maternal grandparents ( Gij ), which were computed 
as multi-population genomic relationships as described 
by Wientjes et al. [13] treating the purebred lines and the 
A(BC) crossbred animals as different populations. The 
required allele frequencies for the three purebred lines 
were obtained by regressing all available genotypes on 
the expected line proportions for the three lines involved. 
The required allele frequencies for the A(BC) crossbred 
animals were then obtained as a weighted average of the 
line-specific allele frequencies, using their expected line 
proportions, i.e., 0.5, 0.25 and 0.25, as weights.

The fifth method is similar to the fourth one, but avoids 
making the assumption that the grandparent is not 
inbred. The expected relationship of a 3-way crossbred 

gi = xAbA,i + xBbB,i + xCbC,i + ei,

g∗i = xBbB,i + xCbC,i + ei.

animal with e.g., its line B grandsire is 0.25(1+ Fmgp ), 
where Fmgp is the inbreeding coefficient of the maternal 
grandparent, while the expected line B proportion of the 
3-way crossbred animal is 0.25, regardless of the value 
of Fmgp . Thus, the fifth method, hereafter referred to as 
REL_GP_noF, is based on the relationship of crossbred 
animal i with its grandparent j divided by (1+ Fmgp ). 
Since the diagonal element of the maternal grandparent 
in the genomic relationship matrix G is an estimator for 
1+ Fmgp , the fifth method estimated the line proportion 
as the adjusted relationship ( G∗

ij ) between animal i and 
maternal grandparent j , computed as G∗

ij = Gij/Gjj.
As mentioned previously, the expected line propor-

tions for the dam lines in a 3-way cross are 0.25, the line 
proportion of the sire line is exactly 0.5, and the sum of 
the line proportions of the two dam lines is also exactly 
0.5. Considering this, for all methods, estimated line pro-
portions for the dam lines were post-processed partly fol-
lowing the procedure outlined by He et al. [14]. Any line 
proportions below the minimum possible value 0 were 
set to 0, and values above the maximum possible value 
0.5 were set to 0.5. Thereafter, the mean estimated line B 
proportion was set equal to the expected value of 0.25 by 
adding a value of 0.25− brfr

B

A(BC) to the estimated line B 
proportion for all A(BC) animals, where brfrBA(BC) is the 
average line B proportion across all A(BC) animals. The 
same was done for line C proportions. After adjustment 
of this mean, again line proportions below 0 or above 
0.5, were set to 0 and 0.5, respectively. Finally, for each 
A(BC) animal, its line B and C proportions were linearly 
rescaled such that after rescaling their sum was equal to 
0.5, i.e., for each animal b̂rfr

B

A(BC) = 0.5− b̂rfr
C

A(BC) . As 
a result, estimated parameters such as the accuracy as 
explained hereafter, were identical for both dam lines by 
construction, and therefore are only presented for line B. 
Another consequence of this post-processing of the esti-
mates, is that all five methods had the same mean esti-
mated values, including those derived from the BOA, and 
the true line proportions.

Evaluation of estimated dam line composition
For the simulated data, true line proportions were com-
puted as the proportion of SNP alleles that an indi-
vidual received from a particular line. The accuracy 
of the estimated dam line composition was computed 
as the correlation between the estimated and true line 
proportions. Dispersion bias of the estimated dam line 
composition was computed as the coefficient of the 
regression of true on estimated line proportions, with 
a value of 1 indicating no dispersion bias. To evaluate 
the estimation errors of the different methods, we also 
reported the maximum absolute error, and the root 
mean squared error (RMSE). Based on the simulated 
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data, we evaluated whether line proportions that are 
estimated from BOA can be used as a semi-gold stand-
ard in practical data. Subsequently, BOA was used as a 
gold standard in the broiler data instead of the true line 
proportions, since these are not known.

Our hypothesis is that line proportions derived from 
BOA provide an appropriate gold standard to evalu-
ate line proportions obtained with other methods. In 
addition to testing this hypothesis in the simulated 
data, we also evaluated whether or not the observed 
distribution of line proportions derived from BOA 
in the broiler data, was in line with the expected dis-
tribution based on theory. This expected distribution 
was assumed to have a mean of 0.25. The variance was 
computed using a formula that predicts the expected 
variance of identity-by-descent sharing between grand-
parent and grand-offspring pairs [15]. In this computa-
tion, we assumed that the grandparent is not inbred, 
following the same reasoning as that used to derive the 
method REL_GP_noF. The formula requires the num-
ber of chromosomes in the species considered, and the 
individual length of each chromosome in centiMorgan. 
For the simulated data, this information was obtained 
from Vandenplas et  al. [7] as explained hereafter. For 
the broiler data, those required details were obtained 
from Groenen et al. [16], using the length of each chro-
mosome averaged across the male and female linkage 
maps.

Simulated data
The simulated data were generated and described in 
detail by Vandenplas et al. [7]. Three different scenarios 
were simulated. The three purebred lines A, B, and C, 
were separated for 5, 20 or 50 generations of random 
selection, to represent closely-related, distantly-related, 
and unrelated lines, respectively. For each of the scenar-
ios, 10 replicates were simulated. The generated data in 
each scenario included SNP allele counts of  ~ 1000 pure-
bred animals of each of the lines A, B, and C, and 428 
A(BC) 3-way crossbred animals, of which on average 188 
had both maternal grandparents genotyped. Alleles were 
generated for two chromosomes, with on average, across 
replicates and scenarios, 4800 segregating SNPs on the 
first chromosome of 3.20 Morgan, and 920 segregating 
SNPs on the second chromosome of 0.61 Morgan. These 
two chromosomes resembled the two pig Sus scrofa chro-
mosomes (SSC), SSC1 and SSC18, respectively. The SNP 
density was comparable to that of a 60k SNP chip [17]. In 
our analyses, we only used SNPs that had a minor allele 
frequency (MAF) in the data across all line compositions 
higher than 0.1, to be consistent with the previous BOA 
analysis of this data [7], from which we used the results in 
our current study.

The simulated data did not include the allele counts 
of all generated animals, and as a consequence, not all 
maternal grandparents of genotyped A(BC) animals were 
included in the data. Estimated line compositions were 
evaluated only for crossbred animals that had the geno-
types of both their maternal grandparents included in the 
data, since two of the used methods relied on the geno-
types of the maternal grandparents. Across scenarios 
and replicates, this was on average 188 A(BC) animals. 
All 428 A(BC) crossbred animals were used only for the 
initial evaluation of ADMIXTURE with different levels of 
LD pruning.

Broiler data
The broiler data was described in detail by Calus et  al. 
[18], and that study also generated the BOA results 
used here. The data used here included allele counts for 
55,729 segregating SNPs for purebred animals of each of 
the lines A (n = 8205), B (n = 372), and C (n = 720), and 
10,943 A(BC) 3-way crossbred animals. In total, 10,120 
A(BC) animals had both their line B maternal grand-
sire and their line C maternal granddam included in the 
data, and these were retained for further analyses. To 
investigate the sensitivity of results due to imposing a 
MAF threshold, all analyses were repeated using only the 
51,237 SNPs that had a MAF higher than 0.1.

To position the broiler data relative to closely-related, 
distantly-related, and unrelated lines in the simulated 
data, we computed FST values [19] among the genotyped 
purebred animals for all datasets using the --fst option in 
PLINK [12] and report values averaged across all loci.

Results
Data
In the simulated data, FST values between lines were on 
average across replicates equal to 0.04, 0.12 and 0.22 
for, respectively, closely-related, distantly-related, and 
unrelated lines. In the broiler data, the average FST value 
between the parental lines was 0.24, suggesting that the 
parental lines in the broiler data were further apart than 
the unrelated lines in the simulated data that separated 
50 generations ago.

Simulated data
The results for estimated line proportions for the simu-
lated data using ADMIXTURE with various levels of LD 
pruning are in Table 1. Pruning the simulated data based 
on LD reduced the number of SNPs by 18–31% for an r2 
threshold of 0.9, and by 95% for an r2 threshold of 0.1. 
For the same r2 threshold, fewer SNPs were removed if 
the lines were more closely related. For all scenarios, the 
accuracy was highest, and dispersion bias and RMSE 
were lowest, with pruning against an r2 threshold of 0.5. 
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However, differences between scenarios were very small, 
apart from the scenario with an r2 threshold of 0.1, where 
results were considerably poorer. This is confirmed by 
correlations between estimated line proportions with dif-
ferent levels of pruning (see Additional file 1: Table S1). 
Those correlations are generally relatively close to 1 for 
scenarios with an r2 threshold of 0.3 or greater. With an 
r2 threshold of 0.1, the correlations with other levels of 
LD pruning were considerably lower, especially for the 
closely-related lines. Hereafter, the results obtained with 
an r2 threshold of 0.5 will be considered in the compari-
son of results between methods.

Comparison of estimated line proportions against the 
true values, showed that the accuracy of BOA was higher 
than 0.995 for the distantly-related and unrelated lines, 
and 0.986 for the closely-related lines (Table 2). Further-
more, the BOA results had little dispersion bias, very 
small RMSE, and relatively low maximum errors com-
pared to the other methods. As a result, the observed 
distribution of estimated line proportions derived from 
BOA, followed the theoretically expected distribution 
closely (see Additional file 2: Fig. S1).

The LR method and ADMIXTURE gave similar results, 
with ADMIXTURE generally outperforming LR slightly. 
The LR method and ADMIXTURE were rather sensi-
tive to the population structure, respectively achieving 
high accuracies of 0.950 and 0.967 with unrelated lines, 
but low accuracies of 0.680 and 0.692 with closely-related 
lines. In contrast, REL_GP and REL_GP_noF yielded 

respectively accuracies of  ~ 0.95 and  ~ 0.96 regard-
less of the population structure. For these four methods 
(LR, ADMIXTURE, REL_GP and REL_GP_noF), dis-
persion bias decreased when the relationships between 
the parental lines decreased, with little dispersion bias 
observed with unrelated lines. For the related lines REL_
GP and REL_GP_noF yielded a regression coefficient 
of  ~ 0.92, but for LR and ADMIXTURE it dropped to 
almost 0.5, indicating very severe inflation of the variance 
of the estimated line proportions. Finally, the maximum 
error and the RMSE decreased considerably for LR and 
ADMIXTURE with decreasing relationships between the 
lines, while for REL_GP and REL_GP_noF these were not 
affected by the relationships between the lines, and in all 
cases were as low as for LR and ADMIXTURE for the 
unrelated lines.

Correlations between estimated line proportions using 
the various methods, showed that LR and ADMIXTURE 
gave very similar results, with the correlation increasing 
from 0.943 with closely-related lines to 0.975 with unre-
lated lines (Table 3). Correlations between REL_GP and 
REL_GP_noF were 0.989 or higher, showing that these 
methods yielded virtually the same results. Between the 
two groups of methods, i.e., LR and ADMIXTURE ver-
sus REL_GP and REL_GP_noF, correlations increased 
from  ~ 0.65 with closely-related lines to  ~ 0.91 with 
unrelated lines.

The results obtained for LR, ADMIXTURE and both 
relationship-based approaches were very similar, when 

Table 1  Different quality measures of the estimated line B proportions derived with ADMIXTURE with various levels of pruning based 
on linkage disequilibrium (r2) in the simulated dataa

RMSE root mean squared error
a All 428 A(BC) crossbreds were used

Measure Lines r2 threshold for pruning

0.1 0.3 0.5 0.7 0.9 No.

Number of SNPs Close 305 1364 2661 3781 4679 5720

Distant 281 1190 2425 3543 4499 5753

Unrelated 260 936 1953 3016 3989 5740

Accuracy Close 0.560 0.694 0.696 0.689 0.682 0.675

Distant 0.787 0.890 0.901 0.897 0.890 0.886

Unrelated 0.891 0.958 0.966 0.965 0.963 0.959

Dispersion bias Close 0.404 0.533 0.536 0.531 0.524 0.517

Distant 0.653 0.808 0.824 0.820 0.809 0.801

Unrelated 0.810 0.916 0.930 0.930 0.925 0.922

Maximum error Close 0.404 0.330 0.332 0.334 0.341 0.348

Distant 0.285 0.192 0.181 0.181 0.186 0.190

Unrelated 0.181 0.110 0.104 0.103 0.109 0.112

RMSE Close 0.132 0.106 0.106 0.107 0.108 0.109

Distant 0.083 0.056 0.053 0.054 0.056 0.058

Unrelated 0.056 0.034 0.031 0.031 0.032 0.034
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compared against BOA instead of the true line propor-
tions (Table 2). The clearest difference was observed for 
the dispersion bias, where for all methods and scenar-
ios the evaluation of the results against BOA resulted 
in a slight underestimation of the dispersion bias, with 
regression coefficients being 0.02–0.04 higher, and in 
nearly all cases closer to 1. These results, combined with 
the observed accuracy of the BOA estimated line pro-
portions of almost 1, confirm that BOA can be used as 
a gold standard in empirical validation of estimated line 
proportions.

Broiler data
The observed distribution of estimated line B propor-
tions derived from BOA followed the theoretically 
expected distribution very closely (Fig. 1). This suggests 
that the properties of the BOA-derived line composition 
are very similar to the properties of the true (unobserved) 
line composition.

The results for estimated line proportions for the 
broiler data using ADMIXTURE with various levels 
of LD pruning are in Table 4. Pruning the broiler data 
based on LD reduced the number of SNPs by 12% for 
an r2 threshold of 0.9, and by 94% for an r2 threshold 
of 0.1. Using BOA as a gold standard, similarly high 
accuracies and similarly low dispersion bias and RMSE 
were obtained after pruning against r2 thresholds of 0.5, 
0.7 of 0.9. The results were only slightly poorer after 
pruning against an r2 threshold of 0.3 or when using 
all SNPs, albeit that the dispersion bias was somewhat 
lower in the latter case. Similar to the simulated data, 
the results after pruning against an r2 threshold of 
0.1 were considerably worse than for any of the other 
thresholds. Hereafter, based on these results and to be 
consistent with the approach for the simulated data, the 
results obtained with an r2 threshold of 0.5 will be con-
sidered in the comparison of results across methods.

Table 2  Different quality measures of the estimateda line B proportions when compared against true or BOA estimated values for the 
simulated datab

RMSE root mean squared error
a Line B proportions are estimated from estimated breed-origin-of-alleles (BOA), using linear regression on mean allele counts within line (LR), ADMIXTURE analysis 
(ADM) after pruning SNPs based on r2 > 0.5, the genomic relationship with maternal grandsire (REL_GP), or this relationship after adjusting all self-relationships to be 1 
(REL_GP_noF)
b Results are based on the average 188 A(BC) crossbreds with both maternal grandparents included with genotypes in the data

Measure Reference Lines BOA LR ADM REL_GP REL_GP_noF

Accuracy True Close 0.986 0.680 0.692 0.949 0.954

Distant 0.996 0.876 0.902 0.950 0.959

Unrelated 0.997 0.950 0.967 0.952 0.962

BOA Close 0.690 0.704 0.936 0.942

Distant 0.878 0.903 0.948 0.956

Unrelated 0.948 0.965 0.951 0.961

Dispersion bias True Close 0.958 0.513 0.530 0.928 0.923

Distant 0.964 0.776 0.820 0.966 0.958

Unrelated 0.962 0.910 0.934 1.025 1.022

BOA Close 0.536 0.555 0.943 0.938

Distant 0.804 0.849 0.996 0.987

Unrelated 0.942 0.966 1.061 1.058

Maximum error True Close 0.076 0.321 0.317 0.109 0.105

Distant 0.046 0.172 0.155 0.106 0.098

Unrelated 0.038 0.109 0.089 0.104 0.094

BOA Close 0.312 0.308 0.124 0.120

Distant 0.178 0.159 0.114 0.105

Unrelated 0.114 0.089 0.109 0.099

RMSE True Close 0.019 0.109 0.106 0.036 0.035

Distant 0.012 0.061 0.053 0.035 0.032

Unrelated 0.010 0.037 0.030 0.035 0.032

BOA Close 0.108 0.104 0.041 0.039

Distant 0.060 0.053 0.037 0.034

Unrelated 0.038 0.031 0.037 0.033
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Comparison of estimated line proportions of all four 
methods against BOA values, showed that the accuracy 
was highest with ADMIXTURE, closely followed by 
LR and REL_GP_noF (Table  5). The accuracy achieved 
with REL_GP was considerably lower. Dispersion bias 
appeared to be lowest with LR and highest with REL_
GP_noF. The maximum error and RMSE were lowest 
and very similar with LR and ADMIXTURE, highest with 
REL_GP, and intermediate with REL_GP_noF. Removing 

SNPs with a MAF lower than 0.1 reduced the number 
of SNPs from 55,729 to 51,237, and hardly affected the 
results (see Additional file 1: Table S2).

Correlations between estimated line proportions using 
the various methods (Table  6), showed that LR and 
ADMIXTURE also gave very similar results with the 
broiler data (correlation of 0.975), similarly as REL_GP 
and REL_GP_noF (correlation of 0.970). Between the two 
groups of methods, REL_GP had a correlation of  ~ 0.85 
with LR and ADMIXTURE, while this correlation 
was  ~ 0.90 for REL_GP_noF.

Discussion
Our objective was to compare the estimation of dam line 
composition in 3-way crossbred animals using different 
methods. In this section, we discuss the use of BOA-
derived line composition as a gold standard, the perfor-
mance of the different methods, and some implications 
for application in practice.

Using BOA as a gold standard
We hypothesized that BOA is an appropriate gold 
standard for line composition, based on the fact that 
true line proportions are defined as the proportion of 
alleles derived from a particular line, and on our previ-
ous observation that assigning BOA at the allele level 
is highly accurate [7]. Indeed, the analysis of the simu-
lated data showed that line proportions based on esti-
mated BOA have an accuracy of almost 1, very limited 
estimation errors, while the variance of the estimated 
line proportions tends to be a little bit inflated. Coef-
ficients of regressing BOA results instead of true values 
on the estimates from the other methods were generally 
slightly higher. This indicates that the actual bias of the 
scale of the estimates may be slightly greater than what 
the results using BOA as a gold standard suggest. Alto-
gether, this shows that BOA-derived line composition is 
an appropriate gold standard in empirical comparisons 
of methods. Given that the same procedure as used here 
[7] was able to assign 43.5  to 45.7% of the alleles to the 
two dam lines in 3-way crossbred pigs [20], and 94.35% 
of all alleles in an F2 crossbred Girolando cattle popu-
lation [21], it is expected that BOA can be used as a 
gold standard for other crosses in other species as well. 
Instead of the method that we developed and applied, 
BOA could be determined using other methods such as 
ChromoPainter [22].

Performance of different methods
The well-established ADMIXTURE method yielded 
estimated line proportions that were competitive 
in terms of accuracy for the distantly-related lines, 
and were  the most accurate for unrelated lines. For 

Table 3  Correlation among line B proportions estimated with 
different methodsa for the simulated data

a Line B proportions are estimated from estimated breed-origin-of-alleles (BOA), 
using linear regression on mean allele counts within line (LR), ADMIXTURE 
analysis (ADM), the genomic relationship with maternal grandsire (REL_GP), or 
this relationship after adjusting all self-relationships to 1 (REL_GP_noF)

Lines Method LR ADM REL_GP REL_GP_noF

Closely-related BOA 0.690 0.704 0.936 0.942

LR 1 0.943 0.633 0.644

ADM 0.943 1 0.647 0.659

REL_GP 0.633 0.647 1 0.994

REL_GP_noF 0.644 0.659 0.994 1

Distantly-related BOA 0.878 0.903 0.948 0.956

LR 1 0.963 0.817 0.834

ADM 0.963 1 0.844 0.859

REL_GP 0.817 0.844 1 0.991

REL_GP_noF 0.834 0.859 0.991 1

Unrelated BOA 0.948 0.965 0.951 0.961

LR 1 0.975 0.890 0.905

ADM 0.975 1 0.917 0.930

REL_GP 0.890 0.917 1 0.989

REL_GP_noF 0.905 0.930 0.989 1

Fig. 1  Observed line B proportions in the broiler data (histogram), 
versus the theoretically expected distribution (red line)
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applications of ADMIXTURE, it is recommended to 
perform LD pruning, to try to meet the assumption 
that the markers are in linkage equilibrium [4]. Strin-
gent LD pruning, i.e., against an r2 threshold of 0.1, 
resulted in the loss of  ~ 94% of the SNPs, and was det-
rimental to the accuracy of predicting line proportions. 
Therefore, pruning against an intermediate r2 threshold 
of e.g., 0.5 seems advisable, to avoid losing too many 
SNPs. The LR method yielded somewhat lower accu-
racies than ADMIXTURE, albeit that the correlations 
with estimates from ADMIXTURE were all higher than 
0.94 (Tables 3 and 6). Coefficients of regression of true 

on estimated values showed that nearly all estimated 
line proportions had too much variance, i.e., regression 
coefficients were almost all less than 1. However, the 
obtained regression coefficients were closely related to 
the accuracies; lower accuracies were accompanied by 
lower regression coefficients. These results may suggest 
that the observed inflation of the variance of the esti-
mates was due to post-processing of the estimates, of 
which the last step effectively proportionally scaled the 
proportions for both dam lines such that their sum was 
0.5. Indeed, this scaling does increase the variance of 
the estimates while it is likely to introduce some error 
as well. Computing our results for the simulated data 
without post-processing (see Additional file 1: Table S3) 
confirmed that this is the case for the BOA-derived 
estimates. Before post-processing, the BOA-derived 
estimates showed virtually no dispersion bias, while the 
post-processing led to inflation of the variance of the 
estimates and a marginal increase of the accuracy. The 
post-processing reduced the inflation of the estimates 
for all other methods, and increased the accuracy for all 
other methods except LR. The likely explanation is that 
the post-processing step also involved forcing estimates 
within the interval of 0–0.5, which was never needed 
for the BOA results since they are within the interval 
of 0–0.5 by definition, while values outside this range 
were possible for all other methods. These changes are 
expected to improve the estimates, while reducing their 
variance. The observation that the post-processing step 
hardly affected the accuracy of LR, may be due to the 
fact that with LR the expected contribution of the sire 
line is first removed from the genotypes, which reduces 
the errors that can be made. As a result, the post-pro-
cessing step does not yield the improvement that is 
observed for the other methods.

Comparisons of methods to predict line composition 
have been done previously, considering at least partly 
different methods. The ADMIXTURE method uses 
the same likelihood model as implemented in STRU​

Table 4  Different quality measures of the estimated line B proportions derived with ADMIXTURE with various levels of pruning based 
on linkage disequilibrium (r2) in the broiler data

RMSE root mean squared error

Measure r2 threshold for pruning

0.1 0.3 0.5 0.7 0.9 No.

Number of SNPs 3392 15,144 29,892 41,376 48,905 55,729

Accuracy 0.839 0.914 0.927 0.927 0.925 0.918

Dispersion bias 0.970 1.140 1.138 1.128 1.115 1.090

Maximum error 0.094 0.073 0.066 0.064 0.068 0.070

RMSE 0.024 0.018 0.017 0.017 0.017 0.018

Table 5  Different quality measures of the estimateda line B and 
C proportions for the broiler data

RMSE root mean squared error
a Line proportions are estimated using linear regression on mean allele counts 
within line (LR), ADMIXTURE analysis after pruning SNPs based on r2 > 0.5, the 
genomic relationship with maternal grandsire (REL_GP), or this relationship after 
adjusting all self-relationships to 1 (REL_GP_noF)

Measure LR ADMIXTURE REL_GP REL_GP_noF

Accuracy 0.917 0.927 0.861 0.902

Dispersion bias 1.091 1.138 1.146 1.232

Max 0.068 0.066 0.149 0.102

RMSE 0.018 0.017 0.023 0.020

Table 6  Correlation among line B proportions estimated with 
different methodsa for the broiler data

a Line B proportions are estimated from estimated breed-origin-of-alleles (BOA), 
using linear regression on mean allele counts within line (LR), ADMIXTURE 
analysis, the genomic relationship with maternal grandsire (REL_GP), or this 
relationship after adjusting all self-relationships to 1 (REL_GP_noF)

Method LR ADMIXTURE REL_GP REL_GP_noF

BOA 0.917 0.927 0.861 0.902

LR 1 0.975 0.843 0.890

ADMIXTURE 0.975 1 0.864 0.911

REL_GP 0.843 0.864 1 0.970

REL_GP_noF 0.890 0.911 0.970 1
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CTU​RE [23], and therefore both methods typically 
yield similar estimates [4]. Frkonja et  al. [9] showed 
that partial least squares regression, BayesB [24] and 
LASSO [25], which are essentially all linear variable 
selection methods, yielded very similar breed compo-
sition estimates using 50k SNPs in the admixed Swiss 
Fleckvieh as STRU​CTU​RE. Dodds et  al. [26] showed 
that estimates of  breed composition in New Zealand 
sheep based on 50k genotypes using linear regression 
or genomic best linear unbiased prediction (GBLUP), 
also a linear model, yielded similar estimates to those 
obtained with STRU​CTU​RE. These reported results 
confirm our finding that estimates of  breed composi-
tion based on 50k genotypes and using linear models, 
typically give very similar results to those obtained with 
ADMIXTURE and STRU​CTU​RE.

For LR and ADMIXTURE, the accuracy increased 
steeply with increasing distance between the lines, while 
this effect was much less pronounced with the REL_GP 
methods. In fact, for the closely-related lines in the 
simulated data, the REL_GP methods achieved accept-
able accuracies (> 0.95), while this was not the case 
for ADMIXTURE and LR (< 0.7). Similar results were 
observed in a study that estimated the breed composition 
of Brangus, a composite breed of Brahman and Angus, 
and Beefmaster cattle, a composite breed assumed to be 
about 25% Hereford, 25% Milking Shorthorn, and 50% 
Brahman [27]. That study compared estimates of LR and 
ADMIXTURE to genomic breed compositions that were 
computed from path analysis either considering only the 
relationships to the ancestral breeds directly (termed 
D-GBC), or additionally considering the genomic simi-
larities between the ancestral breeds (termed C-GBC). 
All methods showed similar results for the Brangus 
breed, whose ancestral breeds are distantly related. For 
the Beefmaster breed, however, the high genomic simi-
larities between Hereford and Shorthorn impaired the 
performance of LR, ADMIXTURE and C-GBC, while the 
performance of D-GBC was much more robust against 
the ancestral breeds being closely related [27]. Given that 
the assumptions underlying C-GBC are effectively closer 
to those of LR, while D-GBC models the direct inherit-
ance to the ancestral breed similarly to the REL_GP and 
BOA methods, our results are very much in line with 
those of Wu et al. [27].

The main benefits of the LR method are that it is 
computationally efficient, and easy to implement. 
This makes it relatively straightforward to implement 
accounting for the known contribution of the sire line 
before applying the LR method for the dam lines. Argu-
ably, this step is merely pre-processing of the data. A 
more sophisticated approach would be to remove the 
actual haplotype contributed by the sire, instead of the 

expected contribution of an average sire. This may fur-
ther improve the accuracy. However, this does require 
that phased genotypes of the sires are available and it 
would increase the computational burden. The post-
processing steps used to ensure that dam lines contri-
butions were 0.25 on average and summed to 0.5 within 
animal, could more formally be integrated in the LR 
method. This has been done previously by using con-
strained regression that ensured that all estimates are 
within the parameter space, i.e., estimated line propor-
tions are within the 0–1 interval, while the sum of the 
estimated line proportions is constrained to be 1 [8]. 
This constrained linear regression yielded accurate esti-
mates of breed composition in an admixed population, 
when considering all 11 founder breeds in the model, 
while the accuracy of ADMIXTURE was consider-
ably lower in their study. When considering only one 
founder breed in the model and an average of allele fre-
quencies for the remaining breeds, the constrained lin-
ear regression and ADMIXTURE yielded very similar 
results [8], in line with our results. Similarly, a Bayesian 
method has been proposed that guarantees estimates 
to be within the parameter space, which showed higher 
accuracy in a multibreed Angus-Brahman population 
compared to linear regression, while estimates between 
both methods had a high correlation of  ~ 0.92 [10].

Both our REL_GP methods gave highly accurate esti-
mates, and this was hardly affected by the distance 
between the lines. Based on this, especially for closely-
related lines, REL_GP_noF is the best method. Imple-
mentation in practice is relatively straightforward, albeit 
that it requires that the genotypes of all grandparents are 
available. In addition, applying this method in more com-
plex crosses may be more tedious for animals that have 
contributions of a particular breed both from their sire 
and dam. Based on the results from the simulated data, it 
is advisable to first compute the FST between the paren-
tal lines, to inform the choice of method to use. Based 
on the observation that our broiler data were compa-
rable to the unrelated lines in the simulated data, while 
previously pig data were shown to be comparable to the 
distantly-related lines [7], it can be concluded that for 
many applications in pigs and poultry the LR method is 
a very competitive method to derive dam line composi-
tion. In other applications where the involved breeds or 
lines are closely related, more sophisticated models are 
needed that somehow consider the inheritance from 
each ancestral breed more closely. This can be achieved 
by tracing the inheritance of long-range haplotypes such 
as done with BOA, by using the relationship to the pure-
bred ancestor of the corresponding breed as in the REL_
GP methods, or by decomposing the relationships to the 
purebred ancestors using e.g., path analysis [27].
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Implications—applications in animal breeding
In our study, we assumed that 50k genotypes would be 
available for all animals. For most breeding programs, 
indeed either all animals are genotyped for 50k geno-
types, or certain groups of animals are genotyped at 
lower density and then imputed up to 50k before being 
used in genomic breeding value estimation. Neverthe-
less, there may be situations where imputation is cum-
bersome or inaccurate, such that it may be preferable 
to derive the line composition based on a smaller sub-
set of SNPs for which all the animals are actually geno-
typed. Kuehn et al. [6] showed that using the Illumina 
Bovine3K instead of the BovineSNP50, reduced the 
concordance with pedigree-based breed composition 
from 89 to 83%. Frkonja et al. [9] showed that the esti-
mated admixture in Swiss Fleckvieh cattle using 4000 
equally-spaced SNPs was very similar to that using all 
50k SNPs, and that selecting SNPs based on FST values 
could yield very similar estimates with as few as  ~ 500 
SNPs. Previously, it was suggested that if a targeted 
small SNP panel is used to derive breed composition, 
including low MAF SNPs, it may help to obtain more 
accurate predictions [28]. Our results from the broiler 
data showed that removing SNPs with a MAF lower 
than 0.1 in the entire data hardly affects the results, 
suggesting that applying the usual low MAF filtering 
in 50k SNPs does not affect the estimated line or breed 
composition.

Our implementation of the LR method was devel-
oped specifically for the dam lines of a 3-way cross, as 
well as the post-processing of results of all methods to 
meet expectations of the line composition both within 
and across 3-way crossbred animals, implying that we 
assumed that all the 3-way crossbred animals indeed 
belonged to this breed category. However, the meth-
ods presented could also be applied to verify or estab-
lish the type of cross in the first place, for instance to 
check if none of the animals actually were F1’s rather 
than 3-way crossbred animals. In such applications, the 
rules that we applied in the LR method should be omit-
ted, as well as the post-processing step applied for all 
methods. Thus, estimation of line composition of cross-
bred animals may have to be done twice: the first time 
to confirm the type of cross, considering all possible 
lines involved in the crossbred animal, and the second 
time to refine estimated line proportions using the then 
established or confirmed type of cross. These estimated 
line proportions could then be used in breeding value 
estimation to model the contribution of both dam lines 
to the crossbred animals, rather than considering the 
same effect for all animals belonging to the same cross. 
Whether or not such refined modelling of line compo-
sition affects estimated genomic breeding values, likely 

depends on the differences in genetic level between the 
dam lines for the various breeding goal traits.

Conclusions
The dam line contributions in 3-way crossbred animals 
can be very accurately estimated as the proportions 
of alleles that are assigned to the different dam lines, 
based on comparing phased genotypes of crossbred ani-
mals against haplotype libraries of the purebred paren-
tal lines that are involved in the crossbreeding program. 
Therefore, these BOA-derived dam line proportions 
can be used as a gold standard to empirically validate 
methods to estimate the dam line proportions that are 
much easier to implement, and computationally less 
demanding. Of all considered methods in this study, the 
relationships with the maternal grandparents achieved 
the highest accuracy, and were only marginally affected 
if the maternal lines were more closely related to each 
other. We showed that linear regression of the cross-
bred genotypes on line allele frequencies and ADMIX-
TURE achieved similar accuracy for unrelated parental 
lines as the relationship with the maternal grandpar-
ent, but much lower accuracy if the parental lines 
were separated 20 or less generations ago. Neverthe-
less, parental lines in most pig and poultry crosses are 
likely more distantly related than that, suggesting that 
ADMIXTURE and LR are appropriate methods to pre-
dict dam line contribution in 3-way crossbred animals. 
Moreover, LR is straightforward to implement and can 
be easily adapted to consider the specific nature of the 
crossbred animals analysed. Finally, for almost all the 
methods, there was some benefit from adjusting esti-
mates to fit within the parameter space, i.e., by ensuring 
that the sum of dam line contributions within animals 
was equal to 0.5, and that within dam line and across 
animals the average was equal to 0.25.
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