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Abstract 

Background  Selecting animals for feed efficiency directly impacts the profitability of the beef cattle industry, which 
contributes to minimizing the environmental footprint of beef production. Genetic and environmental factors influ-
ence animal feed efficiency,  leading to phenotypic variability when exposed to different environmental conditions 
(i.e., temperature and nutritional level). Thus, our aim was to assess potential genotype-by-environment (G × E) inter-
actions for dry matter intake (DMI) and residual feed intake (RFI) in Nellore cattle (Bos taurus indicus) based on bi-trait 
reaction norm models (RN) and evaluate the genetic association between RFI and DMI across different environmental 
gradient (EG) levels. For this, we used phenotypic information on 12,958 animals (young bulls and heifers) for DMI 
and RFI recorded during 158 feed efficiency trials.

Results  The heritability estimates for DMI and RFI across EG ranged from 0.26 to 0.54 and from 0.07 to 0.41, 
respectively. The average genetic correlations (± standard deviation) across EG for DMI and RFI were 0.83 ± 0.19 
and 0.81 ± 0.21, respectively, with the lowest genetic correlation estimates observed between extreme EG levels 
(low vs. high) i.e. 0.22 for RFI and 0.26 for DMI, indicating the presence of G × E interactions. The genetic correlation 
between RFI and DMI across EG levels decreased as the EG became more favorable and ranged from 0.79 (lowest 
EG) to 0.52 (highest EG). Based on the estimated breeding values from extreme EG levels (low vs. high), we observed 
a moderate Spearman correlation of 0.61 (RFI) and 0.55 (DMI) and a selection coincidence of 53.3% and 40.0% for RFI 
and DMI, respectively.

Conclusions  Our results show evidence of G × E interactions on feed efficiency traits in Nellore cattle, especially 
in feeding trials with an average daily gain (ADG) that is far from the expected of 1 kg/day, thus increasing reranking 
of animals.
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Background
In recent years, various worldwide beef cattle breeding 
programs have included feed efficiency-related traits as 
a selection criterion to increase the profitability of beef 
production and minimize the industry’s environmen-
tal impact. Feeding represents approximately 70% of 
the total beef cattle production costs [1], and improving 
individual feed efficiency could potentially influence the 
profitability and sustainability of beef cattle production 
systems [2]. Feed efficiency-related traits are controlled 
by different physiological and biological processes that 
are associated with feed intake and energy expenditure 
[3, 4]. In this context, variation in feed composition and 
availability may result in different weight gain ratios, 
which could potentially be impacted by genotype-by-
environment (G × E) interactions [5].

Both genetic and environmental factors affect individ-
ual feed efficiency traits, leading to phenotypic variability 
in response to exposure to divergent environmental con-
ditions [6–8]. Previous studies indicated that animals that 
are fed high-energy diets had a significantly improved 
feed efficiency as compared to those fed low-energy diets 
[9]. In this context, evaluating the evidence of G × E inter-
actions on economically important traits is essential to 
selecting breeding animals with progeny showing good 
performance even under challenging conditions [8, 10, 
11].

In spite of several studies that have evaluated feed 
efficiency traits under the assumption of independent 
genetic and environmental effects in the models used to 
estimate genetic parameters [12–15], the effect of G × E 
interactions on the genetic parameters and breeding val-
ues for feed efficiency traits, such as dry matter intake 
(DMI) and residual feed intake (RFI), across environmen-
tal gradients (EG) remain unknown in Nellore cattle (Bos 
taurus indicus) populations. In taurine breeds (Bos tau-
rus taurus), Durunna et al. [9] reported evidence of G × E 
interactions for RFI and DMI in crossbred steers fed with 
growing and finishing diets.

G × E interactions occur when a genotype expresses 
different performances in different environmental or 
management conditions [6]. G × E interactions can be 
assessed based on genetic correlations for the same trait 
measured across environments. Genetic correlations 
lower than 0.80 have been suggested to indicate a signifi-
cant effect of G × E interactions on the target traits [7], 
with potential reductions in selection response [8]. In 
this context, G × E interactions represent a major chal-
lenge for breeding programs, as they are an important 
source of phenotypic variation in animals raised across 
different environments. G × E interactions also affect the 
genetic variance and re-ranking among selection candi-
dates [16, 17].

In Brazil, feed efficiency trials have been carried out 
on experimental stations and commercial herds across 
diverse geographical and climatic regions or nutritional 
strategies [18]. Although an average daily gain (ADG) 
of approximately 1 kg/day is recommended for feeding 
trials [5], possible differences in diet composition and 
environmental conditions during different feeding trials 
may result in differences in ADG. In this context, animals 
from herds with a greater selection emphasis on growth 
traits tend to have a higher genetic merit for ADG, which 
influences the feeding intake needed to meet their energy 
requirements and, consequently, the RFI results. Thus, 
comparisons of the expected estimated breeding values 
(EBV) between feeding trials conducted under differ-
ent management conditions, with different diet compo-
sitions, and with animals from multiple herds are often 
challenging [9, 19]. Although most feed efficiency trials 
follow standard nutritional recommendations for diet 
formulation, the chemical composition of the diets can 
lead to divergent nutrient intake [20].

In beef cattle, G × E interactions have been evaluated 
for several traits based on reaction norm (RN) models 
and continuous EG levels, including the estimated aver-
age performance of contemporary groups (CG) [21–23]. 
The RN model links the phenotypic variability to an envi-
ronmental value through the polynomial function, where 
the polynomial coefficients indicate the expected average 
EBV of the animal (intercept) and the slope coefficient 
represents the animal response to environmental changes 
[24–26]. Evaluating G × E interactions is crucial to opti-
mize the design of breeding programs and enhance the 
genetic improvement of feed efficiency-related traits 
measured across environments. Thus, the aim of this 
study was to assess the level of G × E interactions for DMI 
and RFI in Nellore cattle based on a bi-trait RN model 
and evaluate the genetic correlation between DMI and 
RFI across EG levels.

Methods
Field data
The phenotypic information for feed efficiency-
related traits was measured on 12,958 Nellore animals 
(9170 males and 3788 females) and was provided by 
the National Association of Breeders and Research-
ers (ANCP, Ribeirão Preto, SP, Brazil; www.​ancp.​org.​
br). Animals were recorded during 158 feeding trials 
and belonged to three commercial herds (Nelore HoRa, 
Cornélio Procópio, PR; Rancho da Matinha, Uberaba, 
MG; and AgroNova, Barra do Garças, MT, Brazil) and 
two research centers (Embrapa Cerrados, Goiânia, GO; 
and Federal University of Uberlândia, Uberlândia, MG, 
Brazil). The dataset used includes phenotypic informa-
tion for ADG, DMI, and RFI, following the procedures 

http://www.ancp.org.br
http://www.ancp.org.br
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for measuring individual feed intake in beef cattle [5]. 
The datasets are highly connected due to the use of com-
mon sires across herds through artificial insemination 
(AI), with at least five genetic links across the feeding 
trials, which were evaluated using the AMC program 
[27]. The animals were raised on pasture-based systems 
(Urochloa brizantha cv). The commercial herds adopt 
different nutritional practices with some farms provid-
ing protein and mineral supplementation, especially 
during the dry season, while others providing only urea 
supplementation.

Phenotypic information
The animals received an ad libitum mixed diet during the 
feeding trials, allowing refusals from 5 to 10%. The feed-
ing trial was performed in group pens from 2011 to 2017 
with animals grouped by sex. Feed intake was recorded 
automatically based on the GrowSafe (www.​vytel​le.​com) 
and Intergado (www.​inter​gado.​com) feeding systems. 
The feeding trials comprised at least 21  days for adap-
tation to the feedlot diet and management and an aver-
age of 64.74 ± 29.6 days for the data collection period of 
DMI and ADG. Animals were weighed without fasting 
at the beginning and end of the feeding trial and every 
14  days during the experimental period. Total mixed 
ration (TMR) was offered over the years but differed in 
composition and ingredients. Diets were formulated as 
described by Mendes et al. [5], based on corn silage and 
commercial concentrate, with an average of 64% of total 
digestible nutrients (TDN), 13% of crude protein (CP), 
76% of dry matter (DM), and formulated for different 
weight gains/day. The diets were adjusted based on the 
percentage of dry matter (%DM) to guarantee 2.17 Mcal/
kg for metabolizable energy (ME) and 1.3 MJ/kg for net 
energy for gain (NEg). In addition, samples of roughage, 
concentrate, and diet refusals were collected to evalu-
ate their chemical composition, such as %DM, which is 
crucial for evaluating DMI and feed efficiency. Thus, the 
%DM in the diet was determined from weekly samples of 
the diets offered and refused.

The DMI was estimated as the feed intake per animal 
recorded automatically by the GrowSafe or Intergado 
feeding system with subsequent adjustments for dry mat-
ter content and expressed as kg/day. ADG was defined as 
the slope from the linear regression of body weight (BW) 
on feeding trial days. Finally, residual feed intake (RFI) 
was estimated within each contemporary group (CG), 
which was defined by year and season of the feeding trial, 
farm, sex (males and females were evaluated in differ-
ent groups) and management groups, as the difference 
between the observed and expected feed intake consider-
ing each animal’s average metabolic body weight (MBW) 

and ADG, using the equation proposed by Koch et  al. 
[19] as follows:

where b0 is the intercept, b1 and b2 are the linear regres-
sion coefficients for ADG and MBW, respectively, and e 
is the residual effect representing the RFI estimate. The 
MBW was calculated as:

where α is the intercept of the regression equation which 
represents the body weight at the beginning of the feed-
ing trial test; and b is the linear regression coefficient 
which represents the ADG; and DFT is the number of 
days of the feeding trial. The descriptive statistics for 
DMI and RFI are in Table 1.

Reaction norm models
A reaction norm model with two steps [11, 28] was con-
sidered in the present study. In the first step, the ADG 
during the feeding trials was used to define the EG lev-
els, given that the actual ADG shows significant variation 
from the recommended ADG of 1.0 kg per day [5]. The 
best linear unbiased estimates (BLUE) solutions of CG for 
ADG were used to quantify potential differences between 
the management and the environmental conditions (i.e., 
nutritional differences) during the feeding trials.

First step—estimation of the environmental gradient 
levels
The EG levels describing the environmental condition 
were based on the BLUE solutions of CG for ADG as they 
are expected to capture differences in management and 
environmental factors experienced by the animals during 
the feeding trials. The CG solutions were obtained con-
sidering an animal model via best linear unbiased predic-
tion (BLUP) as follows:

where y is the vector of phenotypic information for ADG; 
b is the vector of fixed effects of CG and age at feed-
ing trials as a linear covariate, a is the vector of additive 
genetic effects assumed to follow N (0,Aσ

2
a) , where σ2a is 

the additive genetic variance for ADG and A is the pedi-
gree relationship matrix; and e is the vector of residual 
effects assumed N (0, Iσ2e) , where I is an identity matrix 
and σ2e is the residual variance. X and Z are the incidence 
matrices related to the systematic and additive genetic 
effects, respectively. The EG levels were obtained by 
standardizing the BLUE solutions of CG to a mean of 0 
and a standard deviation (SD) of 1.

DMI = b0 + b1AGD+ b2MBW+ e,

MBW =

[
α + b ∗

(
DFT

2

)]0.75
,

y = Xb+ Za + e,

http://www.vytelle.com
http://www.intergado.com
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Second step—reaction norm model
Genetic parameters for DMI and RFI across the EG levels 
were estimated based on a bi-trait reaction RN model as 
follows:

where yij is the vector of phenotypic records for DMI 
and RFI of the animal i on EG level j , b is the vector of 
fixed effect of CG and age of animal as a linear covari-
ate, X is the incidence matrix, ωf is the vector of the f-th 
fixed regression coefficient for intercept ( f = 0 ) or slope 
( f = 1 ) on �

(
EGj

)
 ; �f

(
EGj

)
 is the vector containing the f

-th linear Legendre orthogonal polynomials correspond-
ing to EG level j ( EGj) , αfi is the vector of the random 
regression coefficients for the additive genetic effects of 
the intercept ( f = 0 ) or slope ( f = 1 ) corresponding to 
animal i on EG level j , and eij is a vector of random resid-
ual effects. The bi-trait RN was evaluated considering 
the residual variances as homogeneous or heterogeneous 
across EG levels. For heterogeneous residual variances, 
the different classes of residual variance were determined 
using the K-means clustering approach [29] and the best 

yij = Xb+

∑1

f=0
ωf�f

(
EGj

)
+

∑1

f=0
αfi�f

(
EGj

)
+ eij,

model with different classes of residual variance was cho-
sen based on the Bayesian information criterion (BIC) 
[30]. For this we considered 11, nine, seven, six, and five 
classes of residual variance (Table 2). In addition, a quad-
ratic Legendre orthogonal polynomial was tested for the 
best linear model (Table 3).

The genetic variance ( ̂σ2aEGj
 ) and heritability ( ̂h

2

EGj
 ) 

estimates for DMI and RFI across the EG levels were 
calculated based on the following equations: 
σ̂
2
aEGj

=�fKab�f ′ ; where Kab is the matrix of estimated 
(co)variances pertaining to the random regression coef-
ficients for the additive genetic effects of the intercept 
and slope. The heritability ( ̂h

2

EGj
 ) for each EG level was 

determined as follows: ĥ
2

EGj
=

σ̂
2
aEGj

σ̂
2
aEGj

+σ̂2eEGj

 ; σ̂2aEGj
 is the addi-

tive genetic variance and σ̂2eEGj
 is the residual variance 

considering heterogeneous variance for EG level j . The 
genetic correlation across EG levels ( rEGj,EGj′ ) was 
determined as follows: 
rEGj,EGj′ = σEGj,EGj′/

√
σ̂
2
aEGj

∗ σ̂
2
aEGj′

 , where σEGj,EGj′ rep-
resents the covariance between EG level j and EG level 

Table 1  Descriptive statistics for dry matter intake (DMI), residual feed intake (RFI), and average daily liveweight gain (ADG) in Nellore 
cattle and feeding trials information

Variable RFI (kg/day) DMI (kg/day) ADG (kg/day)

Average − 0.001 8.496 1.205

Standard deviation − 0.720 2.063 0.350

Minimum − 4.931 3.171 − 0.403

Maximum 4.698 18.748 4.335

Feeding trials information

 Number of trials with only males 118

 Number of trials with only females 40

 Animals in the pedigree 23,665

 Sires 802

 Dams 6833

 Sires with progeny records 510

 Dams with progeny records 6349

 Number of contemporary groups 505

Table 2  Group of environment gradient (EG) considered for each class of residual variance

CL: class of residual variance

Class EG1 (− 1.5) EG2 (− 1.2) EG3 (− 0.9) EG4 (− 0.6) EG5 (− 0.3) EG6 (0.0) EG7 (0.3) EG8 (0.6) EG9 (0.9) EG10 (1.2) EG11 (1.5)

Eleven CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9 CL10 CL11

Nine CL1 CL1 CL2 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9

Seven CL1 CL2 CL2 CL2 CL3 CL3 CL3 CL4 CL5 CL6 CL7

Six CL1 CL2 CL2 CL2 CL3 CL3 CL3 CL4 CL5 CL6 CL6

Five CL1 CL2 CL2 CL2 CL3 CL3 CL3 CL4 CL5 CL5 CL5



Page 5 of 12Silva Neto et al. Genetics Selection Evolution           (2023) 55:93 	

j′ , which are estimated in the same way as the additive 
genetic variance for each EG level.

The EBV for animal i at each EG level were obtained 
using the following equation: ĝiEGj

=αfi�f
′ ; where αfi is 

the vector of the additive genetic values for the intercept 
and slope estimates of animal i and �f

′ is the transposed 
vector of the Legendre orthogonal polynomials for each 
EG level. Pearson’s and Spearman’s rank correlation coef-
ficient for EBV across EG levels were used to assess the 
reranking of 50 sires that were selected based on the 
highest EBV values for a medium EG level (EG = 0) and 
with at least five progenies recorded at low, medium, and 
high EG levels. To evaluate the sire coincidence between 
the low, medium, and high EG levels, we selected 15 sires 
with the highest EBV in these EG levels.

The genetic analyses were performed using the Wombat 
software [31] based on the average information restricted 
maximum likelihood (AI-REML) algorithm. The mod-
els were compared using the BIC [30], according to the 
following equation: BIC = −2logL+ plog(N− r(X)) , 
where p is the number of parameters estimated for the 
model, N is the number of phenotypic records for DMI 
and RFI, r(X) is the rank of the coefficient matrix of fixed 
effects in the analyzed model, and logL is the maximum 
log-likelihood.

Environmental sensitivity
A plasticity scale was assumed based on the absolute 
individual value of the slope ( f1 ) and standard deviation 
of the population slope ( σf 1 ). The animals were classi-
fied as robust ( 

∣∣f1
∣∣ < σf 1 ), plastic ( σf 1 <

∣∣f1
∣∣ < 2σf 1 ), and 

highly plastic ( 
∣∣f1

∣∣ > 2σf 1).

Results and discussion
Comparison of reaction norm models
Based on the BIC criteria, on the one hand, a linear 
model considering heterogeneous residual variances with 
six classes (Lin_het_6) was the most appropriate model 
to fit the residual structure of DMI and RFI, as presented 
in Table  3. On the other hand, a quadratic model con-
sidering six classes of residual variance (Qua_het_6) did 
not improve the model fit of the data. Among the mod-
els tested, the model that assumed homogeneous resid-
ual variances (Lin_hom) showed the highest (worst) BIC 
value. Thus, models considering heterogeneous residual 
variances fitted the data better than those considering 
a homogeneous residual variance. To select the optimal 
model, Meyer [32] recommended to balance the classes 
of residual variance and the amount of data available, 
especially when the data are irregularly distributed. In 
this context, Carvalheiro et al. [33], Mota et al. [11] and 
Carvalho Filho et al. [34], suggested that for the evalua-
tion of G × E interactions for productive and reproductive 
traits in Nellore cattle, RN models with heterogeneous 
residual variances provided a better fit to the data than 
homogeneous residual variances.

Phenotypic means of RFI, DMI, and ADG across EG levels
The phenotypic means and standard deviation by EG for 
the traits studied are in Table 4. For DMI and ADG, as the 
environment became more favorable (or less restricted), 
the mean values showed an increasing pattern, ranging 

Table 3  Comparison of the reaction norm models according 
to the log-likelihood function (LogL) and Schwarz-Bayesian 
information criterion (BIC) for dry matter intake (DMI) and 
residual feed intake (RFI) in Nellore cattle

Italic: model used; CRV: Residual variance classes; Lin_hom: linear model with 
homogeneous residual variance; Lin_het_11: linear model with eleven classes of 
residual variance; Lin_het_9: linear model with nine classes of residual variance; 
Lin_het_7: linear model with seven classes of residual variance; Lin_het_6: 
grouping the last two classes of residual variance; lin_het_5: model lin_het_7 
grouping the last three classes of residual variance; Qua_het_6: quadratic model 
with six classes of residual variance

Model PO CRV LogL BIC NP

Lin_hom 2 1 2988.3 3054.1 13

Lin_het_11 2 11 2805.9 3023.5 43

Lin_het_9 2 9 2811.3 2998.6 37

Lin_het_7 2 7 2830.0 2986.9 31

Lin_het_6 2 6 2819.0 2960.7 28

Lin_het_5 2 5 2853.2 2979.7 25

Qua_het_6 3 6 2823.6 3021.0 39

Table 4  Number of records (N) and descriptive statistics for 
dry matter intake (DMI), residual feed intake (RFI) and average 
liveweight gain (ADG) by environmental gradient (EG) in Nellore 
cattle

DM: dry matter
* Values in parentheses represent the environmental gradient solution 
standardized for mean zero and standard deviation of 1 for ADG BLUE (best 
linear unbiased estimate) solutions

EG* N DMI (kg DM/day) RFI (kg DM/day) ADG (kg/day)
Mean ± SD

1 (− 1.50) 254 6.255 ± 1.036 0.00 ± 0.512 0.680 ± 0.191

2 (− 1.20) 1312 6.907 ± 1.027 0.00 ± 0.649 0.851 ± 0.224

3 (− 0.90) 1938 7.379 ± 1.531 0.00 ± 0.652 0.978 ± 0.205

4 (− 0.60) 2494 7.846 ± 1.278 0.00 ± 0.651 1.093 ± 0.208

5 (− 0.30) 2117 8.472 ± 2.027 0.00 ± 0.724 1.201 ± 0.222

6 (0.00) 1646 9.419 ± 2.553 0.00 ± 0.758 1.313 ± 0.236

7 (0.30) 1512 9.677 ± 1.691 0.00 ± 0.726 1.445 ± 0.289

8 (0.60) 834 10.674 ± 1.690 0.00 ± 1.026 1.566 ± 0.298

9 (0.90) 499 10.349 ± 1.578 0.00 ± 0.616 1.698 ± 0.239

10 (1.20) 151 10.353 ± 1.746 0.00 ± 0.840 1.817 ± 0.225

11 (1.50) 201 11.498 ± 0.094 0.00 ± 0.980 1.933 ± 0.292
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from 6.255 to 11.498 (kg of DM/day) for DMI and from 
0.680 to 1.928 (kg/day) for ADG. Following the recom-
mendations that a diet energy intake that allows an ADG 
of around 1.0 kg/day during the feeding trials should be 
provided [5], there was a large variability in ADG across 
EG (Table  4). The potential physicochemical differences 
in the ingredients used for the formulation of the diets, 
which were caused by the vast climatic variation and geo-
graphic regions across the Brazilian regions where the 
trials were conducted, in addition to the greater selec-
tion emphasis on body weight for specific farms, might 
explain the considerable variation observed in the aver-
age ADG of the animals evaluated in this study.

In pigs, differences in feed composition have been 
reported as a crucial source of environmental variation 
and G × E interaction [35], with ADG, DMI, and RFI 
showing sensitivity to these variations in environmental 
conditions. Furthermore, improving feed efficiency in 
production systems generally increases environmental 
sensitivity, whereby differences in dietary energy con-
centration significantly impact feed efficiency outcomes 
[36]. Therefore, it is important to monitor and manage 
the impact of selection across different feeding trials to 
improve these traits successfully.

Heritability, phenotypic, and additive genetic variance 
estimates
The heritability estimates obtained for RFI and DMI 
across EG ranged from 0.07 to 0.41 (Fig.  1a) and from 
0.26 to 0.54 (Fig.  1c), respectively. Both RFI and DMI 

showed similar patterns for heritability estimates across 
EG, i.e., first decreasing from the lower EG level (− 1.5) 
until a medium EG level (0.60) and then increasing for 
higher EG (0.90) levels. Differences in heritability esti-
mates across different EG levels occur due to the effect 
of G × E interactions leading to changes in genetic and 
phenotypic variances between EG levels for RFI (Fig. 1b) 
and DMI (Fig. 1d). Based on these results, it seems that 
environmental factors might have a greater impact on 
phenotypic variations than additive genetic effects. This 
could be due to the enhanced EG level leading to higher 
ADG or to the possibility of the animal’s genetic potential 
being masked by the environment.

The heritability estimates obtained for RFI (0.13) 
and DMI (0.34) for the medium EG level (0.0) were 
slightly different from those reported in the litera-
ture, with models that do not consider G × E interac-
tions. However, the values across EG levels (Fig.  1a 
and c) corroborate with the expected values observed 
in the literature. The heritability estimates were lower 
than those described in the literature for RFI, ranging 
from 0.17 to 0.28 [4, 14, 37, 38]. For DMI, the herit-
ability estimates were within the range observed in 
other Nellore cattle studies, with values ranging from 
0.23 to 0.47 [4, 14, 37, 38]. However, the differences 
in heritability estimates are probably due to the dif-
ferences between populations (as genetic parameters 
are population-specific due to differences in allele fre-
quencies), environmental conditions, and the statisti-
cal model used to estimate the variance components. 

Fig. 1  Heritability ( h2 ) for residual feed intake (RFI) (a) and dry matter intake (DMI) (c), and additive genetic variance ( σ2a ) and phenotypic variance 
( σ2p ) estimates for RFI (b) and DMI (d) across environmental gradients
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Higher genetic responses are expected at EG levels of 
1 for RFI and at EG levels of 1 and 9 for DMI due to 
higher heritability estimates (Fig. 1).

In a study that estimated genetic parameters for 
feed efficiency traits in crossbred cattle fed growing 
and finishing diets under successive feeding regimes, 
Durunna et  al. [9] reported higher heritability values 
for DMI and RFI (0.43 and 0.36, respectively) with the 
finisher-fed regime than with the grower-fed regime 
(0.30 and 0.19, respectively). The authors justified 
these results by the greater additive genetic varia-
tion for DMI and RFI in the finisher-fed group than 
in the grower-fed group. The estimates of the addi-
tive genetic variance for DMI increased gradually as 
environmental conditions improved (0.26 to 0.75), i.e., 
better environments (assessed based on greater ADG) 
enhance the differences between animals for this trait. 
Regarding RFI, the additive genetic variance showed a 
constant behavior along the EG (0.07 to 0.11; Fig. 1).

The phenotypic variance estimated for RFI and 
DMI increased across EG levels, ranging from 0.27 to 
1.08 and from 0.55 to 1.71, respectively. Thus, a less 
restricted environment (higher ADG) resulted in the 
largest phenotypic variability for both traits. However, 
for RFI, this increase was not due to the greater addi-
tive genetic variance, but it reflected the increase in 
environmental variance, and consequently, the herita-
bility estimates decreased for RFI along the EG. There-
fore, the influence due to variance heterogeneity was 
greater for RFI than for DMI, probably because RFI 
had a larger influence on environmental variance along 
the EG.

Genetic correlation estimates for RFI and DMI 
across environmental gradients
The genetic correlation estimates for the evaluated traits 
across EG levels ranged from 0.22 to 0.99 (0.81 ± 0.21) for 
RFI and from 0.26 to 0.99 (0.83 ± 0.19) for DMI, which 
indicates the presence of G × E interactions (Fig.  2). 
When the EG levels were more similar, we observed 
genetic correlation estimates higher than 0.80, and as 
the EG levels were more divergent, the genetic correla-
tion decreased below 0.80, indicating the occurrence of 
G × E interactions across EG [7]. The lower genetic cor-
relations between the extreme EG levels represent a 
significant effect of G × E interactions, potentially lead-
ing to reranking of breeding animals due to variation in 
EBV across EG levels [11, 39]. Genetic correlations close 
to 0.80 were obtained by Godinho et al. [35] for RFI and 
average daily feed intake in pigs during the early phase, 
and below 0.80 for RFI (0.74) in the grower phase with 
two diets. The authors reported that the genetic progress 
observed when applying selection under one diet might 
not be the same as that observed when selecting animals 
with another diet during these phases due to a reranking 
of the genotypes. Thus, in pigs, these traits are sensitive 
to changes in the source of energy nutrients in the diets.

Durunna et al. [9] evaluated G × E interactions for feed 
efficiency traits in crossbred cattle that were fed grow-
ing and finishing diets under successive feeding regimes 
and reported the existence of G × E interactions for 
DMI and RFI. Low genetic correlation estimates were 
observed between DMI (0.63) and RFI (0.39) measures 
with the two diets, indicating differential performance 
across environments, i.e., feed efficiency may depend on 

Fig. 2  Genetic correlation estimates for residual feed intake (RFI) (a) and dry matter intake (DMI) (b) across environmental gradients (EG) in Nellore 
cattle. The colors indicate the magnitude of the genetic correlations
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the diet provided. In this context, G × E models provide a 
new tool for the evaluation of traits measured in different 
environments where genetic heterogeneity might exist.

Genetic correlation estimates between the same trait 
evaluated in different environments have been used to 
evaluate the degree of the sensitivity of animals to envi-
ronmental variations for many traits of economic impor-
tance in beef cattle [11, 16, 34, 39, 40]. When the genetic 
correlation between EG levels is below 0.80, the genes 
that control the additive genetic variance differ between 
environments or act differently [22]. Thus, the results 
presented here show evidence of G × E interactions on 
RFI and DMI, which reflect changes in genetic param-
eters according to environmental fluctuations, i.e., differ-
ent ADG in feeding trials influenced the additive genetic 
variance estimates of DMI and RFI.

Estimates of the genetic and phenotypic correlations 
between RFI and DMI across EG
The estimates of genetic and phenotypic correlations 
between RFI and DMI across EG were positive, rang-
ing from 0.52 to 0.79 and from 0.63 to 0.81, respectively 
(Fig.  3). These results were expected since RFI is the 
residual of the regression equation between observed 
DMI, ADG, and MBW. Previous studies that estimated 
genetic and phenotypic correlations between DMI and 
RFI without considering G × E interactions obtained 
values ranging from 0.51 to 0.85 and from 0.70 to 0.81, 
respectively [37, 41–44]. This association between RFI 
and DMI has been widely explored since more efficient 
animals evaluated for RFI are usually animals that con-
sume less feed, i.e., selecting animals with a negative RFI 
should lead to a decrease in DMI and consequently to 
a decrease in the nutritional requirements of the herd 
without changing the performance of the animals [44, 
45]. Although the magnitude of the genetic correla-
tions between RFI and DMI across environments indi-
cates a similar genetic background between these traits, 

especially in more restricted environments (EG 1 to EG 
3), there was a decrease in the magnitude of the correla-
tions as the EG level increased (less restricted environ-
mental groups).

In restricted EG levels (lower ADG), animals showed 
greater efficiency due to their lower DMI, resulting in 
lower RFI values. Based on these results, animals with 
a higher genetic potential for feed efficiency (i.e., lower 
RFI) tend to have lower DMI. In spite of the nutritional 
recommendation to provide a diet to attain an ADG of 
1 kg/day during the feeding trial [5], differences in diet 
quality across tests can be expected due to the bromato-
logical variation of the diets. The ability of an animal to 
use energy from the diet provided is associated with the 
rumen microbial population, converting the diet energy 
into body weight gain [46]. Allen [47] and Mertens [48] 
concluded that physical and physiological factors regu-
lating feed intake change with increasing digestibility or 
diet quality. Thus, differences in diet quality across tests 
would affect the regulation of feed intake and conse-
quently feed efficiency.

A reduction in feed efficiency was observed in less 
restricted EG conditions (Table  4), probably due to the 
larger residual effect produced by a higher proportion of 
animals from farms with greater selection emphasis on 
growth traits, which increases the maintenance require-
ments and phenotypic mean in the most favorable EG. 
However, for a better understanding of the genetic mech-
anisms that are involved in feed efficiency, the use of 
genomic information could provide a better explanation 
of the effects of G × E interactions on these traits. In the 
literature, there are few studies that have estimated the 
genetic correlations between traits related to feed effi-
ciency, such as RFI and DMI, measured in different envi-
ronments. Bi-trait RN models are a promising tool for 
genetic evaluation programs, as they allow the evaluation 
of the heterogeneity of variances in different environ-
ments for traits of economic importance. Therefore, the 
results presented in this study provide support and infor-
mation to researchers and breeders to define appropriate 
selection criteria for specific environments for genetic 
improvement of feed efficiency-related traits in beef cat-
tle populations that are raised in tropical conditions.

Genotype‑by‑environment interactions
The RN for 50 sires with the largest number of progeny 
(average of 86.04, ranging from 27 to 451) that were dis-
tributed in at least three EG levels, i.e., low, medium and 
high EG for RFI and DMI, showed reranking among these 
sires (Fig. 4a). The effect of G × E interactions on the sen-
sitivity of animals across EG levels, especially between 
extreme EG levels, was expected due to a genetic correla-
tion lower than 0.80 (Fig. 2). The average EBV for RFI and 

Fig. 3  Genetic and phenotypic correlation estimates 
between residual feed intake (RFI) and dry matter intake (DMI) 
across environmental gradients (EG) in Nellore cattle
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DMI were, respectively, − 0.027 kg/DM/day and 0.103 
kg/DM/day for the low EG level (− 1.5), − 0.053 kg/DM/
day and 0.122 kg/DM/day for the medium EG level (0.0), 
and − 0.085 kg/DM/day and 0.147 kg/DM/day for the 
high EG level (1.5) (see Additional file 1: Fig. S1). The pat-
tern of the RN reflects the significance of the G × E inter-
actions with the genotypes that have a high plasticity, 
i.e., a greater sensitivity to environmental changes, being 
associated with steeper slopes, while the more robust 
genotypes have flatter slopes. Based on the slope ( f 1 ) 
solutions, 43.3% and 42.9% of the animals were classified 
as highly plastic to environmental changes, and 56.7% 
and 57.1% as more robust to environmental changes for 
RFI and DMI, respectively. Among the more robust ani-
mals, i.e., ( 

∣∣f1
∣∣ < σf 1 ), at a medium EG level, 60% were 

considered better for both traits and 40% were consid-
ered better for one or neither of the traits, while 53% and 
only 40% were considered better for both traits at a low 
and high EG level, respectively.

The sire EBV for RFI and DMI across EG levels fol-
lowed similar trends (Fig.  4a). However, comparing 
the EBV of the top 15 sires for both traits (see Addi-
tional file 2: Tables S1 and S2), larger differences in EBV 
for DMI were observed between EG levels (see Addi-
tional file 2: Table S2), as indicated by the lower genetic 

correlation between extreme EG levels (Fig. 2b). Animal 
sensitivity to environmental variations plays a role in the 
phenotypic mean and the trait’s genetic variance under 
different environmental conditions [49]. RFI and DMI 
showed changes in the phenotypic mean (Table  4) and 
genetic variance (Fig. 1) according to EG level, and it is 
important to carefully evaluate animal selection for feed 
efficiency traits as the environment becomes more diver-
gent (e.g., greater diet variability). Spearman correlation 
and selection coincidence were estimated by selecting the 
50 sires with at least five progenies raised at low, medium, 
and high EG levels and with the highest EBV to visualize 
the effect of G × E interactions (Table 4). When the top 50 
sires that were ranked based on the EBV of animals with 
at least five progenies raised at low, medium, and high 
EG levels were considered, the Spearman’s correlation 
values were highest between the medium EG level and 
either the low or high EG levels for both traits (Table 5). 
These results indicate that the selection of animals for 
feed efficiency based on data from feeding trials with an 
expected ADG around 1 kg/day had less impact on sires’ 
rank across environments compared to selection based 
on data from extreme EG levels.

The selection coincidence of the sires that were ranked 
based on the highest EBV and the largest number of 

Fig. 4  Reaction norms for residual feed intake (RFI) (a), and dry matter intake (DMI) (c), and the number of matching and specific sires 
in the environments for RFI (b) and DMI (d) considering the 50 sires with the highest number of progeny number and top-ranked by EBV for RFI 
and DMI in the moderate environmental gradient (EG = 0.0)
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progenies between the medium and low EG levels was 
73.33% for RFI and 66.67% for DMI, and between the 
medium and high EG levels it was 80% for RFI and 70% 
for DMI (Table  5). These results indicate that most of 
the bulls with a superior genetic potential for feed effi-
ciency based on the performance of their progeny main-
tain this potential for feed efficiency at extreme EG levels. 
However, we compared the selection of animals per-
formed under extreme EG levels (low EG vs. high EG), 
and found lower Spearman correlations, 0.61 and 0.55, 

and lower selection coincidence percentages among the 
bulls, being 53.3% and 40.0%, for RFI and DMI (Table 5), 
respectively, which indicate a clear reranking of sires 
across extreme EG. These results indicate that selec-
tion decisions for feed efficiency-related traits based on 
EBV from more restricted environments would affect 
the ranking of sires in less restricted environments (and 
vice versa). Spearman’s correlations for the EBV of the 50 
sires with the largest progeny number between low and 
high EG levels were equal to 0.61 for RFI (Fig.  5a) and 
0.57 for DMI (Fig. 5b). These results indicate that these 
traits are influenced by G × E interactions when a smaller 
number of animals are shared among EG levels (Fig. 4). 
We observed that among the top 50 sires, only 16 for RFI 
(Fig. 4a) and 13 for DMI (Fig. 4b) were shared among the 
low, medium, and high EG levels.

The Spearman’s correlations when comparing sire EBV 
for RFI and DMI at the medium EG level with those at 
the other EG levels ranged from 0.85 to 1.00 (Fig. 5a) and 
from 0.83 to 1.00 (Fig. 5b), respectively, which indicates a 
small change in EBV ranking. Thus, on the one hand, the 
top sires selected at the medium EG level are expected 
to maintain their genetic superiority across EG levels. 
On the other hand, when the sires’ ranks were compared 
between extreme environmental conditions (i.e., low EG 
or high EG level), greater reclassification of sires was 
expected (Fig.  5). From a practical point of view, when 
animals are selected for RFI and DMI under feeding trials 
with ADG around 1 kg/day, small changes in animal per-
formance, or in reranking of top sires for RFI and DMI 
are expected. The presence or evidence of G × E interac-
tions for RFI and DMI caused small changes in the sires’ 
EBV when selection was applied at a medium EG level, 
and major reranking of the top sires in extreme environ-
ments. Therefore, it is crucial to follow the recommen-
dations proposed by Mendes et al. [5], i.e. to adequately 

Table 5  Spearman’s rank correlation and selection coincidence 
of top 50 sires for residual feed intake (RFI) and dry matter intake 
(DMI) with at least five progenies in three different environmental 
gradients

a Medium environmental gradient (EG) is the comparison criterion for selection 
coincidence
b Represents the percentage of sires in common between environments 
gradients evaluated

Scenariosa Spearman’s 
correlation

Selection 
coincidenceb

Residual feed intake (RFI)

 Medium EG vs low EG 0.85 73.3%

 Medium EG vs high EG 0.89 80.0%

 Low EG vs high EG 0.61 53.3%

Dry matter intake (DMI)

 Medium EG vs low EG 0.83 66.7%

 Medium EG vs high EG 0.90 70.0%

 Low EG vs high EG 0.57 40.0%

Number of sires and progenies 
under different environmental 
gradients (EG)

Low EG Medium EG High EG

 Number of sires with progeny 45 48 26

 Number of average progeny/
sire

28 58 9

 Total number of progenies 1273 2792 237

Fig. 5  Pearson’s correlation between the sire estimated breeding values (EBV) obtained in the low (red), moderate (blue), and high (green) 
environmental gradients (EG) across EG levels for residual feed intake (RFI) (a) and dry matter intake (DMI) (b)
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measure or collect RFI and DMI records in feed effi-
ciency trials under different conditions when performing 
national genetic evaluations for these traits.

Conclusions
Our results show clear evidence of genotype-by-envi-
ronment interactions on feed efficiency indicator traits 
in Nellore cattle. The breeding values for residual feed 
intake and dry matter intake were sensitive to environ-
mental changes. This interaction was particularly clear in 
more divergent environments, e.g. when the variance in 
average live weight gain was substantial during the feed-
ing trials. Furthermore, as the environmental conditions 
were less restricted (better environments), the expected 
correlated response in residual feed intake based on 
selection for dry matter intake is expected to decrease 
(and vice versa) since the genetic association between 
these traits was smaller in less restricted (better) envi-
ronments. From a practical point of view, when animals 
are selected for residual feed intake and dry matter intake 
under feeding trials that allow an average daily gain of 
approximately 1  kg/day (i.e., from 0.9 to 1.4  kg/day), a 
slight change in animal performance is expected. How-
ever, when animals are selected for both traits in feeding 
trials with an ADG that is far from the average value, an 
increase in reranking is observed, which may be caused 
by the difference in nutritional levels masking the genetic 
potential and biasing the genetic evaluations for feed effi-
ciency in progeny that are fed for a different ADG.
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