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Abstract 

Background  Low-pass whole-genome sequencing and imputation offer significant cost savings, enabling sub-
stantial increases in sample size and statistical power. This approach is particularly promising in livestock breeding, 
providing an affordable means of screening individuals for deleterious alleles or calculating genomic breeding values. 
Consequently, it may also be of value in companion animal genomics to support pedigree breeding. We sought 
to evaluate in dogs the impact of low coverage sequencing and reference-guided imputation on genotype concord-
ance and association analyses.

Results  DNA isolated from saliva of 30 Labrador retrievers was sequenced at low (0.9X and 3.8X) and high (43.5X) 
coverage, and down-sampled from 43.5X to 9.6X and 17.4X. Genotype imputation was performed using a diverse 
reference panel (1021 dogs), and two subsets of the former panel (256 dogs each) where one had an excess of Labra-
dor retrievers relative to other breeds. We observed little difference in imputed genotype concordance between refer-
ence panels. Association analyses for a locus acting as a disease proxy were performed using single-marker (GEMMA) 
and haplotype-based (XP-EHH) tests. GEMMA results were highly correlated (r ≥ 0.97) between 43.5X and ≥ 3.8X 
depths of coverage, while for 0.9X the correlation was lower (r ≤ 0.8). XP-EHH results were less well correlated, with r 
ranging from 0.58 (0.9X) to 0.88 (17.4X). Across a random sample of 10,000 genomic regions averaging 17 kb in size, 
we observed a median of three haplotypes per dog across the sequencing depths, with 5% of the regions return-
ing more than eight haplotypes. Inspection of one such region revealed genotype and phasing inconsistencies 
across sequencing depths.

Conclusions  We demonstrate that saliva-derived canine DNA is suitable for whole-genome sequencing, high-
lighting the feasibility of client-based sampling. Low-pass sequencing and imputation require caution as incorrect 
allele assignments result when the subject possesses alleles that are absent in the reference panel. Larger panels 
have the capacity for greater allelic diversity, which should reduce the potential for imputation error. Although 
low-pass sequencing can accurately impute allele dosage, we highlight issues with phasing accuracy that impact 
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haplotype-based analyses. Consequently, if accurately phased genotypes are required for analyses, we advocate 
sequencing at high depth (> 20X).

Background
The depth of coverage to which a genome is sequenced 
accounts not only for the depth but also for the breadth 
of the genome captured [1]. Given the non-uniform-
ity of whole-genome sequencing (WGS), low-pass 
sequencing at depths as low as 0.5X captures only a 
fraction of the genome. The principle behind sequenc-
ing at such a low depth is that by leveraging a panel of 
reference haplotypes, data can be phased and missing 
genotypes imputed, delivering cost-savings [2]. This 
strategy depends on several assumptions. First, that the 
phasing of the reference haplotypes is accurate. Pres-
ently, most genotype data are derived from array or 
short-read sequencing and, in the absence of trios or 
extended pedigrees, involve statistical phasing that can 
result in high switch error rates (> 5%), which relates to 
consecutive heterozygous genotypes being incorrectly 
phased with respect to one-another [3]. The stochastic 
nature of many phasing algorithms due to being based 
on hidden Markov models introduces further vari-
ability into phasing accuracy [3]. These switch errors 
subsequently impact imputation accuracy [4]. Second, 
imputation assumes that the initial genotypes or geno-
type likelihoods in the data to be imputed are accurate. 
A genotype’s likelihood from short-read sequencing is 
constrained by sequencing depth, given that it is the 
product of a genotype’s probability over all reads that 
span the base considered [5]. Finally, the composition 
of the reference panel of haplotypes can have a sig-
nificant role on imputation accuracy. For instance, in 
humans, a population-specific reference panel enriched 
for African haplotypes outperforms other panels when 
imputing African American individuals [6]. A similar 
observation has been reported in cattle, where within-
breed and multi-breed reference panels of varying sizes 
(30 to 150 animals) were evaluated and within-breed 
panels were found to outperform equally-sized multi-
breed panels [7]. That study also reported that a larger 
multi-breed panel that lacks the subject breed to be 
imputed, but which included distantly related breeds, 
returned the same degree of accuracy as a smaller 
within-breed panel. In dogs, several studies have dem-
onstrated that imputation accuracy is improved when a 
multi-breed diverse reference panel is used [8, 9]. The 
size and composition of the reference panel influence 
the minor allele frequency (MAF) of variants, and it is 
well established that variants with a low MAF are more 
difficult to impute accurately, as it is more challenging 

for imputation algorithms to establish their haplotype 
background [4, 7, 10].

Domesticated species have different life histories since 
they have been selectively bred for different purposes. 
It is important, therefore, to ensure that the reference 
panel used for imputation is designed to consider a sub-
ject breed’s origins. Due to a history of inbreeding, hap-
lotypes within pedigree dogs extend over long distances 
(up to 100 kb), and portions of these haplotypes are often 
shared between breeds at varying frequencies [11, 12]. 
Such a haplotype structure implies that accurate phas-
ing and imputation of genotypes are likely feasible with 
low-coverage sequencing data. Given that reference-
based imputation employs phased haplotypes, we expect 
accurately phased genotypes to result from the imputa-
tion workflow, although this does not appear to have 
been explored in the literature. With this in mind, we 
sequenced 30 Labrador retrievers at varying depths of 
coverage and, using a reference panel of wild canids and 
dogs from a diversity of breeds, evaluated the impact of 
sequencing depth on imputation accuracy and down-
stream association analyses for the chocolate coat colour 
phenotype. The aim of this study was to inform on the 
potential utility of low-pass sequencing and imputation 
in companion animals, and to evaluate the resulting hap-
lotype accuracy. However, our results will likely apply to 
any system where sample sizes and family information 
are limited, and where haplotype inference is important.

Methods
Sample collection and whole‑genome sequencing
We sampled 30 Labrador retrievers using saliva col-
lection kits and isolated DNA according to manu-
facturer protocols (PERFORMAgene PG-100, DNA 
Genotek Inc.). Library preparation (TruSeq DNA PCR-
free, 150  bp paired-end, 350  bp insert size) and WGS 
(NovaSeq 6000) of DNA were performed by Novogene 
(UK). Libraries were sequenced at approximately 50X 
depth of coverage (calculated as 43.5X post-alignment 
processing), and also resequenced at approximately 4X 
(calculated as 3.8X post-alignment processing) and 1X 
(calculated as 0.9X post-alignment processing) depths 
of coverage [see Additional file 1: Table S1]. Raw FASTQ 
files were preprocessed with the fastp v0.21.0 software 
[13] using default settings to remove short and low-
quality reads (length < 15, or base phred quality < 15 over 
40% of bases), read pairs where one read has > 5 N bases, 
and to trim polyG tails (minimum tail length = 10) and 
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adapter sequences. The filtered FASTQ files were aligned 
to the complete Labrador retriever genome assembly 
ROS_Cfam_1.0 (NCBI GenBank assembly accession: 
GCA_014441545.1) using the bwa-mem2 algorithm [14] 
and duplicates were marked with the GATK v4.2.0.0 [15] 
MarkDuplicates tool. These sequence processing steps 
are implemented in BAGpipe (https://​bitbu​cket.​org/​
enzo_​tale/​bagpi​pe). Alignment metrics were calculated 
with bamUtil stats [16].

Imputation reference panels
Publicly available sequence data for a diverse panel of 
dogs collated and processed for another ongoing project 
were used as a reference panel for imputation. These data 
were aligned to ROS_Cfam_1.0, and variants were called 
using the Strelka2 software [17]. The resulting genome 
variant call files (g.VCFs) were merged using Illumina’s 
gvcfgenotyper to generate a single VCF file for each auto-
some. A series of filtering steps were applied to retain 
only high-quality samples and variants [see Additional 
file 2: Figure S1]. From an initial 1706 samples and more 
than 1.4 billion variants, a final dataset of 1021 samples 
and 9.2  M (0.66%) variant records were retained [see 
Additional file 1: Table S2]. The variants included multi-
allelic single nucleotide variants (SNVs) and insertion-
deletion mutations (INDELs) that were decomposed 
into biallelic records using the bcftools program [18]. 
Two subset panels were derived from this ‘full’ reference 
panel. Panel 1 comprised 21 Labradors and 235 randomly 
selected samples (no more than 1 per breed or wild spe-
cies). Panel 2 replaced 20 of the Labradors from panel 1 
with randomly selected samples, ensuring no more than 
two per breed and wild species. The wild canids within 
the dataset included representatives of coyote, dingo, and 
wolf. Sporadic missing variants were imputed with BEA-
GLE v5.4 [19, 20].

Down‑sampling of sequence data and genotype 
imputation
Alignment files (BAM) for the Labrador retrievers that 
were sequenced at 43.5X in this study were down-sam-
pled using the sambamba v0.7.1 software [21] to 9.6X 
and 17.4X depths of coverage by retaining 20 and 40% of 
reads, respectively. Sequencing depths were subsequently 
determined with samtools coverage v1.10 [22]. For each 
dataset (43.5X, 17.4X, 9.6X, 3.8X, 0.9X), genotype likeli-
hoods (GL) were calculated using bcftools, as outlined 
in the GLIMPSE pipeline [23] documentation (https://​
odela​neau.​github.​io/​GLIMP​SE). Target sites for imputa-
tion were the 9.2 M variants in the full reference panel. 
GLIMPSE_chunk was used to define 20-Mb windows for 
imputation. GLIMPSE_phase was used to genotype GL 
and to phase genotypes using their respective reference 

panel. GLIMPSE_ligate was used to combine the chunks 
along each chromosome. In all cases, GLIMPSE v1.1.1 
static binaries were used. Following imputation, geno-
types with a genotype probability (GP) lower than 0.95 
were set to missing and phased variants were extracted 
using GLIMPSE_sample. Additional file 3: Figure S2 illus-
trates the workflow from DNA extraction through to 
imputation.

Concordance analyses
Concordance between genotypes sequenced at different 
depths of coverage relative to those at 43.5X depth, prior 
to imputation, were performed using the bcftools gtch-
eck tool. Post-imputation, concordance was evaluated 
using GLIMPSE_concordance by comparing post-impu-
tation genotypes from each reference panel to the 43.5X 
depth pre-imputation genotypes. Sites were evaluated if 
they had a minimum posterior probability of 0.9999 and a 
minimum depth of 1, 2, 5, and 10, for sequencing depths 
of 0.9X, 3.8X, 9.6X, and 17.4X, respectively. Additional 
file 4: Figure S3A illustrates the inputs for the two con-
cordance evaluations. Discordance between post-impu-
tation genotypes from each sequencing depth relative 
to pre-imputation genotypes at 43.5X depth was further 
analysed using bcftools gtcheck. Haplotype discordance 
was evaluated by splitting phased diploid genotypes into 
separate VCF files per haplotype and comparing equiv-
alent haplotypes between each sequencing depth and 
those at 43.5X. All statistical analyses of concordance 
results were performed in R.

Association analyses
We used chocolate coat colour as a proxy for a disease 
phenotype in the Labrador retrievers. Linear mixed 
model association analyses for the phenotype were 
performed with GEMMA v0.98.5 [24], accounting for 
genomic kinships and sex. Of the dogs that we sequenced, 
six were chocolate coloured, two were fox red, two were 
yellow, and 20 were black [see Additional file 1: Table S2]. 
The input files for GEMMA were prepared using Plink 
v1.90p [25] and a MAF filter of 0.01 was applied by 
GEMMA during the analyses [see Additional file 4: Fig-
ure S3B]. On average, 4.5  M ± 173  K variants were ana-
lysed for each sequencing depth and reference panel 
dataset. We also performed a haplotype-based analysis 
based on cross-population extended haplotype homozy-
gosity (XP-EHH), which was performed using the hapbin 
software [26]. The input files for hapbin were prepared 
with Plink and bcftools. We used the default EHH (0.05) 
and MAF (0.05) cutoffs implemented in hapbin. All sta-
tistical analyses on the GEMMA and hapbin results were 
performed in R.

https://bitbucket.org/enzo_tale/bagpipe
https://bitbucket.org/enzo_tale/bagpipe
https://odelaneau.github.io/GLIMPSE
https://odelaneau.github.io/GLIMPSE
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Results
Whole‑genome sequencing of canine saliva DNA requires 
over‑estimation of targeted depth
DNA isolated from saliva swabs of 30 Labrador retriev-
ers was whole-genome sequenced on the NovaSeq plat-
form, generating a mean data volume and base quality 
Q30 of 169.74 Gb and 92%, respectively [see Additional 
file  1: Table  S2]. Sequencing reads were aligned to the 
Labrador retriever assembly (ROS_Cfam_1.0), return-
ing a mean mapping ratio of 0.8, which was not signifi-
cantly correlated with raw read count (F-statistic p = 0.4). 
The mean observed depth of coverage (43X) was on 
average 30% lower than the expected depth of coverage 
(56X) based on the volume of data generated and the 
size of the assembly (2.4 Gb). To investigate the effects of 
low-coverage sequencing on genotype accuracy, impu-
tation concordance, and downstream analyses, we rese-
quenced the same libraries at lower depths of coverage, 
aiming to achieve depths of 4X and 1X. We generated on 
average 13.5 Gb and 3 Gb data per dog at these respec-
tive depths, each returning mean Q30 base qualities of 
91% and a mapping ratio of 0.8. Given these sequencing 
depths and mapping ratios, we expected to achieve 4.5X 
and 1X depths of coverage, but instead observed depths 
of 3.75X and 0.87X [see Additional file 1: Table S1]. Con-
sidering that mapping ratios remained consistent across 
the different sequencing depths, the observed/expected 
depth ratios suggest that sequencing at higher depths 
captures relatively more off-target (potentially bacte-
rial) sequences compared to sequencing at lower depths. 
Differences in average observed/expected depth ratios 
between the three depths of coverage were significant 
(Kurksal-Wallis p = 5.7 × 10–16). These results indicate 
that whole-genome sequencing DNA isolated from saliva 
requires a higher sequencing depth than targeted. The 
regression slope of expected versus observed depths of 
coverage was 1.3, which we suggest using as a guide for 
scaling (e.g. to achieve 30X depth coverage post-map-
ping, a library should be sequenced to generate ~ 39X raw 
data coverage).

We next sought to evaluate the impact of sequencing 
depth on genotype concordance. The alignment data from 
libraries sequenced at 43.5X depth were down-sampled 
in silico to approximately 10X and 20X depths of cover-
age. For the 38 dog autosomes, sequencing depths were 
recalculated using samtools coverage and genotypes were 
called using bcftools GL for the 9.2 M variant records in 
the full reference panel [see Additional file 3: Figure S2]. 
The mean sequence depths reported across the various 
datasets were 0.9X, 3.8X, 9.6X, 17.4X and 43.5X, which 
will be used to refer to the different datasets in the fol-
lowing. As expected, breadth of coverage increased 
with depth of coverage, with diminishing returns at 

depths ≥ 3.8X (Fig.  1a). Sequencing depths ≥ 9.6X had a 
mean breadth of coverage of 98.5 ± 1.3%, while at 3.8X 
the mean breadth was 94.2 ± 3.39%, and at 0.9X it was 
54.1 ± 7.9%. The correlation between sequencing depth 
and the ratio of discordant genotypes relative to those 
calculated at 43.5X depth was significant (Fig.  1b; Pear-
son’s product-moment correlation p < 0.05, r = − 0.8). At 
sequencing depths ≥ 9.6X, mean concordance was higher 
than 99%, while at 3.6X and 1X mean concordances were 
95 and 88%, respectively. These results indicate that 
sequencing as low as 3.6X depth of coverage captures 
approximately 95% of the genome with high accuracy.

Reference panel size has a negligible impact on imputation 
accuracy in Labrador retrievers
For each sequencing depth, phasing and imputation 
were performed with GLIMPSE using three reference 
panels. The ‘full’ panel comprised 1021 dogs [see Addi-
tional file  1: Table  S3], from which two subsets of 256 
dogs each were generated. The two subsets differed by 
21 dogs, with panel 1 including 21 Labrador retrievers, 
while panel 2 substituted 20 of the Labrador retriev-
ers for randomly sampled dogs. A summary of variant 
counts binned by allele frequency for each reference 
panel and for the genotypes imputed from each depth of 
coverage based on the full panel is provided in Additional 
file 1: Table S4. Concordance was calculated between the 
post-imputation genotypes that resulted from each ref-
erence panel and the 43.5X pre-imputation genotypes. 
Imputed genotype r2 values reported by the GLIMPSE 
concordance tool were remarkably consistent for the dif-
ferent depths of coverage across the three reference pan-
els (Fig. 2a; median genotype r2 at 17.4X = 0.99 ± 0.22 sd, 
9.6X = 0.98 ± 0.23, 3.8X = 0.94 ± 0.23, 0.9X = 0.79 ± 0.23). 
Regressing imputed genotype r2 on MAF, with depth 
and reference panel as covariates, reported each of the 
regression coefficients to be significantly different from 
0 [see Additional file 1: Table S5]. SNV imputed dosage 
r2 was also significantly correlated with sequencing depth 
(Fig.  2b; Pearson’s product-moment correlation p < 0.05, 
r = −  0.68), and regressing imputed dosage r2 on depth 
with reference panel as a covariate also resulted in each 
regression coefficient to be significantly different from 0 
[see Additional file 1: Table S6].

Non-reference allele discordance rates (Fig.  2c), also 
reported by the GLIMPSE concordance tool, largely mir-
rored the imputed dosage r2 results, with discordance 
being negatively correlated with sequencing depth (Pear-
son’s product-moment correlation p < 0.05, r = −  0.68). 
An analysis of median genotype mismatch rates for SNVs 
indicated that heterozygous genotypes accounted for 
most mismatches across all depths of coverage and ref-
erence panels used [see Additional file 1: Table S7]. It is 
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worth noting that the median homozygous reference 
allele mismatch rate was less than 1% for all depths of 
coverage, and the median homozygous alternate allele 
mismatch rate was less than 1% for all depths except for 
0.9X, for which it was 2.9 ± 1.16 when using the full ref-
erence panel, 3.5 ± 1.5 when using panel 1, and 3.9 ± 1.5 
when using panel 2. This is not unexpected, as sequenc-
ing at low depths reduces the likelihood of generating a 

sufficient number of reads that span both alleles to confi-
dently assign a heterozygous genotype.

Single‑marker association analysis results are highly 
consistent across sequencing depths
To evaluate the impact of genotype imputation on asso-
ciation analyses, we applied a linear mixed model using 
GEMMA to identify a genetic association with chocolate 

Fig. 1  Sequencing depth versus breadth of genome coverage and genotype discordance. a Depth of coverage is plotted against breadth 
of coverage for Labrador retriever autosomes from each sequencing depth. The shift in breadth of coverage observed at all depths is associated 
with the inability to map to unresolved regions of the assembly on chromosome 26 (e.g. 26:25818821–26738102). b Pre-imputation genotype 
discordance for genotypes calculated at each sequencing depth relative to genotypes calculated at 43.5X
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Fig. 2  Post-imputation genotype r2, dosage r2, and non-reference allele discordance rate (%) following imputation at each depth of coverage, 
based on different reference panels, relative to high coverage. a MAF-binned r2 values comparing imputed versus validation genotypes. b Box plots 
of imputed dosage r2 values for imputed genotypes from each sequencing depth. c Box plots of non-reference discordance rate (%) for imputed 
genotypes from each sequencing depth. In each case, the validation genotypes are the 43.5X imputed genotypes
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(brown) coat colour phenotype, as a proxy for disease, 
which was present in six of the 30 dogs that we sequenced 
[see Additional file 1: Table S1]. The chocolate coat col-
our in Labrador retrievers is due to recessive alleles at the 
tyrosinase related protein 1 (TYRP1) gene, while carri-
ers of the dominant allele have a black coat [27]. Several 
mutations in this gene have been associated with brown 
coat colour in dogs, and at least three independent muta-
tions have been identified in Labrador retrievers [27]. 
The analysis was performed on the phased genotypes 
that resulted from the GLIMPSE pipeline for each depth 
of coverage and reference panel, applied a MAF filter of 
0.01, and accounted for sex as a covariate. Of the 9.2 M 
variants provided, GEMMA analysed 4.5 M ± 173 K vari-
ants on average across the various datasets. Relative to 
the results obtained at 43.5X, we observed a strong cor-
relation (Pearson’s r ≥ 0.97) of p values for depths ≥ 3.8X, 
while at 0.9X a notable reduction was found (r ≤ 0.8) 
(Fig. 3). For reference, Manhattan plots of the GEMMA 
results based on the full reference panel and panels 1 
and 2 are provided in Additional file 5: Figure S4, Addi-
tional file  6: Figure S5 and Additional file  7: Figure S6, 
respectively.

The intersection of significant p values (p < 1 × 10–06) 
from the GEMMA analysis across the different depths 
of coverage and reference panels used for imputation 
was large (Fig. 4), with 88% of all possible combinations 
of dataset pairs being significantly correlated (Pearson’s 
product-moment correlation p < 0.05). Subset panel 2 at 
depth 0.9X featured in 12 of the 13 pairs that were not 
significantly correlated.

Erroneous phasing impacts haplotype‑based analyses
Genotype imputation accuracy is positively correlated 
with MAF (Fig. 2a) and has been shown to be influenced 
by the size of the reference panel, variant density, haplo-
type accuracy, and sequencing coverage [10]. The impu-
tation and GEMMA results presented here were highly 
consistent between reference panels of different sizes 
(1021 and 256), particularly at sequencing depths ≥ 3.8X. 
However, the concordance and GEMMA analyses are 
uninformative with respect to haplotype accuracy, as 
they consider each variant independently. Genotype 
imputation depends on the identification of shared hap-
lotype segments between the reference panel and the 
subject and, therefore, any phasing error can result in the 
fragmentation of shared haplotype segments [10].

To explore the impact of potential phasing errors in 
more detail, we undertook association analyses for choc-
olate coat colour using the XP-EHH method for each 
depth of coverage and reference panel. Standardised 
(Z-score) XP-EHH values indicate the extent of haplo-
type fixation within a population and can be positive or 

negative depending on whether selection is in the direc-
tion of population A or B. Here, population A comprised 
the 24 dogs that did not have a chocolate coat colour, 
while population B comprised the six dogs that did. For 
reference, Manhattan plots of the XPEHH results based 
on the full reference panel and panels 1 and 2 are pro-
vided in Additional file 8: Figure S7, Additional file 9: Fig-
ure S8, and Additional file 10: Figure S9, respectively.

Relative to the results for the 43.5X coverage, we 
observed a good correlation (Pearson’s r ≥ 0.81) for 
Z-scores at depths ≥ 3.8X (Fig.  5), while the correla-
tion was notably weaker at 0.9X (r ≤ 0.62). The num-
ber of unique variants with significant positive Z-scores 
(n = 1131) was considerably smaller than the number 
with significant negative Z-scores (n = 17,260; Fig.  6). 
We also observed that no significant positive Z-scores 
resulted from the 43.5X dataset, which is considered the 
validation dataset in these analyses. This is as expected 
because we did not expect to observe selection in non-
chocolate coat colour dogs when testing for this pheno-
type. By contrast, all other datasets returned significant 
negative Z-scores, which is consistent with selection 
in these dogs for chocolate coat colour. The correlation 
between the number of significant negative Z-scores and 
depth of coverage was significant (Pearson’s product-
moment correlation p < 0.05, r = −  0.59). However, this 
was driven by the 0.9X results, which if excluded resulted 
in a non-significant correlation (p = 0.67, r = 0.14). This 
was further illustrated by comparing the counts between 
0.9X, which returned the most results (mean across pan-
els = 5199 ± 922), and 17.4X, which returned the second 
most (2026 ± 877), with a two-sample t-test (p = 0.013; 
Fig.  6b inset). This implies that sequencing at very low 
depth (< 1X) returns a large number of false positives. 
While there was considerable intersection of significant 
variants across GEMMA analyses for the different depths 
of coverage and reference panels (Fig. 4), this was not the 
case for significant Z-scores from the XPEHH analyses 
(Fig. 6).

We next sought to explore the underlying haplotype 
structure in a region that was suspected to be a false 
positive signal of selection, the purpose of which was 
to identify the underlying factors. One such region, 
18:41493468–41510,323 exhibited significant positive 
Z-scores (> 4) only at depths of 9.6X and 17.4X [see Addi-
tional file  8: Figure S7 and Additional file  9: Figure S8]. 
Genotypes in this region were retrieved for each depth 
of coverage and reference panel. Figure 7a illustrates the 
genotypes for one dog (LAB_11) prior to applying the 
imputation workflow, showing that inconsistent geno-
types relative to the other sequencing depths were only 
observed for the 0.9X depth. After applying the impu-
tation workflow, the same genotypes for the same dog 
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Fig. 3  Biplots of -log10(p) values from GEMMA analyses at each sequencing depth relative to 43.5X. a Results based on using the full reference 
panel for imputation. b Results based on using panel 1 for imputation. c Results based on using panel 2 for imputation. In each case, the black line 
indicates the linear fit of the two datasets, with the r and r2 value included at the top of the plot
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and region showed consistency across the different pan-
els used for imputation, but inconsistency across the 
various depths, including for instance two variants that 
each returned three possible genotypes (Fig. 7b). Several 
genotypes that were not missing prior to imputation had 
their state changed as a result of imputation, including 

a variant that was homozygous for the alternate allele 
at 43.5X depth but was homozygous for the reference 
allele post-imputation. The imputation workflow returns 
the IMPUTE INFO quality score for each variant, which 
is an estimate of imputation quality on a scale of 0 to 1, 
where 1 indicates that a genotype has been imputed with 

Fig. 4  UpSet plot showing intersection of significant GEMMA p values between the different sequencing depths. Results are presented from each 
depth of coverage, imputed using each reference panel. The main bar plot indicates the count of intersecting significant variants (p < 1 × 10–6) 
between the datasets highlighted with points in the matrix beneath. Each row in the matrix corresponds to a specific dataset, and the label 
indicates the reference panel used (full, panel 1, or panel 2), and the sequencing depth of the data (0.9X, 3.8X, 9.6X, 17.4X, or 43.5X). The bar plot 
to the left indicates the number of significant variants identified for the corresponding dataset and is coloured according to the reference panel 
used
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Fig. 5  Biplots of Z-scores from XPEHH analyses at each sequencing depth relative to 43.5X. a Results based on using the full reference panel 
for imputation. b Results based on using panel 1 for imputation. c Results based on using panel 2 for imputation. In each case, the black line 
indicates the linear fit of the two datasets, with the r and r2 value included at the top of the plot
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high certainty. The reported INFO scores for this region 
were consistent across reference panels used and nota-
bly lower at 0.9X relative to other sequencing depths 
(Fig. 7c). It is also worth noting that the two variants that 
each returned three possible genotypes across the vari-
ous depths did not return low INFO scores (> 0.7 across 
all depths).

As a consequence of these inconsistencies, seven 
distinct haplotypes were possible for the 47 variants 
spanning a 1.5  kb subset of this region (18:41493468–
41495040; Fig. 8a). These inconsistencies did not appear 
to be linked to low reference panel allele frequen-
cies, as the genotype calls that varied across the dif-
ferent sequencing depths coincided with variants with 
a MAF > 0.1 (Fig.  8b). At all sequencing depths, we 
observed a significant difference (paired Wilcox test 
p < 0.05) in the depth of coverage for this region relative 
to the chromosome as a whole (Fig.  8c). This suggests 
that genomic regions with reduced coverage, arising for 
instance because of challenges in read mapping possibly 
linked to repetitive elements or sequence divergence, 
may be more challenging to accurately phase.

To determine whether there was a link between the 
number of haplotypes identified for an individual for a 
given region across the different sequencing depths with 
the median XPEHH Z-score for that region, we ran-
domly sampled 10,000 regions throughout the genome 
[see Additional file  11: Figure S10], with a median size 
of 19.3 kb ± 17.2 kb [see Additional file 12: Figure S11a] 
and a median variant count of 100 ± 0.5. Across these 
regions and depths of coverage, the median number of 
haplotypes observed was 3 [see Additional file 12: Figure 
S11b]. If genotype imputation and phasing were consist-
ent across sequencing depths, then we would expect to 
observe either one (i.e. if all genotypes are homozygous) 
or two haplotypes (if one or more genotypes are hete-
rozygous) for an individual in any given region. A median 
number of three haplotypes occurs when there is a single 
variant in the region that returns a different genotype or 
phase (i.e. 1|0 rather than 0|1) in one or more sequencing 
depths when compared to all other sequencing depths. 
The 5% upper tail of possible haplotypes is 8, for which 
we observed a median region size of 17  kb ± 22.5  kb, 

indicating that haplotypes with apparently systemic geno-
type or phasing inconsistencies across different sequenc-
ing depths were not a result of having derived from larger 
region sizes. There was no discernible difference in the 
distribution of median Z-scores relative to the median 
number of haplotypes identified for each region at any 
of the sequencing depths [see Additional file  12: Figure 
S11c]. This indicates that for regions that host potentially 
problematic haplotypes, there is no clearly observable 
consequence—i.e. there is no shrinkage of XPEHH values 
towards zero, or a shift towards extreme values.

Next, we investigated whether there was a significant 
difference in the mean sequencing depth within each 
region relative to the mean across the chromosome 
for each sample and depth of coverage. We binned the 
results by the median number of haplotypes observed 
across all samples within each region and regressed the 
Wilcox test p values from comparing mean region depth 
to mean chromosome depth, against the median hap-
lotype count for each region (rounded up). The result 
indicated a highly significant (p < 0.001) difference in 
sequencing depth relative to the chromosome average 
for regions with eight or more haplotypes [see Addi-
tional file 1: Table S8 and Additional file 12: Figure S11d]. 
These results suggest that significant XPEHH results in 
genomic regions that have significantly reduced depth 
of coverage relative to the chromosome mean should be 
viewed with caution.

To further explore the relationship of sequencing depth 
with imputation and phasing errors, we calculated a num-
ber of metrics in 1-Mb windows along each of the auto-
somes and across samples, for each sequencing depth. 
These metrics included mean sequencing depth, geno-
type discordance between the 43.5X dataset pre-imputa-
tion (acting here as the ‘truth’ genotypes) and each other 
sequencing depth post-imputation, haplotype discord-
ance relative to the 43.5X dataset post-imputation, and 
the median XPEHH Z-score. Values in the extreme tails 
of the local depth distribution (< 0.01 and > 0.99) were 
discarded to reduce any influence of stochastic extremes 
in sequencing coverage. Substantial differences in geno-
type discordance were observed at depths ≤ 3.8X com-
pared to depths at ≥ 9.6X (Fig. 9a). A similar pattern was 

(See figure on next page.)
Fig. 6  UpSet plot showing the intersection of significant XPEHH Z-scores between the different sequencing depths. a Results are presented 
from each depth of coverage, imputed with each reference panel, for Z-scores > 4. b Results are presented from each depth of coverage, 
imputed with each reference panel, for Z-scores < − 4. For both panels, the main bar plot indicates the count of intersecting significant variants 
between the datasets highlighted with points in the matrix beneath. Each row in the matrix corresponds to a specific dataset and the label 
indicates the reference panel used (full, panel 1, or panel 2), and the sequencing depth of the data (0.9X, 3.8X, 9.6X, 17.4X, or 43.5X). The bar plot 
to the left indicates the number of significant variants identified for the corresponding dataset, and is coloured according to the reference 
panel used. If no significant variant was identified for a dataset then it was not included in the matrix. The inset in panel b shows a box plot 
of Z-scores < − 4 for each sequencing depth, with a T test p value comparing the means of the two highest counts (0.9X and 17.4X)
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Fig. 6  (See legend on previous page.)
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observed when comparing discordance in haplotypes A 
(Fig. 9b) and B (Fig. 9c) relative to the 43.5X haplotypes. 
To determine whether there was a relationship between 
genotype or haplotype discordance and XPEHH results, 
we plotted the absolute difference in XPEHH Z-scores 
between each sequencing depth relative to the 43.5X 
Z-scores against each discordance measure (Fig.  9d–f). 
The resulting correlation values revealed weak correla-
tions (0.16 ≤ Pearson’s r ≤ 0.2), with r2 values from the lin-
ear regression indicating that discordance accounted for 
between 2.5 and 3.9% of the variance in Z-scores.

Pearson correlations between the 43.5X median 
XPEHH values in 1-Mb windows and those from each 
other sequencing depth were 0.66, 0.87, 0.89, and 0.91 
for 0.9X, 3.8X, 9.6X, and 17.4X, respectively. Regress-
ing these XPEHH values on depth of coverage calculated 
for the same windows, while accounting for the mean 
autosomal depth of coverage for each dataset, indicated 
a significant relationship that weakened with increas-
ing sequencing depth, with t-statistic p values of 0.79, 
4.37 × 10–06, 0.001, 0.079, and 0.33 for 0.9X, 3.8X, 9.6X, 
and 17.4X, respectively. The non-significant value at 
0.9X is likely due to its lower variance in depth of cov-
erage (σ2 = 0.001) compared to the other datasets (3.8X 
σ2 = 0.02, 9.6X σ2 = 0.13, 17.4X σ2 = 0.42, and 43.5X 
σ2 = 2.65). These results indicate that there is a correla-
tion between sequencing depth and imputation accuracy. 
As we observed little difference in imputation accuracy 
across the three reference panels used, we believe that 
the correlation with sequencing depth is likely causal. 
However, in the absence of more extensive data to further 
explore the impact of reference panel composition on 
imputation accuracy, we cannot rule out reference panel 
composition as the major causal factor.

Discussion
First, we have demonstrated that saliva-derived DNA is 
suitable for WGS and subsequent analysis of SNVs. To 
date, most canine studies of the genome involve DNA 
extracted from blood, and this is the preferred sam-
ple type outlined in the Dog10K project [28]. Previous 
studies have demonstrated that both saliva and buc-
cal-derived DNA are comparable in terms of efficacy 
to blood-derived DNA for array-based genome-wide 

association studies [29, 30]. Saliva collection is less inva-
sive than blood sampling and can be performed by dog 
owners, highlighting the feasibility of client-based sample 
collection outside of the clinical setting.

Our results indicate that genotype imputation of low-
pass sequencing data can be performed with a high 
degree of accuracy, although two species-agnostic limi-
tations require attention. The first of these concerns 
rare variants, specifically those with a MAF ≤ 0.01, as 
previously reported and illustrated here. When a vari-
ant is observed at low frequency in the reference panel, 
it becomes statistically challenging to establish the asso-
ciated haplotype background [10]. Variant allele frequen-
cies can be manipulated through careful curation of the 
reference panel and there will be a trade-off in this regard 
with respect to the size of the panel. For instance, pan-
els that comprise thousands of individuals could result 
in an increase in rare variants due to increased genetic 
diversity, but also through disproportionate breed rep-
resentation in the panel’s composition. Our imputation 
results are broadly consistent regardless of whether the 
full reference panel or a subset was used, and it is note-
worthy that these panels share similar allele frequency 
distributions in spite of a near four-fold difference in size 
between the full panel and its two subsets. It is also worth 
noting at this point that the GLIMPSE IMPUTE INFO 
score has been reported to be positively correlated with 
variant MAF [7], and thus care should be taken if this is 
used for filtering, as it may result in removal of low-fre-
quency variants.

The second limitation relates to the accuracy of phas-
ing. Our results indicate that, although genotype impu-
tation enabled cross-validation of SNVs associated with 
the chocolate coat phenotype, using an approach that 
tests each SNV independently (GEMMA), the haplotype-
based XP-EHH method was considerably less sensitive. 
This is surprising given the extensive linkage disequilib-
rium observed among pedigree dogs, which results in 
large haplotype blocks, limited haplotype block diversity 
due to selective breeding, and the ability to use a haplo-
type-based method for imputation. This loss of sensitivity 
could be due to the stochastic nature of imputation, or a 
consequence of haplotype degradation arising from phas-
ing errors during imputation, which typically occurs as a 

Fig. 7  Example of the impact of sequencing depth on genotype imputation accuracy. a A matrix of pre-imputation genotypes for a single 
dog (LAB_11) for the genomic region 18:41493468–41495040. b A matrix of post-imputation genotypes for the same region and dog for each 
of the reference panels used. The genotypes are consistent across reference panels, but differ at some variants across sequencing depths, 
for instance the two variants annotated with X each return three possible genotypes. c A matrix of variant IMPUTE INFO scores for the same region 
and dog for each of the reference panels used. The INFO score is on a scale of 0 to 1, with 1 indicating a high certainty of imputed genotype 
accuracy

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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result of constraints in the available haplotypes in the ref-
erence panel. As such, a large and diverse reference panel 
is an essential resource to facilitate the uptake of low-pass 
sequencing while maintaining confidence in imputation 
accuracy. In this regard, the increasing adoption of long-
read sequencing [31] and use of haplotagging methods 
[32] when developing a reference panel will significantly 

improve phasing accuracy and downstream imputation. 
Our analyses indicate that erroneous haplotypes may, to 
some extent, result from localised reductions in depth of 
coverage relative to the average coverage across the chro-
mosome. Further investigation is warranted to investi-
gate this in more detail, such that it can be mitigated in 
future studies.

Fig. 8  Impact of genotype accuracy on haplotype inference. a From the genomic region 18:41493468–41495040 presented in Fig. 7 there are 
seven possible haplotypes for this dog (LAB_11) across the different depths. b The allele frequencies at these variants from the different reference 
panels used for imputation are highly consistent. c The BAM file sequencing depths for all dogs in this region are consistently and significantly lower 
than the chromosome average for each of the different depths of coverage analysed (paired Wilcox test p < 0.05)

Fig. 9  Imputation discordance relative to sequencing depth and XPEHH score divergence. a–c Mean sequencing depth and discordance were 
each calculated in 1-Mb windows along all the autosomes. a Genotype discordance was calculated for post-imputation genotypes at each 
sequencing depth relative to pre-imputation genotypes at 43.5X depth. b–c Haplotype discordance was calculated for each sequencing depth 
relative to each of the 43.5X haplotypes. The absolute difference in Z(XPEHH) values between those calculated at 43.5X and those calculated 
at lower depth datasets was plotted against d genotype discordance, e haplotype A discordance, and f haplotype B discordance

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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The high genotype concordance that we observed for 
non-rare variants implies that a stratified approach to 
imputing missing genotypes in a reference panel may 
be appropriate and is worth investigating. Sequentially 
imputing variants stratified by MAF, ranked by increas-
ing rarity, could improve the imputation accuracy of rare 
variants. Similar multi-step approaches have previously 
been demonstrated in humans [33], cattle [34], and sheep 
[35].

A substantial body of work is available on low-pass 
sequencing and imputation, predominantly assessing its 
application in livestock breeding programmes, where it 
is not uncommon to process data for tens of thousands 
of animals and to leverage detailed pedigree informa-
tion to improve imputation concordance [36, 37]. In such 
cases, the application of low-pass sequencing is generally 
undertaken with the intent to derive genomic estimated 
breeding values to support genetic selection for traits of 
interest. Unlike in production animals, companion ani-
mal genomics rarely has the opportunity to leverage ped-
igree information to help guide imputation.

Conclusions
Imputation accuracy is contingent on a comprehensive 
reference panel of haplotypes that are representative 
of population diversity. Our results indicate negligible 
differences in imputation performance between refer-
ence panels comprising small or large numbers of hap-
lotypes when the variant allele frequencies of the panels 
are broadly consistent. This indicates that allelic diver-
sity is more important than the number of haplotypes 
in the reference panel. Due consideration needs to be 
given on intended downstream analyses before generat-
ing low-pass sequence data. We found that sequencing 
to 3.6X depth captured 95% of the genome with a mean 
genotype imputation concordance of 95%. At this depth, 
the results of a single-marker association analysis were 
highly correlated (r ≥ 0.97) with those from the same 
library sequenced to 43.5X depth. XP-EHH results were 
less well correlated between the 43.5X dataset and those 
sequenced at lower depths, and further investigation of 
a putative false positive highlighted genotype and phas-
ing inconsistencies across the depths. As such, for studies 
focused on single-marker based analyses, we recommend 
sequencing to at least 3.6X. In contrast, given the high 
correlation (r = 0.91) in median XPEHH values between 
17.4X and 43.5X datasets and the absence of a significant 
correlation between local depth of coverage and XPEHH 
values at 17.4X, we conclude that robust haplotype-
based analyses require at least 17.4X depth of coverage. 
These considerations are especially relevant for studies 
where multi-generational data (e.g. genotype and pedi-
gree) are unavailable, as these would otherwise reduce 

imputation inconsistencies that arise due to poorly 
resolved haplotypes.
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Additional file 1: Table S1. Sequencing coverage summary statistics. 
Sample ID, gender, coat colour, and sequencing summary statistics for 
each library sequenced. Table S2. Summary of variant records in VCF files 
following each filtering step described in Additional file 2: Figure S1. Break-
down of variants tagged with different filtering criteria, and subsequently 
remaining after each filtering step. Table S3. Reference panels for phasing 
and imputation. List of dog ID and breeds comprising the full reference 
panel, with those included in panels 1 and 2 indicated, respectively. 
Table S4. Summary of variant counts binned by allele frequency, those 
reported with different depths are derived from the full panel. Breakdown 
of variant counts per allele frequency bin for the full reference panel, and 
subset panels 1 and 2. Also provided are variant counts in the imputed 
data at each sequencing depth based on using the full reference panel 
for phasing and imputation. Table S5. Linear model coefficient estimates 
after fitting imputed genotype r2 to MAF, with depth and panel as 
covariates: lm(r2 ~ MAF + depth + panel). Summary table of coefficient 
estimates after fitting a linear model of imputed genotype r2 to MAF, 
including depth and reference panel as covariates. Table S6. Linear model 
coefficient estimates after fitting SNV imputed dosage r2 to depth, with 
panel as a covariate: lm(r2 ~ depth + panel). Summary table of coefficient 
estimates after fitting a linear model of SNV imputed dosage r2 to depth, 
including reference panel as a covariate. Table S7. Summary of mismatch 
rates for SNVs arising from different reference panels at each depth of 
coverage tested. Table of mismatch rates for homozygous reference (RR), 
heterozygous reference (RA), and homozygous alternate (AA) genotypes 
of SNVs when comparing each depth of coverage to the genotypes 
from the 43.5X depth dataset, derived from imputation with each of the 
reference panels. Table S8. Linear model coefficient estimates after fitting 
paired Wilcox test p values from comparing region and chromosome 
depth to region median haplotype count: lm(p ~ haps). Summary table 
of coefficient estimates after fitting linear model of paired Wilcox test p 
values from comparing region and chromosome depth to region median 
haplotype count.

Additional file 2: Figure S1. Workflow to generate the reference panel for 
use in imputation. Strelka genome variant call files (g.VCFs) for 1706 dogs 
were jointly genotyped, identifying more than 1.4 billion variants. After 
applying a series of filters, a final dataset of 1021 samples and 9.2M variant 
records was retained [see Additional file 1: Table S1]. The genotypes were 
recorded for each chromosome in separate variant call files (VCF).

Additional file 3: Figure S2. Workflow illustrating processing of raw 
sequence data through to imputation. DNA extracted from saliva of 30 
Labrador retrievers was sequenced to 0.9X, 3.8X, and 43.5X depths of 
coverage, using the same library preparations for each sequencing run. 
The aligned 43.5X data was also down-sampled in silico to 9.6X and 17.4X 
depths of coverage. The GLIMPSE workflow was applied to impute and 
phase genotypes at variants in the full reference panel [see Additional 
file 2: Figure S1], in addition to two subsets of that reference panel which 
primarily differed by the number of Labrador retrievers included. Briefly, 
this involves calling genotypes from alignment files (BAM) using mpileup 
to generate pre-imputation variant call files (VCF). These are then phased 
and imputed with GLIMPSE, using a reference panel. Genotypes with low 
probabilities (GP < 0.95) are masked, and phased genotypes recorded in 
post-imputation VCF.

Additional file 4: Figure S3. Workflow illustrating data inputs for 
concordance and association analyses. a Concordance analyses were 
performed on pre-imputation VCF genotypes from each sequencing 
depth relative to those at 43.5X depth, using bcftools, and on post-
imputation VCF genotypes using GLIMPSE. Analysis of post-imputation 
genotypes leverages the allele frequencies of the reference panel used 
for imputation to bin the data. b Association analyses were performed on 
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post-imputation genotypes, applying a single-marker approach, GEMMA, 
and a haplotype-based approach, XPEHH.

Additional file 5: Figure S4. Manhattan plot of GEMMA results following 
imputation with the full reference panel. Chromosomes are plotted in 
alternating colours (orange, blue), with the chromosome number indi-
cated at the top of the figure. The location of the TYRP1 locus on chromo-
some 11 is indicated with a vertical line.

Additional file 6: Figure S5. Manhattan plot of GEMMA results following 
imputation with the subset panel 1. Chromosomes are plotted in alternat-
ing colours (orange, blue), with the chromosome number indicated at the 
top of the figure. The location of the TYRP1 locus on chromosome 11 is 
indicated with a vertical line.

Additional file 7: Figure S6. Manhattan plot of GEMMA results following 
imputation with the subset panel 2. Chromosomes are plotted in alternat-
ing colours (orange, blue), with the chromosome number indicated at the 
top of the figure. The location of the TYRP1 locus on chromosome 11 is 
indicated with a vertical line.

Additional file 8: Figure S7. Manhattan plot of XPEHH Z-scores follow-
ing imputation with the full reference panel. Chromosomes are plotted 
in alternating colours (orange, blue), with the chromosome number 
indicated at the top of the figure. The location of the TYRP1 locus on 
chromosome 11 is indicated with a vertical line.

Additional file 9: Figure S8. Manhattan plot of XPEHH Z-scores following 
imputation with the subset panel 1. Chromosomes are plotted in alternat-
ing colours (orange, blue), with the chromosome number indicated at the 
top of the figure. The location of the TYRP1 locus on chromosome 11 is 
indicated with a vertical line.

Additional file 10: Figure S9. Manhattan plot of XPEHH Z-scores follow-
ing imputation with the subset panel 2. Chromosomes are plotted in alter-
nating colours (orange, blue), with the chromosome number indicated at 
the top of the figure. The location of the TYRP1 locus on chromosome 11 
is indicated with a vertical line.

Additional file 11: Figure S10. Chromosome histograms showing distri-
bution of genomic regions with excessive haplotype counts. Histograms 
indicate the count of regions with ≥ 8 haplotypes across sequencing 
depths for a given dog and based on randomly sampling 10K regions 
across autosomes.

Additional file 12: Figure S11. Analysis of haplotype counts with respect 
to XPEHH values and deviations in depth. a Histogram of genomic region 
size after randomly sampling 10,000 genomic regions. b Histogram of the 
number of possible haplotypes identified per dog across the different 
sequencing depths for these 10,000 regions. c Box plots illustrating the 
mean XPEHH Z-score distribution, relative to the number of possible 
haplotypes for these 10,000 regions. d Box plots illustrating the median 
paired Wilcox test p values relative to median haplotype number across 
the 10,000 regions.
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