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Abstract 

Background  Genetic merit, or breeding values as referred to in livestock and crop breeding programs, is one 
of the keys to the successful selection of animals in commercial farming systems. The developments in statistical 
methods during the twentieth century and single nucleotide polymorphism (SNP) chip technologies in the twenty-
first century have revolutionized agricultural production, by allowing highly accurate predictions of breeding values 
for selection candidates at a very early age. Nonetheless, for many breeding populations, realized accuracies of pre-
dicted breeding values (PBV) remain below the theoretical maximum, even when the reference population is suf-
ficiently large, and SNPs included in the model are in sufficient linkage disequilibrium (LD) with the quantitative trait 
locus (QTL). This is particularly noticeable over generations, as we observe the so-called erosion of the effects of SNPs 
due to recombinations, accompanied by the erosion of the accuracy of prediction. While accurately quantifying 
the erosion at the individual SNP level is a difficult and unresolved task, quantifying the erosion of the accuracy of pre-
diction is a more tractable problem. In this paper, we describe a method that uses the relationship between reference 
and target populations to calculate expected values for the accuracies of predicted breeding values for non-pheno-
typed individuals accounting for erosion. The accuracy of the expected values was evaluated through simulations, 
and a further evaluation was performed on real data.

Results  Using simulations, we empirically confirmed that our expected values for the accuracy of PBV accounting 
for erosion were able to correctly determine the prediction accuracy of breeding values for non-phenotyped indi-
viduals. When comparing the expected to the realized accuracies of PBV with real data, only one out of the four traits 
evaluated presented accuracies that were significantly higher than the expected, approaching 

√

h
2.

Conclusions  We defined an index of genetic correlation between reference and target populations, which summa-
rizes the expected overall erosion due to differences in allele frequencies and LD patterns between populations. We 
used this correlation along with a trait’s heritability to derive expected values for the accuracy ( R ) of PBV accounting 
for the erosion, and demonstrated that our derived E[R|erosion] is a reliable metric.
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Background
Today, many commercial livestock breeding programs use 
genetic merit for the selection of individuals within their 
programs. Genetic merits, which are often referred to as 
breeding values (BV), comprise the individual’s additive 
genetic effects that are directly transmitted to its offspring 
[1]. Estimation of BV relies on the relationships between 
individuals, and while such an estimation depends on 
having recorded phenotypes for the traits of interest, it 
is possible to predict BV for individuals without pheno-
typic records through their relationships with pheno-
typed individuals. Henderson’s mixed model equations 
(MME) [2–4] provided a method that yields the so-called 
best linear unbiased predictors (BLUP) of the individu-
als’ BV, a method which in its original conception used 
pedigree-based relationships. Combined with the rapid 
computational advancements during the second half of 
the twentieth century, Henderson’s MME (HMME) revo-
lutionized livestock production systems, enabling large-
scale genetic evaluations (i.e. the estimation of BV).

Thanks to the rapid development of molecular 
technologies, genotype information in the form of single 
nucleotide polymorphisms (SNPs) is now available at 
a relatively low cost for the agricultural industry. The 
first decade of the twenty-first century was marked 
by significant developments in statistical methods to 
perform genetic evaluation including either exclusively 
genomic information [5, 6], or by combining both 
genomic and pedigree information, either to perform the 
single-step genetic evaluation [7, 8], or to enhance genetic 
relationships even when all individuals are genotyped. 
These developments resulted in dramatic rates of 
improvement in agricultural production [9], and today BV 
can be obtained through either pedigree relationships, a 
genomic relationship matrix (GRM) [6], or the single-step 
relationship matrix [7, 8], by implementing Henderson’s 
BLUP or a variety of Bayesian methods [5, 10–14], with 
the reproducing kernel Hilbert spaces (RKHS) being 
among the most popular of the latter methods when using 
relationship matrices [11].

In breeding programs, obtaining predicted BV (PBV) 
for young candidates prior to observing their phenotypes 
allows the selection at a very early age, thus  enabling a 
reduction of the generation interval, a benefit of particu-
lar relevance for example in cattle breeding populations. 
Thus, the accuracy of PBV is a very important factor for 
the success of a breeding program. However, realized 
accuracies of PBV remain below the theoretical maximum 
even when the reference population is sufficiently large, 
and SNPs included in the model are in sufficient link-
age disequilibrium (LD) with the quantitative trait loci 
(QTL) within the reference population. This is particularly 

noticeable over generations, as we observe the so-called 
erosion of SNP effects [15] accompanied by the erosion 
of the accuracy of PBV. Erosion occurs mostly because of 
differences in LD patterns and allele frequencies between 
reference and target populations; for example, if in the 
reference population a SNP is in strong LD with a QTL, 
a large effect will be assigned to it. However, if due to seg-
regation over generations, the LD between this SNP and 
the QTL becomes weaker in the target population, an 
effect closer to zero should be assigned to this SNP. In this 
paper, accuracy of the PBV will be defined as the corre-
lation with own performance in a validation procedure, 
with a maximum theoretical value of 

√

h2 (where h2 is the 
trait’s heritability).

The decay in prediction accuracy due to differences 
in allele frequencies and LD patterns, especially across 
generations, is a topic widely known and discussed by 
animal breeders and quantitative geneticists, with a 
number of different deterministic equations proposed 
[16–22]. Dekkers et  al. [15] proposed a deterministic 
method to predict the accuracy of PBV based on 
selection index theory and on Fisher’s information 
theory, a method that depends on the effective number 
of chromosome segments ( Me ), which in turn relies 
on quantifying the erosion at the individual SNP level. 
While their method was successful with simulated data, 
for which the recombination at the individual SNP level, 
i.e. the erosion factor, is known, it may lead to wrong 
predictions of the accuracy of PBV with real datasets, 
for which the erosion factor is unknown and has to be 
estimated. In order to address this challenge in real 
datasets, a factor that accounts for long-distance LD 
was added to the deterministic formula of the predicted 
accuracy of PBV, however the values for this factor are 
quite arbitrary. Accurately quantifying the erosion at the 
individual SNP level is in fact, a difficult and unresolved 
task. It is, however, more tractable to quantify the erosion 
of the accuracy of the PBV through a metric based on the 
relationships between reference and target populations.

In this work, we propose a statistical method that 
accounts for erosion to derive the expected accuracy of 
the PBV through an index of genetic correlation (IGC) 
between reference and target populations. By considering 
the accuracy of the PBV as a population parameter meas-
ured on the target population, we evaluated our proposed 
approach using simulated and real data. Accurate expecta-
tions for the accuracy of PBV, accounting for erosion, will 
improve our understanding of the gap between the theo-
retical maximum, i.e. 

√

h2 , and the observed prediction 
accuracy. Moreover, defining expectations for the accuracy 
of PBV based on the correlations between reference and 
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target populations allows us to determine whether accura-
cies lower than 

√

h2 can be further increased by enhancing 
the model, or if a low accuracy is only a feature of a tar-
get population that is poorly represented by the reference 
population.

Methods
Model for the prediction of breeding values
Consider the animal model for  a  genetic evaluation 
y = g + ε , where y is a vector of the phenotypes meas-
ured in the reference population and pre-corrected 
for the fixed effects, g ∼ N (0,Wσ

2
g) is the vector of the 

additive genetic effects, referred to as the BV in animal 
and plant breeding, ε ∼ N (0, Inσ

2
ε
) is the vector of the 

random residuals, and σ2g and σ2
ε
 are the additive genetic 

variance and the residual variance, respectively. W is the 
matrix of the relationship coefficients between the indi-
viduals, and we assume that this relationship can be any 
of the following three: (i) the pedigree-based relationship 
matrix, i.e. W = A ; (ii) the genomic relationship matrix 
[6], i.e. W = G ; or (iii) the single-step relationship matrix 
[7, 8], i.e. W = H . We emphasize here that the type of 
relationship (pedigree, genomic, or single-step) will not 
affect the future derivations and results with respect to 
the expected values for the accuracy of PBV.

When the goal is to predict BV for young candidates 
prior to observing their phenotypes, our model can be 
re-written as y1 = [In10n1×n2 ]g + ε1 , such that 

g =
[

g1
g2

]

∼ N
(

0,Wσ
2
g

)

def= N

(

0,

[

W11 W12

W21 W22

]

σ
2
g

)

  , 

such that sub-index 1 indicates the reference population 
of phenotyped individuals, and sub-index 2 indicates 
the target population without phenotypes (young 
candidates). From Henderson’s MME [2–4], the 
analytical solutions for the breeding values ̂g1 for the n1 
animals in the reference population, and the PBV ˜g2 for 
the n2 animals in the target population are:

Theoretical limit for the accuracy of predicted breeding 
values
Our interest lies on the accuracy of the PBV, i.e. on 

R = ĉor
(

g̃2, y2
)

=
∑n2

i=1 (g̃2i−g2)(y2i−y2)
√

∑n2
i=1 (g̃2i−g2)

2 ∑n2
i=1 (y2i−y2)

2
 . More 

specifically, our interest lies on the expected value E(R) . 
While the distribution of R , a realized correlation, is 
not straightforward, Fisher demonstrated that [23]:

(1)ĝ1 = W11

(

W11σ
2
g + In1σ

2
ε

)−1
y1σ

2
g,

(2)g̃2 = W21

(

W11σ
2
g + In1σ

2
ε

)−1
y1σ

2
g .

such that ρ is the true correlation. When predicting BV 
for young candidates without phenotypes, we can con-
sider the true correlation as ρ = cor

(

̂g1, y1
)

 , as it is 
intuitive that the expected prediction accuracy in the 
target population, i.e. the young candidates, is the same 
accuracy obtained on the reference population. If we 
assume that the training dataset is sufficiently large, and 
that the available SNPs are representative of the QTL, 
such that BV are accurately obtained for the reference 
population, we may consider the true correlation as 
ρ = cor

(

̂g1, y1
)

≈
√

h2.
We acknowledge that the distributions in Eq.  (3) rely 

on the assumption that observations are independent, 
an assumption that does not hold when individuals are 
related. However, this lack of independence among the 
elements in g2 and y2 has an impact only on Var(Z) . Since 
the interest of our present study is restricted to E(Z) , and 
ultimately E(R) , we will disregard potential changes to 
the variance of the distribution defined in Eq. (3).

The distribution of Z will allow us to comprehend E(R) , 
although the exact distribution of R , a realized 
correlation, is not straightforward. To do so, we will study 
R as a function of Z . Since Z = log

(

1+R
1−R

)

 , then 

R = f(Z) = eZ−1
eZ+1

 , a function that is concave for Z > 0 and 
convex for Z < 0 , as illustrated in Fig.  1. Thus, Jensen’s 
inequality [24] allows us to conclude that:

Finally, since E(Z) = log
(

1+ρ

1−ρ

)

 , as per the distribution 
in Eq.  (3), the inequalities in Eqs. (4) and (5) can be 
re-written as:

(3)Z = log

(

1+ R

1− R

)

∼ N

(

log

(

1+ ρ

1− ρ

)

,
4

n2 − 3

)

,

(4)

E(R) = E[f(Z)] ≤ f(E[Z]) = eE(Z) − 1

eE(Z) + 1
, for Z > 0,

(5)

E(R) = E[f(Z)] ≥ f(E[Z]) = eE(Z) − 1

eE(Z) + 1
, for Z < 0.

(6)

E(R) ≤ f(E[Z]) = eE(Z) − 1

eE(Z) + 1
= e

log
(

1+ρ

1−ρ

)

− 1

e
log

(

1+ρ

1−ρ

)

+ 1

=

(

1+ρ

1−ρ

)

− 1
(

1+ρ

1−ρ

)

+ 1
= (1+ ρ)− (1− ρ)

(1+ ρ)+ (1− ρ)

= 2ρ

2
= ρ, for Z > 0,
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Because the animal model is defined as y = g + ε , 
it is straightforward that both ρ = cor

(

̂g1, y1
)

 and 
R = ĉor

(

˜g2, y2
)

 should be greater than zero, and there-
fore we focus only on the inequality described in Eq. (6), 
in which all elements Z , R , and ρ assume positive values.

Some remarks must be made to conclude this section. 
Previous works that evaluated the accuracy of PBV tra-
ditionally assumed that E(R) ≤

√

h2 , while here we 
assume that E(R) ≤ ρ = cor

(

̂g1, y1
)

 . In fact, as previ-
ously stated, if the training dataset is sufficiently large 
and the QTL are correctly represented by the SNPs, the 
BV for the reference population are accurate enough to 
ensure, ρ ≈

√

h2 . However, if the BV of the reference 
population are not accurate, ρ <

√

h2 . This may occur 
either because of an insufficient number of samples, or 
because the SNPs are unable to correctly capture the 
QTL effects (or both). Finally, we emphasize that, in 
this work, we do not intend to address the drivers of 
inaccurate BV estimation in the reference population. 
Instead, we address how the genetic connections 
between reference and target populations impact the 
accuracy of the PBV for the target population of indi-
viduals without phenotypes. Therefore, 
E(R) ≤ ρ = cor

(

̂g1, y1
)

≤
√

h2 . If the target population 
is well represented by the reference population, mean-
ing that the relationships in W21 are strong, then E(R) 
should be in the upper boundary of the inequality in 
Eq. (6), reaching the equality E(R) = ρ . A final remark is 
that, if the number of records is not sufficiently large to 
adequately estimate ̂g1 , then ̂g1 and ê1 may present a 
level of correlation because of the model’s inability to 
adequately separate the random effects from the resid-
ual effects, resulting in an accuracy at the training pop-
ulation of ρ = cor

(

̂g1, y1
)

>
√

h2 . In this situation, the 

(7)E(R) ≥ ρ, for Z < 0. limit for R = ĉor
(

˜g2, y2
)

 will be 
√

h2 , and thus 
E(R) ≤ ρ = min

{

cor
(

̂g1, y1
)

,
√

h2
}

≤
√

h2.

Erosion in the accuracy of predicted breeding values
In the previous section, we have established that 
E(R) ≤ ρ = min

{

cor
(

̂g1, y1
)

,
√

h2
}

≤
√

h2 , and that if 
the target population is well represented by the refer-
ence population, meaning that the relationships in W21 
are strong, then we can expect that E(R) = ρ . However, 
if the target population is poorly represented by the ref-
erence population, the relationships in W21 are weak. 
Finally, since W21 is the key to obtaining the PBV ( ˜g2 ), 
as per Eq. (2), the weaker the relationships in W21 , the 
more inaccurate the PBV, and we can expect that 
E(R) < ρ . The question that we address in this work is 
how much smaller than ρ is E(R).

In other words, we shall say that when E(R) < ρ 
there is an erosion in the accuracy of PBV, and we 
use again Fisher’s Z-transformation [23] to quantify 
the eroded E(R) . First, we must define a population 
parameter r ∈ [0, 1] , a single value which summarizes 
the relationships in W21 , resembling a correlation. 
Hereafter, we will refer to r as the index of genetic 
correlation (IGC) between reference and target 
populations, and in the next section we describe in 
detail how this parameter can be calculated. Note that 
r ∈ [0, 1] is not simply equal to the average relationships 
in W21 , and in fact obtaining r directly from the 
relationship matrix W poses some challenges, which 
we address in “Index of genetic correlation between 
populations” section, along with two suggested 
methods to estimate r.

Returning to the Z-transformed accuracy of PBV, we 
have that E(Z) = log

(

1+ρ

1−ρ

)

 , as per the distribution in 
Eq.  (3), and we will say that this expected value holds 

−1
.0
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1 − ρ
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
 , 
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n2 − 3





R
 =

 f(
Z)

 =
 eZ

−
1

eZ
+

1

R = f(Z) is a concave function
⇒ E(R) ≤ E(Z)

R = f(Z) is a convex function
⇒ E(R) ≥ E(Z)

Fig. 1  Description of the relationship between Z = log
(

1+R
1−R

)

 and R = ̂cor
(

˜g2, y2
)

= eZ−1
eZ+1

 , highlighting the regions in which R = f(Z) is a convex 

(in red) or concave (in blue) function of Z ∼ N
(

log
(

1+ρ

1−ρ

)

, 4
n2−3

)
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when there is no erosion effect, i.e. 
E(Z|no erosion) = log

(

1+ρ

1−ρ

)

= µZ . We hypothesized 
that the eroded E(Z) is linearly affected by the IGC ( r ), 
thus:

such that E(Z|erosion) →
r→1

E(Z|no erosion) , and 
E(Z|erosion) →

r→0
0 , this last scenario being equivalent to 

a reference population, thus distinct from the target 
population, this BV cannot be predicted at all. Finally, 
operating with R = f(Z) = eZ−1

eZ+1
 , we have:

such that E(R|erosion) →
r→1

ρ = E(R|no erosion) , and 
E(R|erosion) →

r→0
0 . Figure  2 describes the behaviour of 

E(R|erosion) = (1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 as a function of 

E(Z|no erosion) = µZ , ρ , and ρ
2 , and shows that 

E(R|erosion) is an increasing function on both ρ and r . 
The description of E(R|erosion) as a function of ρ2 , 
although redundant with the description of E(R|erosion) 
as a function of ρ , has relevance to interpret E(R|erosion) 
on the same scale as a function of the trait’s heritability 
( h2).

(8)E(Z|erosion) = r log

(

1+ ρ

1− ρ

)

= rµZ,

(9)

E(R|erosion) = f(E[Z|erosion]) = eE(Z|erosion) − 1

eE(Z|erosion) + 1

= e
r log

(

1+ρ

1−ρ

)

− 1

e
r log

(

1+ρ

1−ρ

)

+ 1

= e
log

(

1+ρ

1−ρ

)r

− 1

e
log

(

1+ρ

1−ρ

)r

+ 1

=

(

1+ρ

1−ρ

)r
− 1

(

1+ρ

1−ρ

)r
+ 1

= (1+ ρ)r − (1− ρ)r

(1+ ρ)r + (1− ρ)r
,

Index of genetic correlation between populations
In order to quantify E(R|erosion) = (1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 , the 

IGC represented by r must be calculated. As mentioned 
in the previous section, obtaining r directly from the 
relationship matrix W can be challenging. In the next 
paragraph, we show how to calculate r when W = G , 
the genomic relationship matrix. This method is com-
putationally heavy and may be unfeasible for very large 
datasets. We also propose a simpler method which uses 
empirical results on simulated phenotypes and can be 
a practical alternative that may be applied to any type 
of relationship matrix W (pedigree, genomic or single-
step). A sample code for implementing both methods to 
calculate the IGC in R is provided in Additional file 1.

IGC calculated from genomic data
Let M be a n×m centered and scaled matrix of SNP-gen-

otypes, where the scaling factor is 
(

∑m
j=12pj(1− pj)

)−1/2
 

and pj′s are the alleles frequencies, and its singular-value 
decomposition (SVD) is M = UDV′ . In this SVD, 
D = diag(d1, d2, . . . , dn−1, dn) is a diagonal matrix of the 
n singular-values, such that d1 ≥ · · · ≥ dn ≥ 0 with di = 0 
for every  i > rank(M) ; Un×n = [U1 . . .Un] and 
Vm×n = [V1 . . .Vn] are matrices of unitary eigen-vectors, 
such that U′

U = UU
′ = In and V′

V = In.
Each of the components d21, . . . , d

2
n explains a portion 

of the variation from the whole system M ; each element 
Uik(i = 1, . . . , n ) in Uk = [U1k . . .Unk]′ represents the 
contribution of individual i to the variation explained 
by component k ; each element Vjk(j = 1, . . . , m ) in 
Vk = [V1k . . .Vmk]′ represents the contribution of SNP j 
to the variation explained by component k.

To obtain the IGC between reference and target 
populations ( r ), we need to compare the different con-
tributions of the SNPs to the system’s variation in the 
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two populations. To do so, we perform the aforemen-
tioned SVD on M1 and M2 (bearing in mind that sub-
index 1 refers to the reference population and sub-index 
2 refers to the target population), then build a matrix 
T =

√
(n2/n1)V

′
2V1D1 which correlates the contributions 

of the SNPs in both populations, while correcting for the 
different population sizes, and weighting these correla-
tions by the singular-values of the reference population. 
Note that the term V′

2V1D1 that is used to define matrix 
T is not arbitrary; this term is the kernel of the solution 
to ˜g2 in Eq.  (2), when W21 = M

′
2M1 and W11 = M1M

′
1 , 

and we replace M2 and M1 by their SVD. By saying that 
V

′
2V1D1 is the kernel of the solution to ˜g2 we mean that 

for any trait with the same reference and target popula-
tions, V′

2V1D1 is a systematic linear transformation on 
the observed phenotypes that dictates the projected solu-
tions ˜g2 for any set of observed performances, and for any 
heritability. Next, we obtain the SVD T = UTDTV

′

T , and 
perform the linear regression DT ∼ D2 with a quadratic 
term, i.e., we fit dTi = a+ bd2i + cd22i . Finally, based on 
extensive observational testing on empirical results, the 
IGC between reference and target populations can be 
calculated as r = a + b+ c . Figure 3a presents an exam-
ple of the DT ∼ D2 obtained for different scenarios of 

relationships between reference and target populations, 
which were consistently repeating the pattern of a linear 
or quadratic relationship between dTi ∼ d2i . Through-
out all the simulated replicates, we observed that the 
sum of the coefficients a+ b+ c was always between 
0 and 1, which led us to attempt setting r = a + b+ c , 
and finally observing that this value empirically satisfied 
E(R|erosion) = (1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 for the replicates.

IGC calculated from simulated phenotypes
A less computationally demanding alternative to the 
method proposed to obtain the IGC r is to use simulated 
phenotypes. There are two advantages from simulating 
phenotypes: (1) there is no computational burden from 
performing SVD on the genotype matrices; and (2) it 
enables obtaining r irrespective of the genotypes being 
available.

The first step is to define an arbitrary phenotypic vari-
ance σ

2
y , and then simulate g ∼ N

(

0,Wh2σ2y

)

 and 

ε ∼ N

(

0, In1+n2(1− h2)σ2y

)

 for a sequence of h2 that cov-
ers a range from low to high heritabilities. If genotypes 
are available for all animals, g can be simulated from the 
genotypes instead, by simulating the vector of SNP effects 

Fig. 3  Index of genetic correlation between the simulated reference and three different target populations (one, five, and ten generations 
after the base reference population) using (a) singular-value decompositions on the matrices of SNP-genotypes as proposed in section IGC 
calculated from genomic data ( r = a+ b+ c ); (b) simulated phenotypes and their breeding values solutions as proposed in section IGC calculated 
from simulated phenotypes ( log

(

1+R
1−R

)

= rlog
(

1+ρ

1−ρ

)

)
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α ∼ N

(

0, Im
h2σ2y

∑m
j=12pj(1−pj)

)

 and setting g = Mα , such 

that M is the (centred) matrix of SNP-genotypes ( n×m ). 
The simulated phenotypes are then y = g + ε.

The next step is to obtain, for each h2 , the BV for the 
reference and the PBV for the target populations as 
established in Eqs. (1) and (2), setting σ2g = h2σ2y , i.e. 

̂g1 = W11

(

W11σ
2
g + Inσ

2
ε

)−1
y1h

2
σ
2
y and 

˜g2 = W21

(

W11σ
2
g + Inσ

2
ε

)−1
y1h

2
σ
2
y , and to obtain 

ρ̂ = ĉor
(

̂g1, y1
)

 and R = ĉor
(

˜g2, y2
)

 . By doing this proce-
dure for each h2 , a sample of ρ ’s and R ’s is generated. 
Now the Z-transformed correlations are calculated: 
Zρ = log

(

1+ρ

1−ρ

)

 and ZR = log
(

1+R
1−R

)

.
Finally, the last step is to perform the linear regres-

sion ZR ∼ Zρ without an intercept, and according to 
Eq.  (8), the slope of this regression is the IGC, i.e. 
r = ĉov(ZR,Zρ)

̂Var(Zρ)
.

Data for the empirical study
Simulated data
We used the R package GenEval (https://​github.​com/​
bcuya​bano/​GenEv​al) to simulate 50 k SNPs and additive 
phenotypes ( σ2y = 100 ) for a wide range of heritabilities 
h2 = 0.05, 0.15,…, 0.9, 0.95, using a random subset of 2 k 
SNPs as QTL. SNP-genotypes were simulated in LD, as 
per the function simGeno() from the R package GenEval, 
with the LD structure set to resemble that of a cattle 
population. A base reference population of 5000 
individuals was used to estimate variance components 
using the residual maximum likelihood (REML) [25, 26] 
and then to obtain the PBV as in Eq.  (2), for three 
different target populations (1000 individuals each) with 
an increasing number of generations (one, five, and ten) 
from the base reference population. All the generations 
were simulated with a 50/50 ratio of males and females, 
and random mating was performed with no selection. 
For each h2 = 0.05, 0.15,…, 0.9, 0.95, we simulated 500 
independent replicates of phenotypes for the entire pop-
ulation (base and generations one, five, and ten), thus 
creating a large sample of ̂h

2 , 

ρ̂ = min

{

ĉor
(

̂g1, y1
)

,

√

̂h
2

}

 , and R = ĉor
(

˜g2, y2
)

 at each 

heritability level.
We performed this study for W = G , which allowed us 

to calculate the IGC r with both proposed methods, and 
to compare the values obtained. We wanted to ensure 

ρ̂ = min

{

ĉor
(

̂g1, y1
)

,

√

̂h
2

}

≈
√

̂h
2
 , thus the QTL were 

kept among the genotypes used for analysis. Then, we 
compared the realized prediction accuracies 
R = ĉor

(

˜g2, y2
)

=
∑n2

i=1(g̃2i−g2)(y2i−y2)
√

∑n2
i=1(g̃2i−g2)

2∑n2
i=1(y2i−y2)

2
 with the 

theoretical curve E(R|erosion) = (1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 , to evalu-

ate how accurately this equation quantifies the erosion in 
the accuracy of PBG. The comparison of R to the theoret-

ical curve (1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 was performed for both ρ =

√

̂h
2
 

and ρ = min

{

ĉor
(

̂g1, y1
)

,

√

̂h
2

}

 , to test our hypothesis 

that the latter is a more suitable measure to be consid-

ered, even in a scenario in which ĉor
(

̂g1, y1
)

≈
√

̂h
2
.

Real data
We compared the accuracies of PBV to their derived 
expected values using real data from a dairy cattle 
population within a breeding program. In total, 9636 
cows were used as the reference population, and the 
target population comprised 2130 cows. The pedigree 
relationship matrix A was built by tracing back three 
generations on the pedigree for each of the 11,766 cows 
used for the analysis. These 11,766 animals were a subset 
of an original dataset comprising records from ~ 100,000 
cows covering six generations within the breeding 
program, i.e. this is a population under selection. Our 
subset ensured that all cows in the target population had 
their dams in the reference population, and that all dams 
could be fully traced back by three generations in the 
pedigree. The subset of animals belonged to the last three 
generations of the breeding program.

The phenotypes were available for the cows in the 
form of yield deviations (YD), and four traits were evalu-
ated: one fertility (FERT), one health (HEALTH), and 
two production (PROD1, PROD2) traits. A preliminary 
study indicated that the heritabilities of these traits were 
h2FERT = 0.02 , h2HEALTH = 0.188 , h2PROD1 = 0.375 , and 
h2PROD2 = 0.625.

Both pedigree information and 53,469 autosomal SNP-
genotypes (EuroGMD v1, a customized ILLUMINA gen-
otyping microarray that contains approximately 70,000 
SNPs) were available for all animals, allowing us to per-
form the study with the three possible genetic relation-
ship matrices: W = A (pedigree), W = G (genomic), and 
W = H (single-step, using genotypes for all animals in 
the target population and for 25% of the animals in the 
reference population). For this study on real data, we 
applied only the method that uses simulated phenotypes 
to obtain the IGC ( r ), and these additive phenotypes 
( σ2y = 100 ) were simulated for heritabilities h2 = 0.1, 
0.2,…, 0.9, using a random subset of 2  k SNPs as QTL. 
Finally, the expected prediction accuracies accounting for 

https://github.com/bcuyabano/GenEval
https://github.com/bcuyabano/GenEval
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erosion were calculated for each studied trait, and their 
values compared to the accuracies obtained with real 
phenotypes (in the form of the yield deviations, as men-
tioned previously), i.e. R = ĉor

(

˜g2, y2
)

.

Genomic BLUP reference for relationships 
between populations and reliability of prediction
We compared our derived expected accuracy of prediction 
E(R|erosion) = (1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 to the theoretical mean reli-

ability obtained from Henderson’s MME [2–4], assuming 
the same animal model that was considered to compute 
E(R|erosion) , i.e. y = g + ε , with y being the vector of the 
phenotypes measured in the reference population and pre-
corrected for the fixed effects. The theoretical mean reli-
ability of the genomic (G)BLUP can be considered as the 
following average reliability in the target population:

such that LHS is the left-hand-side of Henderson’s MME 
for BLUP, and the sub-index ii indicates the diagonal 
elements of the matrix inside the square brackets.

Moreover, in order to assess our proposed IGC ( r ), we 
compared its value to the average weighted relationships 
between reference and target populations:

(10)

E(R|GBLUP)

=

√

ĥ
2

n2

n2
∑

i=1

√

[

W21W
−1
11

(

W11 −
(

LHS× σ̂2g

)−1
)

W
−1
11 W12

]

ii

,

These comparisons were performed on the simulated 
data only, as their purpose was to verify if our derived 
expected value E(R|erosion) and IGC ( r ) were a better 
fit for making inferences on the expected accuracy of 
prediction.

Results
Figure  3 presents the IGC between the reference 
and the three different target populations (one, five, 
and ten generations after the base reference popula-
tion) using the two proposed methods. Figure  3a pre-
sents the relationship between the singular values of 
T =

√
(n2/n1)V

′
2V1D1 ( dTi ) and the singular values of 

the scaled M2 ( d2i ), used to obtain the IGC calculated 
from genomic data in which r = a+ b+ c , such that 
dTi = a+ bd2i + cd22i , as described in the Methods sec-
tion. Figure  3b presents the linear relationship between 
ZR and Zρ , used to obtain the IGC calculated from sim-
ulated phenotypes, in which r satisfies ZR = rZρ . We 
observed that the values of r obtained with the two pro-
posed methods are very similar for the three target popu-
lations. We observed that r < 1 for all target populations, 
and as expected, it decreases when the number of gen-
erations of the target population from the base reference 
population increases. The results presented for r obtained 
using the simulated phenotypes in Fig.  3b were based 

(11)rGBLUP = 1

n2

n2
∑

i=1

√

[

W21W
−1
11 W12

]

ii
.
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Fig. 4  Relationship between the realized prediction accuracy R = ̂cor
(

˜g2, y2
)

 and (a) the REML heritability estimates ̂h
2
 ; (b) the squared accuracy 

of the breeding values of the reference population, ρ2 = ̂cor
2(
̂g1, y1

)

 . Results presented are of the 500 replicates of simulated phenotypes for 

 each h2
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on one of the 500 replicates. However, when analysing 
r for each one of those replicates, the values are compa-
rable with standard deviations of 0.01, 0.005, and 0.005, 
respectively, for the target populations one, five, and ten 
generations apart from the base reference population.

Figure  4 presents the relationship between the real-
ized prediction accuracy R = ĉor

(

˜g2, y2
)

 and both the 
REML heritability estimates ̂h

2 and the squared accu-
racy of the breeding values of the reference population, 
ĉor2

(

̂g1, y1
)

≈ ̂h
2
 . We observed that there is a greater 

variation of R with respect to the heritability estimates, 
than with respect to the accuracy of the BV in the ref-
erence population. Since for all three target populations 

r < 1 , we expected that all R <

√

̂h
2
 and R < ρ , and this 

was confirmed by the results presented in Fig.  4a and 
b. Then, we evaluated how well the theoretical curve 
(1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 described the observed results, and com-

pared it to the average GBLUP reliability in the tar-
get population, calculated as in Eq.  (10). In Fig.  4a, we 
observed that the theoretical curve is a reasonable mean 
to describe the relationship between R and ρ2 = ̂h

2
 , how-

ever it overestimates R for the very low or very high her-
itabilities. This is not surprising, since in fact, the issue 
with a very lowly or very highly heritable trait is that, 
due to heritabilities being close to the boundaries of pos-
sible values, we expect a loss in the accuracy of BV for 

the reference population, i.e. ĉor
(

̂g1, y1
)

<

√

̂h
2
 . This 

result supports our hypothesis that the theoretical curve 

(1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 will better describe the relationship between 

R and ρ2 = ĉor2
(

̂g1, y1
)

 , presented in Fig.  4b, in which 
we observed that the theoretical curves are very accu-
rate to describe this relationship. In both panels (a) and 
(b) of Fig.  4, we observed that the average GBLUP reli-
ability in the target population failed to correctly describe 
the average realized prediction accuracy R = ĉor

(

˜g2, y2
)

 
across the range of heritabilities. For the simulations 
with h2 below 0.8, E(R|GBLUP) does serve as an upper 
boundary, closer to the realized results when R is com-

pared to ρ2 =
√

̂h
2
 in Fig. 4a, than when R is compared 

to ρ2 = ĉor2
(

̂g1, y1
)

 in Fig. 4b. For the simulations with h2 
above 0.8, E(R|GBLUP) was much closer to the average 
realized prediction accuracy. With respect to the IGC, 
while our method to compute this index yielded values 
of 0.49, 0.42, and 0.33 for generations one, five, and ten, 
respectively, following the derivation based on GBLUP 
calculated as in Eq.  (11), the values obtained were 0.96, 
0.86, and 0.75 for generations one, five, and ten, respec-
tively. Finally, these values, if used to compute the curve 
(1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 would result in a great overestimation for 

E(R|erosion).
Figure 5 and Table 1 present the results on IGC r and 

on the accuracies of BV and PBV obtained for the refer-
ence and target populations, respectively ( ̂ρ = ĉor

(

̂g1, y1
)

 
and R = ĉor

(

˜g2, y2
)

 , respectively), for the study on real 
data and for the four traits evaluated. Figure  5a, for r 
obtained using the simulated phenotypes, indicates that 
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the pedigree relationship matrix ( A ) is the matrix that 
minimizes r , while the genomic relationship matrix ( G ) is 
the matrix that maximizes r . The values of the IGC were 
rA = 0.237 , rG = 0.697 , and rH = 0.454 , and please recall 
that the single-step relationship matrix ( H ) was built 
using genotypes for all animals in the target population 
and for 25% of the animals in the reference population. 
Therefore, the accuracies of the PBV are expected to be 
lowest when using A , and highest when using G . In fact, 
we observe in Fig. 5b that accuracies of the PBV are low-
est when using A for all traits, and highest when using 
G for most of the traits, except for FERT. However, the 
95% confidence intervals (CI) presented in Table  1, for 
the accuracies of the PBV obtained for FERT, the accu-
racy obtained when using G cannot be deemed as sig-
nificantly different from those obtained when using A or 
H . When using H , the results for both r and the accura-
cies of the PBV are between those obtained when using 
A and G . This is not surprising, as the single-step com-
bines the genotype information with the pedigree infor-
mation from non-genotyped individuals. The values of R 
obtained when using A are all close to the curve of their 
expected values given erosion, i.e. E(R|erosion) , when 
we observe Fig. 5b; the 95% CI presented in Table 1 for 
these two values confirm that the observed R are not sig-
nificantly different from their expectations for all traits. 
In Fig. 5b, the values of R obtained when using G appear 
to be greater than E(R|erosion) ; however, the 95% CI pre-
sented in Table  1 for these two values indicate that the 
observed R is significantly different from the expectations 
only for PROD2. The same conclusions from R obtained 

when using G are drawn for the values of R obtained 
when using H.

Discussion
We hypothesized that once an IGC between reference 
and target populations ( r ) is calculated, we can define the 
maximum accuracy of the PBV as the expectation 
E[R|erosion] ≤ (1+ρ)r−(1−ρ)r

(1+ρ)r+(1−ρ)r
 , such that ρ represents the 

true maximum prediction accuracy. We assumed this 
maximum prediction accuracy to be ρ = cor

(

̂g1, y1
)

 , the 
accuracy of the BV obtained for the reference population, 
as it is intuitive that the accuracy of prediction for the 
target population cannot be higher than that for the 
reference population. For ideal scenarios, in which the 
reference population is sufficiently large, and SNP-geno-
types are available and in strong LD with the QTL, we 
can assume ρ ≈

√

h2 , i.e. the theoretical maximum pre-
diction accuracy without erosion. The results obtained 
with extensive simulations supported our hypothesis, and 
indicated that indeed considering 

ρ = min

{

cor
(

̂g1, y1
)

,

√

̂h
2

}

 rather than ρ =
√

h2 

resulted in a more correct and consistent E[R|erosion].
One important element for calculating E[R|erosion] 

is the IGC, a single value capable of summarizing all 
the information about the genetic distance between 
reference and target populations. When working with 
genomic prediction, r summarizes the differences in allele 
frequencies and LD patterns observed in both the refer-
ence and target populations. We presented two methods 

Table 1  Results for single-trait evaluations performed on real data

* Observed R is significantly different from ̂E(R|erosion) , at a significance level of 0.05

Heritabilities ( h2 ) were estimated in a preliminary study, and used to obtain the BV and PBV, which were then used to calculate the accuracies for the reference and 
target populations: ρ̂ = ̂cor

(

̂g1, y1
)

 and R = ̂cor
(

˜g2, y2
)

 , respectively
̂E(R|erosion) were calculated according to the indexes of genetic correlation obtained for each of the relationship matrices used for the evaluation, their values being 
rA = 0.237 , rG = 0.697 , rH = 0.454 . Values between brackets are the 95% confidence intervals for the values presented

Trait h2
√
h2 Matrix ρ = ĉor

(̂
g1, y1

)
R = ĉor

(
g̃2, y2

)
Ê(R|erosion)

FERT 0.020 0.141 A 0.132 [0.104;0.159] 0.008 [− 0.052;0.068] 0.031 [− 0.029;0.091]

G 0.073 [0.045;0.101] 0.016 [− 0.044;0.076] 0.051 [− 0.009;0.111]

H 0.120 [0.092;0.148] 0.042 [− 0.018;0.102] 0.055 [− 0.005;0.114]

HEALTH 0.188 0.434 A 0.367 [0.343;0.391] 0.083 [0.023;0.143] 0.091 [0.031;0.150]

G 0.294 [0.268;0.319] 0.176 [0.117;0.234] 0.208 [0.150;0.265]

H 0.356 [0.331;0.380] 0.096 [0.036;0.155] 0.167 [0.108;0.225]

PROD1 0.375 0.612 A 0.560 [0.540;0.597] 0.210 [0.152;0.267] 0.149 [0.090;0.207]

G 0.497 [0.476;0.518] 0.456 [0.407;0.503] 0.363 [0.310;0.414]

H 0.547 [0.527;0.567] 0.378 [0.325;0.428] 0.272 [0.215;0.327]

PROD2 0.625 0.791 A 0.751 [0.739;0.763] 0.196 [0.137;0.253] 0.227 [0.207;0.283]

G 0.626 [0.609;0.643] *0.654 [0.608;0.679] 0.472 [0.414;0.517]

H 0.727 [0.713;0.740] *0.583 [0.542;0.622] 0.396 [0.327;0.445]
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to calculate r , one method that simulates phenotypes and 
predicts them on the target population to infer r , and 
another method that can only be applied for genomic 
prediction by performing operations on the SVD of the 
genotype matrices from the reference and target popula-
tions. Our results show that both methods to obtain r are 
trustworthy.

Although computationally costly for large populations 
and dense genotype data, calculating r using the SVD of 
the genotype matrices may offer extra information about 
the genetic similarities or differences of the populations. 
Such decompositions are a very informative tool to evalu-
ate the connections between the individuals studied, and 
the LD between the SNPs. Then, it is intuitive that allele 
frequencies, LD patterns, number of SNPs and popula-
tion sizes affect the IGC by changing the coefficients a , 
b , and c that compose r = a+ b+ c (a result obtained 
based on the extensive observations of empirical results). 
Because this work focused on calculating E[R|erosion] , 
we did not explore the underlying meaning of the values 
of these coefficients (i.e. how they are affected by allele 
frequencies, LD patterns, number of SNPs and popula-
tion sizes), but we do understand that such a study may 
be relevant, and should be conducted in the future.

When we compared the theoretical curves of 
E[R|erosion] obtained for the different relationship matri-
ces ( A , G , and H ) to the realized prediction accuracies, 
we observed that the curve for A was the curve that 
best outlined expectations for the prediction accuracies 
using this relationship matrix. The realized prediction 
accuracies obtained using G and H were farther from 
the theoretical curves of E[R|erosion] , however only the 
realized prediction accuracies for the PROD2 trait were 
significantly different from the expectations, as shown in 
Table 1.

PROD2 was the trait with the highest heritability 
( h2 = 0.625 ). However, Fig. 4b, which presents the results 
on simulated data, indicated that the variance of predic-
tion accuracies increases with the heritability of the trait. 
Thus, the variance of the prediction accuracy for PROD2 
should be larger than the variances of the prediction 
accuracy for the other three traits. Although the realized 
prediction accuracies of PROD2 were significantly higher 
than E[R|erosion] , we have to look at this result with cau-
tion. The CI presented in Table  1 are for correlations, 
and rely on the Z-transformed correlation, which are 
estimates, rather than exact CI. Moreover, it is relevant 
to consider that the real data evaluated comprised phe-
notypes measured on a breeding population, i.e. under 
selection, meaning that this may increase the accuracy 
of PBV obtained with genomic data, as selection can lead 
to an increase in the LD between the QTL and the most 

relevant SNPs, resulting in more accurate estimates for 
the SNP effects in the later populations. Thus, one pos-
sible explanation for the observed prediction accuracies 
of PROD2 being significantly higher than E[R|erosion] 
may be that, due to selection favouring a highly heritable 
trait, a stronger LD between the most relevant SNPs and 
the QTL is present, increasing the relationships between 
reference and target populations at the SNPs with a larger 
effect. Thus, genomic PBV for young candidates in a 
breeding program are expected to be quite accurate for 
highly heritable traits, even if the IGC between reference 
and target populations is low because the most signifi-
cant SNPs have their effects quite accurately estimated 
in the reference population, and moreover, due to selec-
tion, reference and target populations should not pre-
sent large differences for those SNPs with larger effects. 
Thus, if the SNPs that drive low values of r are those that 
are less significant, then r will have a smaller relevance 
for E[R|erosion] . We note that the observed prediction 
accuracies of PROD2 were also greater than those of 
E[R|GBLUP].

The accuracy of PBV has been previously studied 
from different perspectives [6, 17, 27, 28], and different 
deterministic equations have been proposed to calculate 
this accuracy [6, 15, 16, 18, 19, 29, 30]. The degrees of 
the genomic relationships [27, 28], as well as the LD 
and co-segregation of the QTL from pedigree [17], have 
already been evaluated as contributors to the accuracy of 
genomic prediction.

In order to predict the accuracy of genomic PBV, God-
dard et al. [30] derived a method using the total genetic 
variance and the pairwise genomic correlations between 
individuals. Using a different approach, Wientjes et  al. 
[18, 19] proposed a deterministic equation to predict the 
accuracy of PBV, accounting for differences between pop-
ulations in across-breed predictions, and Me , a function 
of the genotype data. Lee et  al. [21] extended the pro-
posed equation from Wientjes et al. [18, 19] by account-
ing for the effective population size ( Ne ) and studied how 
the degrees of the relationships between individuals, the 
size of the reference population and marker panel den-
sity impact the prediction accuracy. On the one hand, 
our study with simulated data, shows that the aforemen-
tioned deterministic methods yielded predictions for 
the accuracy of the genomic PBV that were very similar 
to the curves of E[R|GBLUP] . Also using a deterministic 
approach, Dekkers et al. [15] used selection index theory 
and Fisher’s information theory to predict the accuracy 
of PBV, a method that ultimately relies on the informa-
tion about the erosion at the individual SNP level. How-
ever, accurately quantifying the erosion at the individual 
SNP level is a difficult and unresolved task. On the other 
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hand, our work shows that quantifying the erosion of the 
accuracy of the PBV as a population parameter is a more 
tractable problem.

Taking a different approach from what was previ-
ously proposed, we defined a metric to quantify the IGC 
between reference and target populations. Then, we used 
this correlation to derive a statistical prediction for the 
accuracy of PBV, E[R|erosion] , based on Fisher’s Z-trans-
formation [23] and treating the accuracy of the PBV as a 
population parameter, and demonstrated through simu-
lated and real data that our derived E[R|erosion] is a reli-
able metric.

Conclusions
The accuracy of PBV is a very important factor for the 
success of breeding programs that make use of estimates 
of genetic merit to select individuals. While the advent 
of genomic prediction has greatly increased the accu-
racy of PBV, realized accuracies remain below 

√

h2 , even 
when the reference population is sufficiently large, and 
SNPs included in the model are in sufficient LD with the 
QTL. This is particularly noticeable across generations, 
as we observe the so-called erosion of SNP effects [15] 
accompanied by the erosion of the accuracy of the PBV. 
We defined an IGC between reference and target popu-
lations, which summarizes the expected overall erosion 
due to differences in allele frequencies and LD patterns 
between reference and target populations. We used this 
correlation to derive a statistical prediction for the accu-
racy of the PBV accounting for erosion, E[R|erosion] , 
an expectation based on Fisher’s Z-transformation, and 
demonstrated that our derived E[R|erosion] is a reliable 
metric.
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