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Abstract 

Background  Since the very beginning of genomic selection, researchers investigated methods that improved 
upon SNP-BLUP (single nucleotide polymorphism best linear unbiased prediction). SNP-BLUP gives equal weight to all 
SNPs, whereas it is expected that many SNPs are not near causal variants and thus do not have substantial effects. 
A recent approach to remedy this is to use genome-wide association study (GWAS) findings and increase the weights 
of GWAS-top-SNPs in genomic predictions. Here, we employ a genome-wide approach to integrate GWAS results 
into genomic prediction, called GWABLUP.

Results  GWABLUP consists of the following steps: (1) performing a GWAS in the training data which results in like-
lihood ratios; (2) smoothing the likelihood ratios over the SNPs; (3) combining the smoothed likelihood ratio 
with the prior probability of SNPs having non-zero effects, which yields the posterior probability of the SNPs; (4) 
calculating a weighted genomic relationship matrix using the posterior probabilities as weights; and (5) perform-
ing genomic prediction using the weighted genomic relationship matrix. Using high-density genotypes and milk, 
fat, protein and somatic cell count phenotypes on dairy cows, GWABLUP was compared to GBLUP, GBLUP (topSNPs) 
with extra weights for GWAS top-SNPs, and BayesGC, i.e. a Bayesian variable selection model. The GWAS resulted in six, 
five, four, and three genome-wide significant peaks for milk, fat and protein yield and somatic cell count, respectively. 
GWABLUP genomic predictions were 10, 6, 7 and 1% more reliable than those of GBLUP for milk, fat and protein 
yield and somatic cell count, respectively. It was also more reliable than GBLUP (topSNPs) for all four traits, and more 
reliable than BayesGC for three of the traits. Although GWABLUP showed a tendency towards inflation bias for three 
of the traits, this was not statistically significant. In a multitrait analysis, GWABLUP yielded the highest accuracy for two 
of the traits. However, for SCC, which was relatively unrelated to the yield traits, including yield trait GWAS-results 
reduced the reliability compared to a single trait analysis.

Conclusions  GWABLUP uses GWAS results to differentially weigh all the SNPs in a weighted GBLUP genomic pre-
diction analysis. GWABLUP yielded up to 10% and 13% more reliable genomic predictions than GBLUP for single 
and multitrait analyses, respectively. Extension of GWABLUP to single-step analyses is straightforward.

Background
Best linear unbiased prediction (BLUP) was developed 
for the prediction of genetic values using phenotypic and 
pedigree information [1]. Meuwissen et al. [2] used BLUP 
for the prediction of single nucleotide polymorphism 
(SNP) effects in genomic prediction (SNP-BLUP). SNP-
BLUP is equivalent to GBLUP, where genomic prediction 
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is based on a genomic relationship matrix (G) and phe-
notypes [3]. Since GBLUP and SNP-BLUP are relatively 
simple to use, generally quite reliable, and easily extended 
to multitrait analyses, they are currently the most com-
monly used genomic prediction methods. In addition, 
they can be extended to single step predictions, which 
combines information from genotyped and non-geno-
typed individuals [4, 5].

A shortcoming of GBLUP and SNP-BLUP is that they 
assume that all SNPs explain an equal proportion of the 
total genetic variance. Based on biology, it is expected 
that SNPs close to major causal variants will explain more 
variance than others. Bayesian variable selection meth-
ods, such as BayesA, BayesB, BayesC, and BayesR [2, 6, 
7], have been proposed to identify SNPs with substan-
tial effects, and increase the variance they are expected 
to explain. These variable selection methods yielded 
substantially higher prediction accuracies in simulation 
studies (e.g. [8]), but in real data the increase in accuracy 
was often marginal (e.g. [9]). Moreover, these variable 
selection methods are complex and computationally very 
intensive, as they are typically implemented by MCMC 
(Monte Carlo Markov chain) sampling methods. Com-
putationally faster, non-MCMC variable selection meth-
ods have been proposed but these are typically slightly 
less accurate [3, 10, 11], and since the gain in accuracy 
in actual data is small anyway, they may hardly improve 
upon GBLUP/SNP-BLUP.

One explanation for the only moderately increased 
selection accuracies when using Bayesian variable selec-
tion methods is that the SNP densities used (typically 
50 k) are not sufficient, i.e. the SNPs are not sufficiently 
close to the quantitative trait loci (QTL) to find SNPs 
that are in very high linkage disequilibrium (LD) with 
the QTL. Thus, variable selection methods are expected 
to require higher densities to succeed. In addition, within 
populations with small effective sizes (Ne), the LD blocks 
may be large and higher SNP densities result merely in 
more SNPs identifying the same LD blocks. To remedy 
these problems, variable selection methods have been 
applied in multi-population datasets using high-density 
(HD) and whole-genome sequence (WGS) data (e.g. [7, 
12]). The latter to reduce the sizes of the LD blocks that 
individuals have in common. This resulted in somewhat 
increased prediction accuracies [7, 12], but the large 
datasets that are required, modelling complexity, and 
huge computational demands have prevented large-scale 
practical implementations of this approach.

This approach of combining HD and WGS genotypes 
with large (multi-) population datasets has been suc-
cessful in genome-wide association studies (GWAS), 
where the number of QTL detected and their mapping 
precision increased markedly [13]. In order to improve 

genomic predictions, the SNPs identifying these QTL 
have been added to the GBLUP or SNP-BLUP models, 
which increased prediction accuracies [14–17]. Here, 
our aim was to employ a genome-wide approach to 
integrate GWAS results into genomic prediction meth-
ods, i.e. instead of only including top-GWAS-SNPs 
with increased weights, we will base the weights of all 
SNPs in the GBLUP predictions on the results from a 
GWAS. We call this approach GWA assisted BLUP 
(GWABLUP), and compare it to traditional GBLUP, a 
Bayesian variable selection method and only adding 
the genome-wide significant top-SNPs to the GBLUP 
model. These prediction models were tested in a Nor-
wegian Red Cattle dataset consisting of 32,201 cows 
with HD genotypes and recorded dairy traits (milk, fat 
and protein yield, and somatic cell count) in a single 
trait and a multitrait analysis.

Methods
Dataset
Individual yield deviations (YD) for the traits milk 
(kgMilk), fat (kgFat) and protein (kgProt) yield and log 
somatic cell count (SCC) on 32,201 Norwegian Red 
cows were provided by the cattle breeding organization 
GENO SA (www.​geno.​no) together with their birth-
date. The variance components of the traits as used in 
the national breeding value evaluations are in Table 1. 
The heritabilities of these four dairy traits ranged from 
0.168 to 0.306, where SCC had the lowest heritability. 
Since the yield deviations were averaged over a varying 
number of lactations, the reliability of the average yield 
deviation was calculated for cow i as:

where � = V (residual)/V (genetic) , κ = V (permanent

environment)/V (genetic) , and ni is the number of lacta-
tions of cow i . Due to the differences in reliabilities, the 
yield deviations were weighed in all further analyses by:

r2i =
ni

ni + �+ niκ
,

Table 1  Genetic, permanent environmental and residual 
variances and heritabilities of the dairy traits

Variance component Milk (*103) Fat Prot SCC

Genetic 448 642 362 0.152

Permanent environment 283 529 347 0.199

Residual 735 1782 818 0.551

Heritability 306 0.217 0.237 0.168

http://www.geno.no
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where α = V (residual)/V (permanent environment) . The 
genetic, residual and permanent environment variances, 
V (genetic) , V (residual) and V (permanent environment) , 
respectively, are in Table 1.

Table 2 shows the distribution of the number of YD over 
birth years, together with their average reliabilities. The 
birth years ranged from 1993 to 2018, but most cows were 
born in the 2010–2018 period. The records of the young-
est cows born in 2018 (1988 cows) were chosen as valida-
tion records. The remaining 30,213 cows were used for the 
training of the models, i.e. they were used for the GWAS 
analyses and the estimation of genomic breeding values.

Imputed HD genotypes on 617,739 SNPs for all 32,201 
cows were provided by Geno. These imputed genotypes 
were a subset of a bigger dataset of imputed genotypes used 
in routine breeding value evaluations, where the actual gen-
otypes came from different platforms: a customized Affy-
metrix 55 k SNP chip (Affymetrix, Santa Clara), Illumina 
BovineSNP50 BeadChip v1 and v2 (Illumina, San Diego), 
Illumina BovineHD Genotyping BeadChip (Illumina, San 
Diego) and Affymetrix 25  k (Affymetrix, Santa Clara). 
Genotype imputation was performed by FImpute [18]. 
SNPs were filtered for minor allele frequency (MAF) > 0.01, 
SNP call rate ≥ 0.9, Hardy–Weinberg equilibrium exact test 
p-values > 10–7, and Mendelian inconsistencies < 10%.

Centred genotype scores were obtained for cow i and 
SNP j as:

where Mij are genotypes coded as 0, 1, or 2 for the 
homozygote, heterozygote, or opposite homozygotes, 

(1)wi =
ni(α + 1)

α + ni
,

Xij =
(
Mij − 2pj

)
,

respectively; and pj is the weighted allele frequency of 
the SNP j obtained from the training data (weights from 
Eq.  (1)). The use of weighted allele frequencies makes 
that the weighted average of the genotypes Xij over the 
training animals is 0.

Models for analysis
Genomic relationship matrices
Weighted genomic relationship matrices for the 32,201 
training cows were obtained following Van Raden’s [3] 
method 1:

where X is a matrix of SNP genotypes Xij ; and D is a diag-
onal matrix of weights Djj for the SNPs j=1,…, 617,739. 
The values used as weights ( Djj ) are described below. An 
unweighted genomic relationship matrix Gu is obtained 
by having all Djj = 1, i.e. D equals the identity matrix I.

The expectation of the diagonal elements of the numer-
ator of Gu is 

∑
j 2pj(1− pj)(1+ Fi) , where (1+ Fi) and 

Fi are the self-relationship and inbreeding coefficients 
of animal i , respectively. After dividing by the denomi-
nator 

∑
j 2pj(1− pj) , the expectation of Guii becomes 

(1+ Fi) . For GD , the expectation of the numerator is ∑
j 2pj(1− pj)Djj(1+ Fi) , which after dividing by the 

denominator 
∑

j 2pj(1− pj)Djj also becomes (1+ Fi) . 
Hence, the two relationship matrices have the same 
expectation, i.e. E(Gu) = E(GD) , but differ from each 
other in real life situations due to the differences in SNP 
weights, which may affect variance component estimates.

GWAS
An efficient mixed-model association eXpedited 
(EMMAX)-type GWAS [19] analysis was conducted 
using the YD as phenotypes and the 617,739 SNP geno-
types on the 30,213 training cows. The EMMAX model 
for the GWAS analysis of SNP j is:

where y is the vector of YD of the training cows; Xj is col-
umn j of the genotype matrix; bj is the effect of SNP j ; g 
is the random effect of polygenes g ∼ N

(
0,Guσ

2
g

)
 with 

Gu being the unweighted G-matrix of the training cows 
and; e is a random residual effect e ∼ N

(
0,Rσ 2

e

)
 with R 

being a diagonal matrix with elements w−1
i  (see Eq. (1)). 

EMMAX does not re-estimate variance components per 
SNP, but does include an overall mean, which for simplic-
ity was not included here. Since the weighted mean of the 

(2)GD =
XDX

′

(∑
j 2pj(1− pj)Djj

) ,

(3)y = Xjbj + g + e,

Table 2  Distribution of training and validation (in italics) animals 
over the birth years and the average reliabilities of their yield 
deviations

Birth year Number Reliabilities

kg milk kg fat kg protein SCC

1993–2009 4177 0.458 0.365 0.369 0.285

2010 1072 0.476 0.383 0.384 0.300

2011 1653 0.471 0.378 0.380 0.295

2012 1767 0.464 0.371 0.374 0.290

2013 1903 0.459 0.366 0.369 0.285

2014 2322 0.444 0.350 0.356 0.273

2015 3057 0.435 0.342 0.348 0.266

2016 4938 0.418 0.325 0.334 0.253

2017 9384 0.416 0.323 0.332 0.251

2018 1988 0.409 0.316 0.326 0.246
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genotypes Xij is 0 for all SNPs j , the off-diagonal pertain-
ing to the SNP-effect and the overall mean on the left-
hand-side of the mixed model equations of the GWAS 
analysis is 0, which implies that the estimation of the 
SNP-effect is not affected by the overall mean. The vari-
ance components σ 2

g  and σ 2
e  were estimated using the 

above model excluding the SNP effect by DMU [20]. 
These estimates of the variance components were subse-
quently used in the GWAS models (3) with SNP effects.

The log-likelihood of the null-model, i.e. model (3) 
without the SNP effect, is:

where C is a constant, and V
(
y
)
= V = Rσ 2

e +Guσ
2
g  . 

Letting b̂j denote the estimate of the SNP effect, the log-
likelihood for the alternative model (3) with SNP effect j 
fitted is:

where the cancelations that led to the latter formula are 
due to the normal equations for the estimation of the 
SNP effect: X′

jV
−1Xjb̂j = X

′

jV
−1y . The log-likelihood-

ratio (LR) now becomes:

It may be noted that this is half the product of the 
right-hand-side of the normal equations for estimat-
ing the SNP effect times the estimate of the SNP 
effect, i.e. the LR is easily obtained when estimating 
the SNP effect. Also, since the standard-error of the 

SNP effect estimate is: sej = (X
′

jV
−1Xj)

− 1
2 , we have 

b̂j/sej = (X
′

jV
−1Xj)

− 1
2X

′

jV
−1y and LRj =

1
2
(b̂j/sej)

2
 , i.e. 

LR is also easily obtained from the SNP effect estimate 
and its standard error. In GWAS analyses, we use this 
log-likelihood ratio LR as the criterion to detect SNPs 
with large trait associations.

L0 = C −
1

2
y
′

V−1y,

Laj = C −
1

2

(
y − Xjb̂j

)′

V−1
(
y − Xjb̂j

)
,

Laj =C −
1

2

(
y′V

−1
y − y′V

−1
Xjb̂j

−b̂jX
′
jV

−1y+b̂jX
′
jV

−1Xjb̂j

)
,

Laj = C −
1

2

(
y′V

−1
y − y′V

−1
Xjb̂j

)
,

LRj = Laj − L0 =
1

2
y
′

V−1Xjb̂j

GBLUP
Standard GBLUP was used to predict genetic values for 
all cows using only records on the 30,213 training cows. 
The model was:

where the polygenic effect g was assumed randomly dis-
tributed with g ∼ N (0,Guσ

2
g ) and the Gu matrix con-

taining the genomic relationships among all the cows; 
and Z is a design matrix linking the records y to g . Also, 
alternative GBLUP models were applied, where some top 
SNPs that were genome-wide-significant (P-value < 10–7) 
obtained from GWAS were given a factor 1000 more 
weight in the G-matrix calculation. These analyses were 
denoted GBLUP(topSNPs), with genomic relationship 
matrices Gtop , which were obtained by setting the SNP 
weights of the top-SNPs to Djj = 1000, while for the other 
SNPs Djj = 1 remained. Which SNPs were denoted as top 
SNPs is described in the Results section.

GWABLUP
In GWABLUP, the GWAS results are used to differenti-
ate the weights of all the SNPs. First, since GWAS sig-
nals are known to be erratic and in order to mimic the 
modelling averaging that occurs in Bayesian variable 
selection models, we smoothed the LRj-values by tak-
ing the moving average of the LRj-values of SNP j and 
its surrounding SNPs. E.g. let LRj(5) denote the moving 
average of the LRj of five SNPs: two SNPs to the left of 
j , two to the right of j , and SNP j itself. Moving aver-
ages of 5, 11, 21, 41, 81, and 161 SNPs were tested.

Second, posterior probabilities may be calculated 
using GWAS results as:

where π is the prior probability that a SNP has a substan-
tial effect, which was assumed to equal 0.001. However, 
instead of LRj values, we used smoothed LRj() values 
as described above, which results in smoothed poste-
rior probabilities PPj(s) , where s is the number of SNPs 
involved in the moving average. Third, these smoothed 
PPj() values are used as SNP weights, i.e. they are used 
as diagonals of the D matrix in Eq.  (2), to calculate a 
weighted genomic relationship matrix, which is sub-
sequently used in a GBLUP analysis to obtain genomic 
predictions. The rationale for this weighing is that the 
expected variance explained by the SNP equals its 

y = µ+ Zg + e,

PPj = πeLaj/
[
πeLaj + (1− π)eL0

]
,

(4)PPj = πeLRj/
[
πeLRj + (1− π)

]
,
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posterior probability times the variance explained by a 
SNP affecting the trait, assuming the BayesC model [6] 
where all SNPs with effects have equal variance. Hence, 
in this model, the expected variance is proportional to 
the posterior probability. A Julia script for the calculation 
of GWABLUP weights and a software for the calcula-
tion of weighted G matrices is available at: github.com/
theomeuwissen/gghatvr4.

BayesGC
For comparison, we also used a Bayesian variable selec-
tion model for genomic predictions, namely the BayesGC 
model, which proved competitive to alternative Bayes-
ian variable selection methods [12]. Briefly, the BayesGC 
model extends the above GBLUP model with a BayesC 
term, i.e. a term that selects and adds SNPs with large 
effects to the model which in addition contains a poly-
genic effect:

where Ij is an indicator variable that indicates whether an 
additional effect of SNP j will be fitted or not ( Ij = 0 or 1), 
with a prior probability of ( Ij = 1) of π , where π = 0.001 ; 
bj is the effect of SNP j with a prior distribution of 
bj ∼ N (0, σ 2

g /1000) ; and the polygenic effect is a priori 
assumed distributed as g ∼ N (0,Guσ

2
g ) . The BayesGC 

model was implemented by MCMC sampling by execut-
ing 10,000 cycles with 2000 burnin cycles in 10 replicated 
MCMC chains (for more details see [12]).

Multitrait genomic predictions
Multitrait GBLUP (MtGBLUP) predictions are obtained 
by using multitrait animal model theory [21], which 
results in 128,808 dense animal model equations. To 
reduce the dimensionality of the multitrait model, we 
used its canonical transformation [22], which is feasi-
ble since there were no missing records. The canonical 
transformation results in genetically and environmentally 
independent canonical traits that are obtained by linear 
combinations of the original traits and are scaled such 
that their environmental variances are 1. For MtGBLUP, 
the independent canonical traits are analysed separately 
using single trait GBLUP and the relationship matrix Gu . 
The resulting genomic estimated breeding values (GEBV) 
for the canonical traits are back-transformed to obtain 
GEBV for the original traits. The latter GEBV are the 
same as those obtained from the original multitrait ani-
mal model, which analyses all traits simultaneously [21].

Extension of variable selection models to multiple 
traits is not so straightforward as we have to decide for 
any QTL, which traits it affects. We used the simplify-
ing assumption that if a SNP has substantial effects on 

y = µ+ Z(g +
∑

j

IjXjbj)+ e,

one of the traits, it is expected to have substantial effects 
on all traits, i.e. its weight is increased for all traits. This 
assumption seems reasonable if the multitrait analysis 
deals with related traits, which seems to be the case here. 
However, variance component analysis shows that the 
correlations of SCC with the yield traits are rather low 
(see Results section).

Multitrait GWABLUP is also performed by analysis of 
the canonical traits. Since the canonical traits are inde-
pendent, their GWAS-signals are combined by summing 
the LRj ’s of SNP j across the traits, which results in an 
overall LRj value. Subsequently, smoothed LRj(5) and PPj 
values are obtained (Eq. (4)). These PPj are used to obtain 
a weighted GD-matrix which is used to analyse each of 
the independent canonical traits. The resulting canonical 
trait GEBV are back-transformed to obtain GEBV for the 
original traits.

The independent canonical traits were also analysed by 
the GBLUP(topSNPs) approach (MtGBLUP(topSNPs)). 
The genome-wide significant top-SNPs detected for any 
of the traits obtained 1000 times more weight in the GD

-matrix than the other SNPs. This GD-matrix was used 
to estimate GEBV for the independent canonical traits. 
Similarly, single trait BayesGC analyses were applied to 
each of the canonical traits. The resulting GEBV for the 
canonical traits were back-transformed to GEBV for the 
original traits.

Comparison of methods
All the above methods were applied to the phenotypes 
and genotypes of the 30,213 training cows. The genotypes 
but not the phenotypes of the 1988 validation cows were 
included in the data, so that the methods also predicted 
their genetic values ( ̂gv ). As a measure of the reliability of 
the genomic predictions we used cor

(
yv , ĝv

)2 , where yv 
are the yield deviations of the validation cows. This meas-
ure of reliability is expressed relative to the reliability of 
the GBLUP model, which acts as a reference in the model 
comparisons.

The reliabilities of the alternative prediction methods 
are investigated for statistically significant differences 
(P < 0.05) by bootstrapping [23], which tests for signifi-
cant differences between cor

(
yv , ĝ

k
v

)
 and cor

(
yv , ĝ

l
v

)
 , 

where the superscripts denote prediction method k and l . 
Bootstrap samples are obtained by sampling with 
replacement validation individuals, i.e. their yv , ĝkv  and ĝlv 
values. This bootstrapping procedure accounts for the 
fact that both correlations are calculated using the same 
phenotypes (yv) and thus are not independently 
estimated.

Unbiasedness of BLUP breeding value estimates 
implies that Cov(ĝv , gv) = Var(ĝv) [1], which implies 
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that the regression coefficient βyvĝv of yv on ĝv equals 1 
(assuming no covariance between the residuals of the 
YD and ĝv ). Hence, these regression coefficients were 
estimated for the prediction methods where βyvĝv = 1 
implies unbiasedness, βyvĝv < 1 implies that the breeding 
value estimates are inflated, and βyvĝv > 1 that they are 
deflated.

Results
GWAS results
Figure  1 shows GWAS results in the form of Manhat-
tan plots for the four dairy traits. Due to the large size 
of the dataset, some of the QTL signals were large and 
genome-wide significant with maximum -log10(P-values) 
of 34.1, 27.0, 28.5, and 11.7 for milk, fat, and protein yield 
and SCC, respectively. Genome-wide significant QTL 
were found on chromosomes 5, 6, 12, and 19 affecting 
the three yield traits, which agrees with the GWAS meta-
analysis of [24]. The DGAT1 gene is probably causing the 
signal on chromosome 14 for milk and fat yield [25], but 
the DGAT1 peak is not the most significant signal due to 
its relatively low frequency in the Norwegian Red Cat-
tle breed. A QTL on chromosome 12 affecting milk yield 
was previously detected in red cattle breeds by [26, 27].

Compared to the yield traits, SCC had less strong 
QTL signals with a maximum −  log10(P-value) of 11.7, 
i.e. there seemed to be fewer major genes and thus it 
appeared more polygenic, which agrees with the findings 
of [28]. Still, there were genome-wide significant QTL 
on chromosomes 15, 18, and 19, which agrees with ear-
lier findings [29, 30]. The position of the QTL on chro-
mosome 19 seemed also to agree with the yield QTL on 
chromosome 19.

Based on these GWAS results of Fig.  1, in the 
GBLUP(topSNPs) analysis of milk, high weights (1000) 
were allocated to the top-SNPs on chromosomes 5, 6, 12, 
14, 16, 19, which all contained genome-wide significant 
SNPs. For fat yield, the top-SNPs on chromosomes 5, 6, 
12, 14, and 19 were included in GBLUP(topSNPs) with 
high weights (1000). For protein yield, GBLUP(topSNPs) 
gave high weights to the top-SNPs on chromosomes 5, 
6, 12 and 19. And for SCC, GBLUP(topSNPs) gave high 
weights to the top-SNPs on chromosomes 15, 18 and 19.

For comparison, the Manhattan plot of the poste-
rior probabilities for milk yield calculated by Eq.  (4) are 
shown in Fig. 2. Figure 2 shows that most chromosomes 
contain regions with SNPs that reach posterior prob-
abilities close to 1. The number of SNPs with posterior 

Fig. 1  Manhattan plots of -log10(P-values) for milk (a), fat (b), and protein (c) yields and somatic cell count (d). The blue horizontal line denotes 
the genome-wide significance level
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probabilities exceeding 0.9 was 755 out of 617,739 SNPs. 
Many more SNPs reached substantial posterior probabil-
ities, and thus obtained substantial weight in the GWA-
BLUP analysis. The number of SNPs with a posterior 
probability less than 0.05 was 576,113, which obtained 
less than 1/20th of the weight of the topSNPs in GWAB-
LUP. However, this represents very many SNPs and their 
collective weight will still be substantial.

Reliabilities of genomic predictions
Table  3 shows the ratio of the genomic prediction reli-
abilities of the methods for the four dairy traits relative to 
those of GBLUP. The cor

(
yv , ĝv

)2 of GBLUP were equal 
to 0.209, 0.186, 0.196, and 0.178 for milk, fat, and protein 
and SCC, respectively. GWABLUP reached the high-
est prediction reliabilities for all four traits, and yielded 
up to 10% more reliable predictions than GBLUP. How-
ever, GWABLUP’s reliability was only statistically signifi-
cantly higher for milk and protein yield (P < 0.05). For fat 
yield, GWABLUP, GBLUP(topSNPs) and BayesGC were 
statistically significantly more reliable than GBLUP, but 
showed no statistically significant differences between 

each other. For SCC, the methods with differentially 
weighed SNPs, achieved only up to 1% extra reliability, 
confirming that SCC is a highly polygenic trait [28]. For 
the milk, fat and protein yield traits PPj(5) was used, i.e. 
five posterior probabilities were used in the moving aver-
ages. For SCC, higher accuracies were achieved by using 
81 posterior probabilities in the moving averages, which 
is probably due to the much weaker QTL signals for SCC 
(Fig. 1).

The actual reliabilities of the genomic predictions 
can be estimated by expressing the aforementioned 
cor

(
yv , ĝv

)2 relative to the reliabilities of the YD of the 
2018-cows (Table  2). In the case of GBLUP, this yields 
0.511, 0.590, 0.603, and 0.723 for milk, fat, and protein 
and SCC, respectively. This shows a remarkable higher 
prediction reliability for SCC compared to milk yield, 
and fat and protein yields are in between. However, SCC 
has the lowest heritability (Table 1). It may be expected 
that the prediction reliability decreases with a decreas-
ing heritability/reliability of the YD although the actual 
squared correlations cor

(
yv , ĝv

)2 are expressed relative to 
the reliability of the YD. The reliabilities in Table 2 may 
be somewhat overestimated for milk yield and somewhat 
underestimated for SCC. However, by expressing all the 
reliabilities in Table  3 relative to those of GBLUP, the 
results in Table 3 are not affected by any over- or under-
estimation of the reliabilities of the yield deviations.

In/deflation of genomic predictions
For GBLUP, GBLUP(topSNPs), GWABLUP, and BayesGC 
the genomic predictions were not statistically signifi-
cantly inflated (Table  4), although for GWABLUP, there 
was a tendency towards inflation bias for the milk, fat and 
protein yield traits. The latter may be because GWABLUP 
heavily reweighs the SNPs based on the GWAS results 
(Fig. 2), which are obtained from the same training data. 
Hence, there is a danger that the SNPs with high GWAS-
based weights also show large effects in the genomic pre-
dictions, which may cause inflation bias. However, this 
putative inflation bias is not statistically significant in 
Table 4. For SCC, the moving average is calculated over 
much larger numbers of SNPs (81), which reduced the 

Fig. 2  Manhattan plot of posterior probabilities of the SNPs for milk 
yield

Table 3  Reliabilities of genomic predictions of validation cows 
relative to those of GBLUP and their statistically significant 
differences between the methods

The cor
(
yv , ĝv

)2 of GBLUP were 0.209, 0.186, 0.196, and 0.178 for milk, fat, and 
protein and SCC, respectively

Different letters in the superscripts denote statistically significant differences 
(P < 0.05)

Reliability relative to GBLUP

Milk Fat Protein SCC

GBLUP 1.00a 1.00a 1.00a 1.00a

GBLUP(topSNPs) 1.05b 1.04b 1.04b 1.00a

GWABLUP 1.10c 1.06b 1.07c 1.01a

BayesGC 1.05b 1.04b 1.03b 1.01a

Table 4  Regression coefficients (± standard errors) of the yield 
deviations of the validation cows on their genomic predictions

Milk Fat Protein SCC

GBLUP 1.01 ± 0.04 1.04 ± 0.05 1.02 ± 0.05 1.05 ± 0.05

GBLUP (topSNPs) 1.02 ± 0.04 1.04 ± 0.05 1.02 ± 0.05 1.04 ± 0.05

GWABLUP 0.94 ± 0.04 0.96 ± 0.04 0.93 ± 0.04 1.00 ± 0.05

BayesGC 1.00 ± 0.04 1.02 ± 0.05 1.00 ± 0.04 1.01 ± 0.05
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effects of single SNPs on the weights PPj(81) , and thus 
avoided any in/deflation biases.

Multitrait genomic predictions
The canonical transformation requires estimates of the 
genetic and environmental (co)variances across the traits. 
However, the four-trait analysis of milk, fat and protein 
yield and SCC did not converge using DMU. Since milk 
and fat yield are highly correlated, we removed fat yield 
from the analysis and obtained convergence for the traits 
milk and protein yield and SCC. The heritability esti-
mates of milk and protein yield and SCC were: 0.26, 0.20, 
and 0.16, respectively (result not shown elsewhere). The 
genetic correlations were 

[
rg (milk , prot) rg (milk , SCC)

rg (prot, SCC)
]
=

[
0.85 0.10 0.096

]
 , and the environ-

mental correlations were: 
[
re(milk , prot) re(milk , SCC)

re(prot, SCC)
]
=

[
0.97 −0.17 0.16

]
 . The canonical 

transformation resulted in independent canonical traits 
with genetic variances of 0.16, 0.29 and 1.44 for canonical 
traits 1, 2, and 3, respectively, and all canonical traits had 
standardised environmental variances  of 1.

Figure 3 shows the GWAS results for milk and protein 
yields and SCC. Genome-wide significant SNPs were 
detected on chromosomes 1–6, 9–12, 14–20, 23–26, 28 
and 29. Although, many of these QTL were also detected 
in the GWAS of the original traits, the multitrait GWAS 
clearly revealed more QTL, with higher levels of statis-
tical significance. The abovementioned genome-wide 
significant SNPs were included in the GD-matrix of the 
MtGLUP(topSNPs) analysis.

Table  5 show the reliabilities of the multitrait models 
relative to those of single trait GBLUP. Milk and protein 
yield benefitted from the multitrait analysis, but not SCC. 
This is probably because the aforementioned genetic 
correlations between the yield traits and SCC were low 
(≤ 0.1). The assumption that the same QTL affected all 

three traits (MtGBLUP(topSNPs) and MtGWABLUP) 
reduced the reliabilities of SCC relative to the single trait 
analyses, especially in the case of MtGWABLUP. The 
yield traits benefitted from the multitrait analyses and the 
MtGWABLUP – GEBV had the highest reliabilities for 
these traits.

Discussion
A novel genomic prediction method, called GWAB-
LUP, was proposed, and compared to three alternative 
genomic prediction methods in a Norwegian Red Cat-
tle dataset comprising high-density SNP-chip genotypes 
and four dairy traits. In a single trait forward predic-
tion setting, GWABLUP yielded the highest prediction 
accuracy for all four traits. The improved prediction 
accuracies of GWABLUP were statistically significant 
for two of the four traits. GWABLUP takes the idea of 
GBLUP(topSNPs), where few GWAS-based top-SNPs are 
fitted with high weights, to the extreme that it differen-
tially weighs all the SNPs based on their GWAS results. 
To achieve the latter, it calculates posterior probabilities 
of the SNPs having non-zero effects using likelihood ratio 
statistics from the GWAS analysis, and uses smoothed 
posterior probabilities as weights for the calculation of a 
weighted genomic relationship matrix Gwa . If prior bio-
logical information on the SNPs is available, e.g. some are 
near genes from pathways that are known to affect the 
trait, this can be implemented in GWABLUP by adapting 
the prior probabilities ( π ) in the PPj calculation (Eq. (4)). 
Gwa is subsequently used in a regular GBLUP analysis to 
obtain genomic predictions, that give extra weight to the 
most important genomic regions. Due to the equivalence 
of GBLUP and SNP-BLUP analyses [3], the smoothed 
posterior probabilities could also be used to differentiate 
the variances of individual SNPs in a SNP-BLUP analy-
sis. It is also straightforward to extend GWABLUP to 
single step analyses (i.e. ssGWABLUP) by extending the 

Fig. 3  Manhattan plot of multitrait − log10(P-values) for the traits 
milk and protein yield and SCC

Table 5  Reliabilities of multitrait genomic predictions of 
validation cows relative to those of single trait GBLUP and their 
statistically significant differences

The cor
(
yv , ĝv

)2 of GBLUP were 0.209, 0.186, 0.196, and 0.178 for milk, fat, and 
protein and SCC, respectively

Different letters in the superscripts denote statistically significant differences 
(P < 0.05)

Relative reliabilities

Milk Protein SCC

MtGBLUP 1.05a 1.01a 1.00a

MtGBLUP(topSNPs) 1.10b 1.04b 1.00a

MtGWABLUP 1.13b 1.08b 0.97a

MtBayesGC 1.09b 1.04b 1.01a
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weighted G matrix of Eq.  (2) to an H matrix, that com-
bines the relationships of genotyped and ungenotyped 
individuals [4].

It may seem remarkable that GWABLUP yielded higher 
prediction accuracies than BayesGC, which is a Bayes-
ian variable selection method. Bayesian variable selec-
tion methods more closely resemble our biological model 
for complex traits, in that they assume that a large frac-
tion of the 617,739 genome-wide SNPs are not close to 
causal variants and have no substantial effects, whereas 
a small fraction of the SNPs are near causal variants and 
thus show substantial effects due to their LD with these 
variants. Variable selection methods attempt to identify 
these nearby SNPs. There are some differences between 
Bayesian variable selection methods and GWABLUP, 
which may make GWABLUP more robust for external 
validations:

–	 Bayesian variable selection methods give extra weight 
to SNPs with effects that best explain the QTL. If a 
SNP is in LD with the QTL, but the QTL is better 
explained by another SNP, it obtains no extra weight. 
Thus, variable selection methods yield more precise 
QTL signals than single-SNP GWAS models where 
any SNP that is in LD with the QTL will show a like-
lihood ratio signal [31]. If this results in the variable 
selection method pointing to the correct SNP, this 
will be more accurate than GWABLUP. However, if 
the variable selection method erroneously gives all 
or most of the weight to a SNP that in the training 
data seems to explain the QTL, but in the validation 
data the QTL is better explained by another SNP, 
prediction accuracies will decrease. Because GWA-
BLUP uses GWAS results, it will give extra weight 
to all SNPs that are in LD with the QTL, which may 
be more robust to LD changes between training and 
validation data.

–	 Bayesian variable selection and GWABLUP both 
weigh SNPs according to their posterior probabili-
ties ( PPj ). The variable selection methods weigh SNP 
effects proportionally to PP , e.g. the BayesC SNP 
effect estimate is PPj times its BLUP estimate assum-
ing a high SNP variance of e.g. 0.001 σ 2

g  . In GWAB-
LUP, the prior variances of the SNPs are reweighted 
proportionally to PPj , which makes the information 
on a SNP still potentially overriding its prior vari-
ance, if it is sufficiently informative.

–	 Bayesian variable selection performs model averag-
ing by averaging over alternative SNPs that are in 
LD with the QTL in an optimal manner. GWAB-
LUP approximates this model averaging by using 
smoothed PPj() values which are obtained as moving 

averages. The moving average implicitly makes use of 
the position of the SNPs, whereas variable selection 
methods do not use this information, i.e. here, GWA-
BLUP uses more information.

In both the GWABLUP and BayesGC methods, the 
prior probability, π , may be varied to fine-tune genomic 
predictions, but this was not attempted here. Thus, 
although variable selection methods align more closely 
to our biological models for complex traits, there are a 
number of reasons why GWABLUP may result in more 
robust genomic predictions.

The GWAS analyses showed a clear difference in 
peak-heights across the traits, with milk yield having 
the highest peaks, fat and protein yield intermediate 
peaks, and SCC the lowest evidence for QTL (Fig.  1), 
although SSC still showed three genome-wide significant 
QTL. Top-peaks with less evidence for a QTL are prob-
ably also less accurately mapped QTL, and may indicate 
lower QTL signals for secondary QTL. Hence, it may be 
expected that GWABLUP and GBLUP(topSNPs) yield 
less extra genetic gain compared to GBLUP for SCC. 
Although, BayesGC uses a different method to position 
the QTL, it likely suffers as much as GWABLUP and 
GBLUP(topSNPs) from reduced information to clearly 
identify and position QTL. Smaller QTL signals may be 
due to the dataset being too small or to the absence of 
large QTL, i.e. a highly polygenic trait. In any case, a suc-
cessful application of GWABLUP, GBLUP(topSNPs) and 
BayesGC requires the existence and accurate localization 
of major QTL. If the latter is not the case, GWABLUP 
will use a large number of SNPs in the moving average, 
and starts to resemble GBLUP, as is seen for SCC. Fortu-
nately, genomic prediction datasets are often large (such 
as the current data), which facilitates powerful GWAS 
analyses.

Hence, a pre-requisite of GWABLUP is a successful 
GWAS, which detects and accurately maps as many QTL 
as possible. The success of a GWAS depends on how 
polygenic the trait is, and how much data are available to 
accurately map the QTL. A GWAS meta-analysis may be 
conducted [24], to combine several (across-breed) data-
sets to locate the QTL more accurately. A drawback of 
an across-breed GWAS meta-analysis is that some of the 
accurately detected QTL may explain less/no variance in 
our breed of interest, and/or the top across-breed SNP 
may be in lesser LD with the QTL in our breed of inter-
est. More research is needed on the benefits of meta-
GWAS studies for improving GWABLUP.

The genomic prediction methods were compared 
using 617  k HD SNP-chip genotypes. In the future, the 
use of WGS data may be envisaged. Due to the increased 
marker density in WGS data, it is expected that GWAS 
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results in higher and more accurate QTL peaks since the 
LD between the markers and the QTL will be higher and 
the WGS data may even include causal polymorphisms 
[32]. In GWABLUP, the increased SNP-density may allow 
for the inclusion of more SNPs in the moving averaging 
process, which implies improved estimates of the pos-
terior probabilities of the SNPs in small regions. On the 
contrary, the use of lower density (e.g., 50 k SNP-chips) 
may result in smaller QTL peaks, less opportunity for the 
smoothing of the QTL signals by moving averages, and 
thus may result in reduced prediction accuracies.

In the multitrait analysis, we assumed that all the SNPs 
with substantial effects are expected to affect all the 
traits. Hence, for every SNP j , one PPj across the traits 
is used, i.e. if the SNP is important for one of the traits, 
its weight will be increased for all traits. However, the 
actual estimate of the effect of upweighted SNPs may 
still be close to zero for some traits. This use of one PPj 
for SNP j across the traits makes sense if the traits in the 
multitrait analysis are related. E.g. a QTL affecting milk 
yield may be expected to also have an effect on fat and 
protein yield. However, SCC was relatively uncorrelated 
to the yield traits, and the Gwa matrix, which was domi-
nated by yield trait SNPs, did not improve predictions. In 
fact, MtGWABLUP based on this Gwa matrix resulted in 
less reliable SCC-predictions than single trait GWABLUP 
predictions, although this difference was not statistically 
significant.

In multitrait analyses where the traits differ substan-
tially and the use of one PPj for SNP j across the traits 
does not make sense, different Gwa matrices across 
(groups of ) traits may be used. Here, every trait has its 
own Gwa matrix based on single-trait GWAS analyses. 
Also, the covariances of the individuals across the traits 
will require their own Gwa matrix which is obtained by 
using the weights Djj(t, s) =

√
PPj(t)PPj(s) in Eq.  (2), 

where PPj(t)
[
PPj(s)

]
 denotes the smoothed PPj for trait t 

( s ). More research is needed on this point and on other 
alternative approaches for multitrait variable selection 
genomic prediction.

In our data, all cows were genotyped, but in practi-
cal data this is not usually the case. Single-step meth-
ods (ssGBLUP and ssSNP-BLUP) optimally combine 
the information from genotyped and non-genotyped 
animals [4]. It is straightforward to apply GWAB-
LUP in combination with single-step by weighing the 
SNPs by the smoothed posterior probabilities of the 
SNPs ( PPj(t) ). The PPj(t) , which depends on LRj values 
(Eq.  (4)), may also be obtained by combining data on 
genotyped and non-genotyped animals by noting that 
LRj =

1
2
(b̂j/sej)

2
= 1

2
t2j  , where tj is the t statistic of SNP 

j . Gualdron Duarte et  al. [33] show how this t-statistic 

may be calculated in SNP-BLUP and ssSNP-BLUP analy-
ses, and from GBLUP and ssGBLUP. However, obtaining 
prediction error variances of SNP effects will be compu-
tationally demanding in large scale single-step analyses.

Although the expectations of the unweighted and 
weighted genomic relationships matrices were the same, 
the variance component estimates using these relation-
ship matrices might differ. For milk, fat and protein 
yield and SCC, the Gwa matrix yielded 9, 14, 8 and − 1% 
higher genetic variance estimates, respectively, than the 
Gu matrix. While the 95%-confidence intervals of these 
estimates overlapped for all four traits, the Gwa matrix 
tended to result in higher genetic variance estimates, 
which may be due to the increased weights on the SNPs 
with the largest (GWAS based) effects. We did not inves-
tigate here whether using these re-estimated variance 
components in the GWABLUP analyses could further 
increased reliabilities of GEBV.

Ridge regression, which is equivalent to SNP-BLUP 
when applied to the estimation of SNP effects, is a well-
known machine learning technique [34]. Novel genomic 
methods have been shown to outperform ridge regres-
sion or other classical machine learning methods when 
applied in fields outside genetics, such as chemometrics 
[35]. Since GBLUP is equivalent to SNP-BLUP [3], and 
our results show that GWABLUP yields more reliable 
prediction than GBLUP (Table  3), it may be expected 
that GWABLUP and its equivalent GWA-SNP-BLUP 
yield also more accurate predictions than ridge regres-
sion in some machine learning applications. The appli-
cation of GWABLUP to general prediction problems 
would require first a GWAS-type of analysis to identify 
the likelihood ratios of x-variates (independent variates) 
affecting a y-variate (the dependent variate to be pre-
dicted). Second, these likelihood ratios are smoothed by 
calculating their moving average. If the x-variates do not 
come in a natural order where some variates are closer 
to each other than other variates, this step may be omit-
ted. Third, these likelihood ratios are combined with the 
prior probability that an x-variate affects y, and are trans-
formed into posterior probabilities using Eq. (4). Finally, 
a weighted ridge regression analysis will be performed 
where the diagonals added to the coefficient matrix are 
proportional to the inverse of the posterior probabilities 
instead of being constant.

Conclusions
GWABLUP is based on the GBLUP or SNP-BLUP 
approach but weighs the SNPs according  to the mov-
ing average of posterior probabilities that are based 
on GWAS results. In single-trait analyses, GWABLUP 
yielded up to 10% more reliable genomic predictions 
than GBLUP and yielded the highest reliability for all 
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four traits considered here when compared to alter-
native methods. In a multitrait analysis, MtGWAB-
LUP yielded up to 13% more reliable predictions, but 
because the GD matrix was dominated by yield trait 
QTL, MtGWABLUP predictions of SCC were less 
reliable than single-trait GWABLUP SCC predic-
tions. Since its additional computations only involve 
a GWAS, GWABLUP is computationally considerably 
less demanding than Gibbs-sampling-based Bayesian 
variable selection methods. The latter and its straight-
forward extension towards single-step analyses makes 
GWABLUP suited to practical applications.
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