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Abstract 

Background  Resilience is the capacity of an animal to be minimally affected by disturbances or to rapidly return 
to its initial state before exposure to a disturbance. Resilient livestock are desired because of their improved health 
and increased economic profit. Genetic improvement of resilience may also lead to trade-offs with production 
traits. Recently, resilience indicators based on longitudinal data have been suggested, but they need further evalu-
ation to determine whether they are indeed predictive of improved resilience, such as disease resilience. This study 
investigated different resilience indicators based on deviations between expected and observed egg production 
(EP) by exploring their genetic parameters, their possible trade-offs with production traits, and their relationships 
with antibody traits in chickens.

Methods  Egg production in a nucleus breeding herd environment based on 1-week-, 2-week-, or 3-week-intervals 
of two purebred chicken lines, a white egg-laying (33,825 chickens) and a brown egg-laying line (34,397 chickens), 
were used to determine deviations between observed EP and expected average batch EP, and between observed 
EP and expected individual EP. These deviations were used to calculate three types of resilience indicators for two 
life periods of each individual: natural logarithm-transformed variance (ln(variance)), skewness, and lag-one autocor-
relation (autocorrelation) of deviations from 25 to 83 weeks of age and from 83 weeks of age to end of life. Then, we 
estimated their genetic correlations with EP traits and with two antibody traits.

Results  The most promising resilience indicators were those based on 1-week-intervals, as they had the highest 
heritability estimates (0.02–0.12) and high genetic correlations (above 0.60) with the same resilience indicators based 
on longer intervals. The three types of resilience indicators differed genetically from each other, which indicates 
that they possibly capture different aspects of resilience. Genetic correlations of the resilience indicator traits based 
on 1-week-intervals with EP traits were favorable or zero, which means that trade-off effects were marginal. The resil-
ience indicator traits based on 1-week-intervals also showed no genetic correlations with the antibody traits, which 
suggests that they are not informative for improved immunity or vice versa in the nucleus environment.
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Conclusions  This paper gives direction towards the evaluation and implementation of resilience indicators, i.e. to fur-
ther investigate resilience indicator traits based on 1-week-intervals, in breeding programs for selecting genetically 
more resilient layer chickens.

Background
Resilience is the capacity of an animal to be minimally 
affected by disturbances or to rapidly return to its ini-
tial state before exposure to a disturbance [1, 2]. It has 
been shown that resilience has an economic value since 
labor costs, health costs, and production losses are lower 
for more resilient livestock [2, 3]. However, the ‘best’ 
resilience indicator or combination of resilience indi-
cators to be included in a selection index is still under 
investigation.

One approach to obtaining resilience indicators is 
based on deviations between observed and expected 
production [1, 4–6]. Such deviations for production 
traits and their patterns over time have been shown to 
be phenotypically indicative of health or health-related 
traits (e.g. [7–15]). These deviations, also known as uni-
formity of traits, also have a genetic component, e.g. 
residual variation of eggshell color [16], egg weight [17], 
and body weight [18–20] were found to be heritable in 
chickens. In the last decade, this approach has received 
more attention from the quantitative genetics field due 
to (expected) technological developments that allow the 
collection of longitudinal data, and to the acquired capa-
bility and expertise to handle and analyze ‘big data’ for 
genetic evaluation by using the deviations in these data 
for an individual [21]. Based on this, Berghof et  al. [2] 
proposed three resilience indicators that consider dis-
turbances that differ in nature during a production cycle: 
natural logarithm-transformed variance (ln(variance)) of 
deviations, skewness of deviations, and autocorrelation 
of deviations between observed and expected production 
[2]. More resilient animals are expected to have a more 
uniform production with fewer and smaller deviations 
compared to less resilient animals, because they are less 
influenced by disturbances. Thus, they are expected to 
have a small ln(variance), and a skewness and an autocor-
relation around zero [2].

Until now, a limited number of studies have estimated 
the genetic parameters of these resilience indicators. 
However, in dairy cattle, the ln(variance), skewness, 
and autocorrelation of the deviations of daily milk 
production [22–25] and of fluctuations in step count 
[26] were estimated to be heritable. In layer chickens, 
these three resilience indicators based on deviations of 
4-weekly body weight measurements and of egg pro-
duction (EP) were also found to have a genetic compo-
nent [27, 28]. However, except for Poppe et al. [23], who 

compared different models to estimate lactation curves, 
the effects of different time intervals or production 
estimates on resilience indicator estimates have thus 
far been ignored. This is likely in part due to the lack 
of high-resolution longitudinal phenotypes recorded 
in livestock species. A more detailed understanding of 
the impact of observation frequencies and of different 
methods to estimate deviations is important to further 
define and understand resilience indicators for live-
stock breeding.

In addition, the proposed resilience indicators lack 
a clear physiological understanding. On the one hand, 
improved resilience could lead to decreased produc-
tion as a result of energy relocation (trade-off ). This 
was for example observed for resilience indicators 
based on daily milk production and milk yield [23, 29], 
although the economic value of a more resilient ani-
mal with lower production might still be higher over a 
lifetime than that of a low resilient animal with higher 
production (see Poppe et al. [30]). On the other hand, 
improved resilience should lead to, among others, 
improved immunity and disease resistance. Indeed, the 
variance of the deviations for finishing pigs of daily feed 
intake and daily duration at the feeder were favorably 
genetically correlated with mortality and number of 
treatments in a ‘natural disease challenge environment’ 
[31]. The ln(variance) of the deviations of daily milk 
production in dairy cows was also favorably genetically 
correlated with a lower incidence of milk production-
related diseases and greater longevity [22–24]. Simi-
larly, the autocorrelation of deviations and the mean 
of negative residuals of step count showed potential as 
resilience indicators in dairy cattle [26]. However, in 
chickens, ln(variance) was found to have only a weak 
relationship with resistance to avian pathogenic Escher-
ichia coli (APEC), and no genetic correlation with 
another known disease resistance indicator (i.e. titer 
of natural antibodies (NAb)) [27]. Thus, more work is 
needed to understand the biology that underlies these 
resilience indicators and to confirm their relationships 
with known physiological systems, such as the immune 
system.

In this study, we used longitudinally collected obser-
vations on a large number of individuals from two pure-
bred chicken lines to study the possibility and feasibility 
to genetically improve resilience in chickens. We esti-
mated the heritability of different resilience indicators 
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based on deviations of EP, as well as their genetic cor-
relations with production and immune traits. Thus, the 
objectives of this study were to investigate:

(1)	 the effects of different EP intervals (i.e. 1-week, 
2-week, and 3-week) and different expected EP ref-
erences (i.e. average batch EP and individual EP) 
on genetic parameters of three resilience indicator 
types (i.e. ln(variance), skewness, and autocorrela-
tion) for two life periods (i.e. from 25 to 83 weeks of 
age and after 83 weeks of age);

(2)	 potential trade-offs between the resilience indica-
tors and EP by estimating the genetic correlations 
between selected resilience indicators and EP traits;

(3)	 the predictive potential of the resilience indica-
tors for immunity traits and vice versa by estimat-
ing genetic correlations between selected resilience 
indicators and keyhole limpet hemocyanin (KLH)-
binding IgM and IgG NAb titers.

Methods
Animal populations
Two purebred Leghorn chicken lines from Hendrix 
Genetics were used for this study: one white egg-laying 
line, which in some other works is referred to as ‘WA’ 
and here as ‘White’, and one brown egg-laying line, which 
in some other works is referred to as ‘BD’ and here as 
‘Brown’. Data were collected between 2012 and 2018 on 
39 batches at 13 breeding nucleus locations for White 
and on 41 batches for Brown at 13 breeding nucleus loca-
tions. Generally, one breeding nucleus location (‘location’ 
in the statistical model) contributed three batches (‘batch’ 
in the statistical model), typically consecutive hatches 
with a two-week-interval. Chickens were housed in 

individual cages, which were organized in rows and lev-
els, for which a unique identifier was created (‘row*level’ 
in the statistical model). Birds were kept according to 
standard Hendrix Genetics protocols.

It should be noted that the populations studied here, 
part of the phenotypes, and part of the results were pre-
viously described in Bedere et al. [28], Doekes et al. [32], 
and Berghof et al. [33, 34]. Bedere et al. [28] investigated 
the genetic characteristics of the purebred and cross-
bred individuals and the purebred-crossbred correla-
tions of the resilience indicators based on average batch 
production for the laying period from 25 to 83 weeks of 
age with 1-week-intervals. Doekes et al. [32] investigated 
the genetic characteristics of the NAb titers and the resil-
ience indicators for Brown. The studies of Berghof et al. 
[33, 34] investigated the genetic characteristics of the 
NAb titers for White. Our study is complementary to 
these previous studies, because it focuses on the genetic 
characteristics of the resilience indicators based on dif-
ferent definitions of expected production (i.e. different 
interval lengths, different life periods, and expected batch 
vs. individual production), and their genetic correlations 
with the EP and antibody traits.

Phenotypes
An overview of the collection time for each phenotype is 
in Fig. 1 and the descriptive statistics for all phenotypes 
are in Table 1. Note that the resilience indicators and EP 
traits could only be recorded on females, while the anti-
body traits were recorded on both sexes.

Fig. 1  Schematic overview of individual trait measurements: resilience indicators, egg production, and natural antibody levels. Top bar shows 
the age of the individuals in weeks with relevant time points during the production cycle. Individual caging after rearing takes place between 15 
and 19 weeks of age. Traditionally, breeding programs of laying hens have focused on egg production between 25 and 83 weeks of age, 
but currently, they focus on prolonging the egg production cycle (to more than 100 weeks). Therefore, the relevant periods in this study are split 
up into: the full production cycle (i.e. all eggs from start to end), the early production cycle (i.e. from start to 25 weeks of age), the ’traditional’ 
production cycle (i.e. 25 to 83 weeks of age), and the time period after the ’traditional’ production cycle (i.e. 83 weeks of age to end)
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Resilience indicators
After rearing, individual housing started between 15 and 
19  weeks of age (‘start’). Egg production was recorded 
from the start to the end of a female’s life (‘end’), which 
was either (1) at the end of the production life of a batch 
(i.e. when the stable was emptied), which was generally 
between 91 and 105 weeks of age, (2) when the bird was 
found with severe injuries and consequently euthanized, 
or (3) when the bird was found dead by animal care 
takers.

Resilience indicators were assessed from 25 to 83 weeks 
of age (25–83) and from 83 weeks of age to end (83-end). 

Egg production from the start of individual caging to 
25 weeks of age (early EP; start-25) was not used for esti-
mating the resilience indicators, because it is considered 
to be a genetically different trait from EP during later 
stages of life. Indeed EP in the start-25 period is strongly 
influenced by the sexual maturity of the individual, so 
variation in EP may be more representative of the stage 
and speed of sexual development than of resilience (J. 
Visscher, personal communication). The resilience indi-
cators were also estimated from 25 weeks of age to end, 
but are not reported, because they were found to be 
highly genetically correlated with the corresponding 

Table 1  Descriptive statisticsa for each trait

a Average, standard deviation (in parentheses), and number of observations used (in italics) for each trait: resilience indicators based on average batch production, 
resilience indicators based on expected individual production, egg production for each life period, and keyhole limpet hemocyanin (KLH)-binding natural antibody 
for White and Brown
b Consisting of 3100 females and 1756 males
c Consisting of 2509 females and 280 males
d Consisting of 3096 females and 1756 males

Trait Period (weeks of age) Interval White Brown

Average batch production ln(variance) 25 to 83 1 week − 0.81 (0.94) 31,925 − 0.33 (1.09) 1462

2 weeks 0.06 (1.01) 31,812 0.66 (1.23) 31,381

3 weeks 0.50 (1.07) 31,707 1.21 (1.30) 31,279

83 to end 1 week − 0.33 (1.10) 29,979 − 0.26 (1.26) 26,760

2 weeks 0.47 (1.22) 29,660 0.65 (1.39) 19,317

3 weeks 0.85 (1.35) 25,196 1.42 (1.36) 2934

Skewness 25 to 83 1 week − 1.50 (1.04) 31,919 − 1.19 (1.15) 31,502

2 weeks − 0.97 (1.02) 31,867 − 0.79 (1.11) 31,415

3 weeks − 0.66 (0.91) 31,751 − 0.55 (1.02) 31,304

83 to end 1 week − 0.63 (0.71) 29,952 − 0.32 (0.69) 26,747

2 weeks − 0.29 (0.56) 29,662 − 0.16 (0.51) 19,317

3 weeks − 0.14 (0.46) 25,240 − 0.09 (0.46) 2951

Autocorrelation 25 to 83 1 week 0.21 (0.24) 31,994 0.36 (0.29) 31,524

2 weeks 0.14 (0.29) 31,877 0.36 (0.29) 31,414

3 weeks 0.11 (0.30) 31,761 0.33 (0.30) 31,304

83 to end 1 week 0.12 (0.31) 29,992 0.13 (0.35) 26,760

2 weeks 0.01 (0.32) 29,662 − 0.01 (0.34) 19,317

3 weeks − 0.09 (0.31) 25,240 − 0.01 (0.32) 2951

Individual production ln(variance) 25 to 83 1 week − 0.61 (1.09) 31,816 − 0.63 (1.12) 31,381

83 to end 1 week − 0.36 (1.06) 29,693 − 0.26 (1.33) 26,478

Skewness 25 to 83 1 week − 2.59 (1.12) 31,782 − 2.01 (1.19) 31,264

83 to end 1 week − 0.84 (0.76) 29,711 − 0.46 (0.70) 26,594

Autocorrelation 25 to 83 1 week 0.23 (0.21) 31,839 0.22 (0.28) 31,457

83 to end 1 week 0.07 (0.29) 29,723 0.10 (0.34) 26,641

Egg production (number) Full 486.0 (84.7) 32,056 427.4 (95.9) 31,603

Early 29.2 (8.7) 32,056 37.4 (7.9) 31,603

25 to 83 369.3 (57.1) 32,056 345.8 (73.0) 31,603

83 to end 92.5 (31.7) 30,339 51.3 (26.0) 27,159

Natural antibodies (titers) IgM Once between 15 and 22 7.10 (1.43) 4856b 6.74 (1.20) 2789c

IgG Once between 15 and 22 6.16 (1.57) 4852d 6.02 (1.29) 2789c
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resilience indicators for the 25–83 period and can, there-
fore, be considered very similar. The division of the EP 
period until or from 83  weeks of age was based on the 
traditional design of breeding programs, which are 
strongly focused on EP from 25 to 83  weeks of age (EP 
25–83). Thus, it can be expected that variation in EP is 
minimal due to the strong selection for EP during this 
period, which has been practiced for many generations. 
However, since modern breeding programs put more 
emphasis on prolonging the EP cycle (from 83 to more 
than 100  weeks of age), greater variation in EP from 
83 weeks of age to end (EP 83-end) may still exist. Thus, 
to investigate these possible differences, resilience indica-
tors were based on the 25–83 and 83-end life periods.

Egg production was generally recorded on a one-day- 
to four-day-interval throughout the production cycle (i.e. 
from 25 weeks of age to end). However, EP was registered 
over longer intervals for some individuals within a batch 
for no obvious reason. Similarly, EP for some collection 
intervals was not registered for some birds, for no obvi-
ous reason, and in these cases, missing EP was estimated 
by Hendrix Genetics staff based on EP before and after 
this collection interval. Nevertheless, because these 
data were used for longer intervals and the estimated 
data were included in the database and are used in the 
breeding programs of Hendrix Genetics, they were also 
included in our data in order to make our study more 
applicable for practical breeding purposes.

Average daily EP per female was calculated based on 
the observed production over a certain time interval. 
Although birds only lay one egg per day, it is possible to 
have an observation of two eggs per day when the first 
egg was laid after egg collection on day 1 and the second 
egg was laid before egg collection on day 2. However, 
females with an average daily EP observation of more 
than two eggs were removed from the datasets because 
this is physiologically not possible.

For all resilience indicators, EP deviations were cal-
culated for each individual as the difference between an 
individual’s observed and expected EP during non-over-
lapping 1-week-, 2-week-, or 3-week-intervals for the two 
25–83 and 83-end periods (see ‘Discussion’ for the ration-
ale behind this). The expected EP was set to the average 
batch EP, similar to the studies of Berghof et al. [27] and 
Bedere et al. [28]. For example, an individual’s EP in the 
30th week was compared to its batch’s average in the 30th 
week. However, other studies have investigated resilience 
indicators using the deviations from expected production 
derived using individual production (e.g. [22–25, 31]). 
Because the data used here allowed for a comparison of 
both methods the expected individual production was 
estimated in a similar manner as in Poppe et al. [23–26] 
for a selected set of resilience indicators (see ‘Results’) 

based on the individual’s EP production curve. The latter 
was estimated separately for each individual by fitting a 
4th order 0.7 quantile polynomial regression to 1-week-
interval EP observations from 25 weeks of age to end. By 
using a 0.7 quantile regression, the estimated curve was 
less sensitive to drops in EP, i.e. low EP values had less 
influence on the predicted EP curve than high EP val-
ues [26]. For more information on the rationale for using 
quantile regression, see Poppe et  al. [26]. The expected 
EP curve was estimated using R and the R-packages 
‘quantreg’ and ‘dplyr’ [35–37].

The following resilience indicators were computed for 
each individual: the natural logarithm (ln)-transformed 
variance of deviations (ln(variance)), the skewness of 
deviations (skewness), and the lag-one autocorrelation 
of deviations (autocorrelation), as proposed by Berghof 
et al. [2]. The variance was ln-transformed, because vari-
ance phenotypes typically display a right-skewed distri-
bution, which is removed by the ln-transformation. In 
addition, ln is the commonly used scale to express vari-
ance phenotypes (also known as uniformity) in other 
studies and, therefore, allows direct comparison of 
genetic parameter estimates between studies [38, 39].

The resilience indicators were calculated for individu-
als with five or more interval observations for the specific 
period. This resulted in fewer, but still a large number of 
observations for the resilience indicators based on the 
83-end period (n ≥ 29,317), except for the resilience indi-
cators for this period computed based on 3-week-inter-
vals for Brown (n = 2934–2951) (see Table 1). Resilience 
indicators were calculated using R and the R-packages 
‘dplyr’ and ‘e1071’ [35, 37, 40]. Individual estimates for a 
resilience indicator were deleted from the dataset when 
they deviated by more than four standard deviations 
from the average of the whole population.

In total, 24 resilience indicators were investigated, of 
which 18 were based on deviations from average batch 
production and six on deviations from expected indi-
vidual production. Resilience indicators based on average 
batch production included the three resilience indica-
tors (ln(variance), skewness, and autocorrelation) for two 
periods (25–83 and 83-end) and based on three intervals 
(1-week, 2-week, or 3-week). Resilience indicators based 
on individual production were limited to the three resil-
ience indicators (ln(variance), skewness, and autocorrela-
tion) for two periods (25–83 and 83-end) and based the 
1-week interval, based on the average batch production 
results (see ‘Results’).

Egg production traits
Individual EP was evaluated for four periods: start–end 
(i.e. full production cycle), start-25 (early EP), 25–83, 
and 83-end. The choice of these periods was based on a 
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similar rationale as described for the choice of periods for 
the resilience indicators.

Antibody traits
Two NAb isotypes were analyzed as antibody traits: IgM 
and IgG (also named IgY in birds). Plasma samples were 
collected on a subset of birds between 15 and 22 weeks 
of age for White and between 16 and 20 weeks of age for 
Brown. The Brown population did not finish its produc-
tion cycle at the moment resilience indicators were deter-
mined, thus relationships between NAb and resilience 
indicators can only be determined through the relation-
ship matrix. NAb optical densities (OD) were determined 
in individual plasma samples by an indirect two-step 
ELISA as described by Berghof et al. [34]. Antibody titers 
were calculated as described by Berghof et al. [34], based 
on Frankena [41].

Statistical analyses
Individuals were divided into classes based on their sur-
vival (‘maximum age-class’) to account for the number of 
observations that contributed to the resilience indicators. 
Maximum age-classes were defined based on mortal-
ity before 30 weeks of age (i.e. between 25 and 30 weeks 
of age) and on 4-week-intervals thereafter (i.e. mor-
tality between 30 and 34  weeks of age, between 34 and 
38 weeks of age, etc.).

Bivariate analyses were performed to investigate rela-
tionships between resilience indicators and EP traits or 
antibody traits, following the definitions of statistical 
models for EP and antibody traits based on univariate 
analyses. Although not part of the aim of this paper, the 
results of these analyses are reported in Additional file 1: 
Table S8 for the EP traits and Additional file 1: Table S13 
for the antibody traits. Phenotypic correlations for all 
the genetic correlations reported here were also esti-
mated and are reported in Additional file  1: Tables S1 
to S7, Additional file 1: Tables S9 to S12, and Additional 
file 1: Tables S14 to S16, but will not be further discussed. 
Maternal genetic effects were assessed but found not to 
be significant (results not reported), while maternal envi-
ronmental effects were significant for several traits and 
are reported in the ‘Results’ section.

All statistical analyses were conducted separately for 
White and Brown. Fixed effects in the statistical models 
were location, batch, row*level, and maximum age-class. 
Statistical analyses were performed using ASReml 4.1 
[42] until convergence or for a maximum of 50 iterations. 
Significance was declared for p-values lower or equal 
to 0.05, and a tendency to significance was declared for 
p-values lower or equal to 0.10.

The linear animal model for estimating the variance com-
ponents of the resilience indicators was:

where yijklm is the vector of any of the 24 resilience indi-
cators; µ is the overall mean, batchi is the vector of the 
fixed effect of batch ( i = 1 to 39 for White and i = 1 to 
41 for Brown), 

(

locj∗rlk
)

 is the vector of the fixed effect 
of the position of an individual’s cage at a location j with 
locj being the vector of the fixed effect of location ( j = 1 
to 13 for White and j = 1 to 13 for Brown) and rlk being 
the vector of the fixed effect of the row*level-identifier ( k 
= 1 to 35 for White and k = 1 to 49 for Brown), macl is 
the vector of the fixed effect of maximum age-class ( l = 
1 to 20 for White and l = 1 to 19 for Brown), am is the 
vector of the random additive genetic effect of the mth 
individual, assumed to follow ~ N(0,Aσ2a ), and eijklm is 
the vector of residuals, assumed to follow ∼ N(0, Iσ2e ). 
Assumed (co)variance structures for the random model 
terms are Aσ2a and Iσ2e , where A is the additive genetic 
relationship matrix based on the pedigree consisting of 
497,541 individuals across 23 generations for White and 
325,811 individuals across 18 generations for Brown, σ2a is 
the additive genetic variance, I is an identity matrix, and 
σ2e is the residual variance.

Model (1) was extended by adding a maternal environ-
mental effect to test for its significance:

with all components as defined for Model (1) and damn is 
the vector of the random environmental effect of the nth  
dam, assumed to follow ∼ N(0, Iσ2m ), where I is an iden-
tity matrix and σ2m the maternal environmental variance. 
Significance was assessed with a likelihood ratio test 
(LRT) assuming that the likelihood ratio follows a χ2

1-dis-
tribution, comparing nested models with or without the 
random effect tested. Resilience indicators for which σ2a 
were not significantly different from zero, and thus were 
not further investigated.

The linear animal model used to estimate the variance 
components of the EP traits was the same as Model (1) 
or Model (2) when the maternal environmental effect was 
significant.

The linear animal model for estimating the variance com-
ponents of the NAb titers was:

where yijkl is the vector of the titer of KLH-binding IgM 
or IgG NAb titer, µ is the overall mean, platei is the vec-
tor of the fixed effect of the plate i on which a sample was 

(1)
yijklm = µ+ batchi +

(

locj ∗ rlk
)

+macl + am + eijklm,

(2)
yijklmn = µ+ batchi +

(

locj∗rlk
)

+macl + am + damn + eijklmn,

(3)
yijkl = µ+ platei + β1 ∗ agej + sexk + al + eijkl,
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analyzed ( i = 1–257), agej is the covariate describing the 
effect of age at sampling ( j = 15–22) with regression coef-
ficient β1 , sexk is the vector of the fixed effect of sex ( k 
= male or female), al is the vector of the random addi-
tive genetic effect of the lth individual assumed to fol-
low ∼ N(0,Aσ2a ), eijkl is the vector of the residual term, 
assumed to follow ∼ N(0, Iσ2e ). The assumed (co)variance 
structures of the random model terms are equal to the 
(co)variance structures of the random model terms of 
the resilience indicators. For analyses of White, the effect 
of sex was removed from the model because the plate 
effect accounts for the confounded effects on the sam-
ples, including sex, storage, and effects of the analysis [33, 
34]. Samples for Brown were randomized over the used 
plates; thus, the sex effect can be accounted for separately 
in the model.

Based on estimates of variance components from the 
respective univariate models, estimates of heritabilities ( h2 ) 
were calculated as:

and estimates of the proportion of variance explained by 
maternal environmental effects ( m2 ), when significantly 
different from zero, were calculated based on:

where σ2p is the phenotypic variance, calculated based on 
σ2p = σ2a + σ2e or σ2p = σ2a + σ2m + σ2e when σ2m was signifi-
cantly different from zero.

Estimates of the genetic coefficient of variation ( GCV ) 
were calculated as:

For ln(variance), the GCV was calculated as 
√

σ2a  , 
because the ln-transformation implicitly assumes an expo-
nential model. Therefore, 

√

σ2a  has no units and division by 
µ is redundant [38, 43].

Genetic correlations were estimated to investigate the 
relationship among traits. The correlations were estimated 
with bivariate analyses using the corresponding linear 
animal models (without or with maternal environmental 
effect, depending on its significance) described above for 
each trait. Estimates of genetic correlations ( ra ) were calcu-
lated as:

h2 =
σ2a

σ2p
,

m2
=

σ2m

σ2p
,

GCV =

∣

∣

∣

∣

∣

√

σ2a

µ

∣

∣

∣

∣

∣

.

where ra12 is the genetic correlation between trait 1 and 
trait 2, σa12 is the genetic covariance between trait 1 and 
trait 2, σ2a1 is the additive genetic variance of trait 1, and 
σ2a2 is the additive genetic variance of trait 2.

Results
Resilience indicators
Heritabilities, GCV, and maternal environmental effects
Estimates of variance components, heritabilities, mater-
nal environmental effects, and GCV of the resilience 
indicators ln(variance), skewness, and autocorrelation 
based on average batch production for the two peri-
ods and different intervals are in Table 2 for White and 
Table  3 for Brown. Overall, heritability estimates were 
slightly higher for White than for Brown, ranging from 
0.02 to 0.12 for White and from 0.02 to 0.08 for Brown. 
Heritability estimates for ln(variance) were higher than 
those for skewness and autocorrelation, and ranged from 
0.07 to 0.12 for White and from 0.04 to 0.08 for Brown. 
Remarkably, for the 83-end period, the estimate of addi-
tive genetic variance for ln(variance) was twice as high for 
White than for Brown. Heritability estimates for skew-
ness ranged from 0.04 to 0.06 for the 25–83 period for 
White (for the 83-end period, it was not significantly dif-
ferent from zero) and from 0.02 to 0.04 for Brown. Herit-
ability estimates for autocorrelation ranged from 0.02 to 
0.06 for White and from 0.02 to 0.05 for Brown. Gener-
ally, heritability estimates were lower when using longer 
intervals for ln(variance) and autocorrelation, but higher 
for skewness. Of the 18 heritability estimates in total for 
both lines, five estimates of the 83-end were not signifi-
cantly different from zero (one based on 1-week interval, 
two based on the 2-week-intervals, and two based on the 
3-week-intervals). However, most of the resilience indica-
tors were heritable.

In spite of the rather low heritability estimates, esti-
mates of GCV were high: GCV estimates for ln(variance) 
ranged from 0.26 to 0.40 for White and from 0.26 to 0.32 
for Brown. GCV estimates for skewness ranged from 0.13 
to 0.30 for White and from 0.12 to 0.44 for Brown. GCV 
estimates for autocorrelation ranged from 0.26 to 0.46 for 
White and from 0.12 to 0.42 for Brown. Thus, the resil-
ience indicators showed high genetic variability.

Maternal environmental effects were estimated to be 
either absent or small (0.01 to 0.02). Remarkably, mater-
nal environmental effects were absent for White but 
mostly present in the 25–83 period for Brown.

ra12 =
σa12

σ2a1σ
2
a2

,



Page 8 of 18Berghof et al. Genetics Selection Evolution           (2024) 56:20 

Table 2  Estimates of genetic parameters of resilience indicators based on average batch production for White

Estimates of variance components ( σ2 ), heritability ( h2 ), maternal environmental effect ( m2 ), and genetic coefficient of variation (GCV) of the three resilience indicators 
ln(variance), skewness, and autocorrelation based on average batch production for different life periods and with different intervals with standard errors (SE) for White

NS: maternal environmental effect not significantly different from zero
a Tended to be significantly different from zero (i.e. 0.05 < p ≤ 0.10)

Trait Period Interval σ
2
a (SE) σ

2
m (SE) σ

2
e (SE) σ

2
p (SE) h2 (SE) m2 (SE) GCV

ln(variance) 25–83 1 week 0.07 (0.01) NS 0.61 (0.01) 0.68 (0.01) 0.10 (0.01) NS 0.26

2 weeks 0.07 (0.01) NS 0.78 (0.01) 0.86 (0.01) 0.08 (0.01) NS 0.26

3 weeks 0.07 (0.01) NSa 0.89 (0.01) 0.97 (0.01) 0.07 (0.01) NSa 0.26

83-end 1 week 0.14 (0.01) NSa 1.01 (0.01) 1.15 (0.01) 0.12 (0.01) NSa 0.37

2 weeks 0.16 (0.01) NS 1.28 (0.01) 1.44 (0.01) 0.11 (0.01) NS 0.40

3 weeks 0.15 (0.02) NS 1.60 (0.02) 1.75 (0.02) 0.09 (0.01) NS 0.39

Skewness 25–83 1 week 0.04 (0.01) NS 0.92 (0.01) 0.96 (0.01) 0.04 (0.01) NS 0.13

2 weeks 0.05 (0.01) NS 0.87 (0.01) 0.92 (0.01) 0.05 (0.01) NS 0.23

3 weeks 0.04 (0.01) NSa 0.72 (0.01) 0.76 (0.01) 0.06 (0.01) NSa 0.30

83-end 1 week σ 2
a  not significantly different from zero

2 weeks σ 2
a  not significantly different from zero

3 weeks σ 2
a  not significantly different from zero

Autocorrelation 25–83 1 week 0.003 (0.0004) NS 0.05 (0.0004) 0.05 (0.0004) 0.06 (0.01) NS 0.26

2 weeks 0.002 (0.0003) NS 0.06 (0.001) 0.06 (0.001) 0.03 (0.01) NS 0.32

3 weeks 0.002 (0.0003) NS 0.07 (0.001) 0.07 (0.001) 0.02 (0.005) NS 0.41

83-end 1 week 0.003 (0.001) NS 0.09 (0.001) 0.09 (0.001) 0.04 (0.01) NS 0.46

2 weeks σ 2
a  not significantly different from zero

3 weeks σ 2
a  not significantly different from zero

Table 3  Estimates of genetic parameters of resilience indicators based on average batch production for Brown

Estimates of variance components ( σ2 ), heritability ( h2 ), maternal environmental effect ( m2 ), and genetic coefficient of variation (GCV) of the three resilience indicators 
ln(variance), skewness, and autocorrelation based on average batch production for different life periods and with different intervals with standard errors (SE) for 
Brown

NS: maternal environmental effect not significantly different from zero
a Tended to be significantly different from zero (i.e. 0.05 < p ≤ 0.10)

Trait Period Interval σ
2
a (SE) σ

2
m (SE) σ

2
e (SE) σ

2
p (SE) h2 (SE) m2 (SE) GCV

ln(variance) 25–83 1 week 0.09 (0.01) 0.02 (0.004) 1.03 (0.01) 1.14 (0.01) 0.08 (0.01) 0.02 (0.004) 0.30

2 weeks 0.10 (0.01) 0.03 (0.01) 1.31 (0.01) 1.44 (0.01) 0.07 (0.01) 0.02 (0.004) 0.32

3 weeks 0.09 (0.01) 0.04 (0.01) 1.49 (0.01) 1.62 (0.01) 0.06 (0.01) 0.02 (0.004) 0.30

83-end 1 week 0.07 (0.01) NS 1.48 (0.01) 1.55 (0.01) 0.04 (0.01) NS 0.26

2 weeks 0.08 (0.01) NS 1.81 (0.02) 1.89 (0.02) 0.04 (0.01) NS 0.28

3 weeks σ 2
a  not significantly different from zeroa

Skewness 25–83 1 week 0.02 (0.01) 0.01 (0.004) 1.23 (0.01) 1.26 (0.01) 0.02 (0.005) 0.01 (0.003) 0.12

2 weeks 0.03 (0.01) 0.01 (0.004) 1.16 (0.01) 1.21 (0.01) 0.03 (0.01) 0.01 (0.003) 0.22

3 weeks 0.03 (0.01) 0.01 (0.003) 0.97 (0.01) 1.01 (0.01) 0.03 (0.01) 0.01 (0.003) 0.31

83-end 1 week 0.02 (0.003) NS 0.45 (0.004) 0.47 (0.004) 0.04 (0.01) NS 0.44

2 weeks σ 2
a  not significantly different from zero

3 weeks σ 2
a  not significantly different from zero

Autocorrelation 25–83 1 week 0.004 (0.001) 0.001 (0.0003) 0.07 (0.001) 0.08 (0.001) 0.05 (0.01) 0.02 (0.004) 0.18

2 weeks 0.002 (0.0005) 0.001 (0.0003) 0.08 (0.001) 0.08 (0.001) 0.03 (0.01) 0.01 (0.003) 0.12

3 weeks 0.003 (0.0005) NS 0.08 (0.001) 0.08 (0.001) 0.03 (0.01) NS 0.17

83-end 1 week 0.003 (0.001) NS 0.11 (0.001) 0.12 (0.001) 0.02 (0.005) NS 0.42

2 weeks σ 2
a  not significantly different from zero

3 weeks σ 2
a  not significantly different from zero
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Similarity between resilience indicators based on different 
intervals
Genetic correlations were estimated to investigate the simi-
larities between resilience indicators based on average batch 
production in the same life periods but computed using dif-
ferent intervals (see Table 4). Resulting estimates of genetic 
correlations were generally high to very high (≥ 0.68). Esti-
mates of genetic correlations ranged from 0.95 to 0.999 for 
ln(variance), from 0.87 to 0.97 for skewness, and from 0.68 to 
0.90 for autocorrelation. Overall, the genetic correlation esti-
mates indicated that resilience indicators computed based 
on 1-, 2-, or 3-week intervals were genetically similar or even 
close to identical.

Given the lower estimates of residual variance and 
higher estimates of heritability for resilience indicators 
based on 1-week-intervals compared to the 2-week- and 
3-week-intervals, as well as the high genetic correlation 
estimates between the resilience indicators for differ-
ent intervals, results for resilience indicators based on 
1-week-intervals will be reported in the remainder, in 
order to keep focus and to improve readability.

Similarity between the resilience indicators for different life 
periods
Genetic correlations were estimated to investigate the 
similarities between resilience indicators based on aver-
age batch production for the same intervals, but in 
the two life periods (see Table  5). Resulting estimates 
were moderate to very high ( ≥|0.46|), especially for 
ln(variance) and autocorrelation (0.73–0.80), while the 
estimate for skewness was moderately negative for Brown 
(-0.46). Unfortunately, the latter estimate could not be 
confirmed for White, because the estimate of heritability 
for skewness for the 83-end period was not significantly 
different from zero for White and was, therefore, not 
tested. In general, however, the resilience indicators esti-
mated for the two periods were found to have a similar 
genetic composition.

Similarity between the different resilience indicators
Estimates of genetic correlations between the three 
types of resilience indicators for the same life period 
were estimated (see Table  6). Resulting estimates were 
low to moderate (|0.01|–|0.67|), and their direction and 
magnitudes were mostly similar for White and Brown. 
The ln(variance) and autocorrelation were estimated to 
be lowly (or not) genetically correlated, except for the 
83-end period for Brown (0.42). Skewness had moderate 
genetic correlation estimates with both ln(variance) and 
autocorrelation, although it was estimated to be nega-
tively correlated with both for the 25–83 period, while it 
was estimated to be positively correlated with autocor-
relation for the 83-end period for Brown (ln(variance) 
for White was not tested). Overall, the low to moderate 
genetic correlation estimates between the resilience indi-
cators indicate that they capture different aspects of the 
genetic variation of EP deviations.

Table 4  Estimates of genetic correlations between resilience 
indicators based on average batch production but computed 
using different intervals

Estimates of genetic correlations with standard errors (in parentheses) between 
the resilience indicators ln(variance), skewness, and autocorrelation based on 
average batch production for the same life periods, but with different intervals 
for White (below the diagonal) and Brown (above the diagonal, italic)
a Analysis did not converge
b Not tested, because one or both traits were not heritable (i.e. not significantly 
different from zero)

Trait Period Interval 1 week 2 weeks 3 weeks

ln(variance) 25–83 1 week – a 0.98 (0.01)

2 weeks a - a

3 weeks 0.97 (0.01) a -

83-end 1 week – 0.99 (0.01) 0.95 (0.07)

2 weeks 0.99 (0.003) – a

3 weeks 0.98 (0.01) 0.999 (0.004) –

Skewness 25–83 1 week – 0.94 (0.03) 0.90 (0.05)

2 weeks 0.89 (0.02) – a

3 weeks 0.87 (0.03) 0.97 (0.01) –

83-end 1 week - b b

2 weeks b - b

3 weeks b b –

Autocorrelation 25–83 1 week – 0.84 (0.04) 0.84 (0.04)

2 weeks 0.90 (0.03) – 0.68 (0.06)

3 weeks 0.86 (0.05) a –

83-end 1 week – b b

2 weeks b - b

3 weeks b b –

Table 5  Estimates of genetic correlations between resilience 
indicators based on average batch production for different life 
periods

Estimates of genetic correlations with standard errors (in parentheses) between 
the resilience indicators ln(variance), skewness, and autocorrelation based on 
average batch production for 1-week-intervals, but for different life periods for 
White (below the diagonal) and Brown (above the diagonal, italic)
a Not tested, because one or both traits were not heritable (i.e. not significantly 
different from zero)

trait Period 25–83 83-end

ln(variance) 25–83 – 0.76 (0.07)

83-end 0.80 (0.04) –

Skewness 25–83 – − 0.46 (0.13)

83-end a –

Autocorrelation 25–83 – 0.80 (0.08)

83-end 0.73 (0.07) –
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Similarity between resilience indicators derived using 
different expected productions
Estimates of variance components, heritabilities, mater-
nal environmental effects, and GCV of the resilience 
indicators based on expected individual production for 
the 25–83 and 83-end periods with 1-week-intervals 
are in Table 7 for White and Table 8 for Brown. Figure 2 

illustrates two examples of expected individual EP based 
on average batch production and based on own produc-
tion. In general, the resilience indicators based on the 
expected individual production showed similar estimates 
of variance components, heritabilities, maternal envi-
ronmental effects, and GCV as the resilience indicators 
based on average batch production. Although, overall, 
estimates of environmental variance of resilience indi-
cators based on expected individual production were 
slightly lower, possibly due to the larger maternal envi-
ronmental effects, their heritability estimates were 
slightly higher compared to those based on deviations 
from average batch production. Heritability estimates 
for skewness in the 83-end period based on individual 
expected production were at least twice as high as cor-
responding estimates based on average batch production. 
Therefore, skewness appeared to be sensitive to the defi-
nition of the expected production, but ln(variance) and 
autocorrelation were hardly affected.

Genetic correlations were estimated to investigate the 
similarities between resilience indicators based on aver-
age batch production and those based on expected indi-
vidual production for the same periods and the same 
intervals (see Table  9). Resulting estimates ranged from 

Table 6  Estimates of genetic correlations between resilience 
indicators based on average batch production

Estimates of genetic correlations with standard errors (in parentheses) between 
the resilience indicators ln(variance), skewness, and autocorrelation based on 
average batch production for the same life periods with 1-week-intervals for 
White (below the diagonal) and Brown (above the diagonal, italic)
a Not tested, because one or both traits were not heritable (i.e. not significantly 
different from zero)

Trait Period ln(variance) Skewness Autocorrelation

ln(variance) 25–83 – − 0.67 (0.11) 0.14 (0.10)

83-end – 0.65 (0.09) 0.42 (0.11)

Skewness 25–83 − 0.46 (0.07) – − 0.55 (0.15)

83-end a – 0.36 (0.13)

Autocorrelation 25–83 − 0.01 (0.08) − 0.21 (0.09) –

83-end 0.18 (0.08) a –

Table 7  Estimates of genetic parameters of resilience indicators based on expected individual production for White

Estimates of variance components ( σ2 ), heritability ( h2 ), maternal environmental effect ( m2 ), and genetic coefficient of variation (GCV) of the three resilience indicators 
ln(variance), skewness, and autocorrelation based on expected individual production for the selected life periods with 1-week intervals with standard errors (SE) for 
White

NS: maternal environmental effect not significantly different from zero

Trait Period σ
2
a (SE) σ

2
m (SE) σ

2
e (SE) σ

2
p (SE) h2 (SE) m2 (SE) GCV

ln(variance) 25–83 0.07 (0.01) 0.004 (0.002) 0.52 (0.01) 0.59 (0.01) 0.12 (0.01) 0.01 (0.003) 0.26

83-end 0.14 (0.01) 0.01 (0.003) 0.92 (0.01) 1.07 (0.01) 0.13 (0.01) 0.01 (0.003) 0.37

Skewness 25–83 0.10 (0.01) 0.01 (0.003) 0.91 (0.01) 1.02 (0.01) 0.10 (0.01) 0.01 (0.003) 0.12

83-end 0.05 (0.01) NS 0.50 (0.01) 0.50 (0.005) 0.09 (0.01) NS 0.27

Autocorrelation 25–83 0.001 (0.0002) NS 0.03 (0.0003) 0.03 (0.0002) 0.03 (0.01) NS 0.14

83-end 0.003 (0.0005) NS 0.08 (0.001) 0.08 (0.001) 0.04 (0.01) NS 0.78

Table 8  Estimates of genetic parameters of resilience indicators based on expected individual production for Brown

Estimates of variance components ( σ2 ), heritability ( h2 ), maternal environmental effect ( m2 ), and genetic coefficient of variation (GCV) of the three resilience indicators 
ln(variance), skewness, and autocorrelation based on expected individual production for the selected life periods with 1-week intervals with standard errors (SE) for 
Brown

NS: maternal environmental effect not significantly different from zero

Trait Period σ
2
a (SE) σ

2
m (SE) σ

2
e (SE) σ

2
p (SE) h2 (SE) m2 (SE) GCV

ln(variance) 25–83 0.11 (0.01) 0.02 (0.005) 1.09 (0.01) 1.22 (0.01) 0.09 (0.01) 0.02 (0.004) 0.33

83-end 0.05 (0.01) 0.01 (0.01) 1.70 (0.02) 1.76 (0.02) 0.03 (0.01) 0.01 (0.003) 0.22

Skewness 25–83 0.11 (0.01) 0.02 (0.005) 1.26 (0.01) 1.36 (0.01) 0.08 (0.01) 0.01 (0.004) 0.17

83-end 0.02 (0.003) 0.004 (0.002) 0.46 (0.005) 0.48 (0.004) 0.04 (0.01) 0.01 (0.004) 0.31

Autocorrelation 25–83 0.003 (0.001) 0.001 (0.0002) 0.07 (0.001) 0.07 (0.001) 0.05 (0.008) 0.01 (0.003) 0.25

83-end 0.003 (0.001) NS 0.11 (0.001) 0.11 (0.001) 0.03 (0.01) NS 0.55
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0.001 to 0.99 and were all positive. Genetic correlation 
estimates were very high (≥ 0.92) for the 83-end period 
for all resilience indicators and also for ln(variance) for 
the 25–83 period (≥ 0.95). Thus, these traits captured 
the same genetic variation and were mostly independent 
of the method used to calculate the expected EP. How-
ever, genetic correlation estimates were low (0.001 and 
0.27) for the 25–83 period for skewness and moderate 
(0.62 and 0.73) for autocorrelation for the 25–83 period. 
Thus, overall, expected production did not have a major 

influence on ln(variance) for the 25–83 period and on all 
resilience indicators for the 83-end period, it had a minor 
influence on autocorrelations for the 25–83 period but a 
large effect on skewness for the 25–83 period.

Resilience indicators and egg production traits
The genetic relationships between the resilience indica-
tors and the EP traits were investigated by estimating 
their genetic correlations (see Table  10). Resulting esti-
mates were low to very high (|0.03|–|0.99|). Early EP, 
which is the period of EP that was not taken into account 
for determining the resilience indicators, had low genetic 
correlation estimates ( ≤|0.21|) with the resilience indica-
tors. ln(variance) had favorable genetic correlation esti-
mates with the other EP traits: high with EP in the 25–83 
period (|0.72|–|0.88|) and moderate to high with EP in 
the 83-end period (|0.42|–|0.81|). Skewness in White had 
low, but favorable genetic correlation estimates ( ≤|0.33|) 
with EP traits. However, in Brown, skewness had mod-
erate to high favorable genetic correlation estimates 
(|0.49|–|0.70|) with EP in the 25–83 period and very 
high unfavorable genetic correlation estimates ( ≥|0.91|) 
with EP in the 83-end period. In general, autocorrela-
tion had low to moderate genetic correlation estimates 
(|0.02|–|0.42|) with the EP traits, which were mostly in 
the favorable direction. In summary, the resilience indi-
cators were mostly favorably genetically correlated with 
EP traits, but the extent of these correlations varied.

Fig. 2  Example of observed and expected egg production of a highly resilient individual and a lowly resilient individual. Observed and expected 
1-week-interval egg production of a selected highly resilient individual (left, blue, circles) and a selected lowly resilient individual (right, red, squares) 
from the same batch. Expected egg production was set to the average batch production (solid black line) or was based on the egg production 
curve of each individual that was estimated with a 4th order polynomial quantile regression using a 0.7 quantile fitted through 1-week-interval egg 
production observations during the production cycle between 25 weeks of age and the end of the individual’s life (dashed lines). The individuals 
shown were selected based on their low (around 10th percentile; high resilience) or high (around 90th percentile; low resilience) ln(variance) 
between 25 weeks of age and the end of life

Table 9  Estimates of genetic correlations between resilience 
indicators based on average batch production and expected 
individual production

Estimates of genetic correlations with standard errors (in parentheses) between 
the resilience indicators ln(variance), skewness, and autocorrelation based on 
average batch production and expected individual production for the same life 
periods with 1-week-intervals for White and Brown (italic)
a Not tested, because one or both traits were not heritable (i.e. not significantly 
different from zero)

Trait Period White Brown

ln(variance) 25–83 0.95 (0.01) 0.98 (0.01)

83-end 0.996 (0.002) 0.99 (0.01)

Skewness 25–83 0.27 (0.08) 0.001 (0.14)

83-end a 0.99 (0.01)

Autocorrelation 25–83 0.62 (0.06) 0.73 (0.06)

83-end 0.92 (0.02) 0.97 (0.02)
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Resilience indicators and antibody traits
Genetic relationships between the resilience indicators 
and the antibody traits were investigated by estimat-
ing their genetic correlations (see Table  11). Resulting 
estimates were low to moderate (|0.02|–|0.56|) with 
large SE, especially for Brown because the resilience 

indicators and the antibody traits were measured on 
different individuals. In summary, the evaluated resil-
ience indicators and the antibody traits were found to 
be mostly not genetically correlated.

Discussion
Breeding for improved resilience is a promising strat-
egy to decrease labor and health costs of livestock and 
to prevent reduced production [2, 3, 27], but to date, it 
has not been tested because of a lack of suitable resilience 
indicator(s). During the last decade, technological devel-
opments to collect and analyze big data have opened the 
way to develop resilience indicators [21]. Longitudinal 
data can now be easily collected on individuals and used 
to investigate new phenotypes, including resilience indi-
cators. Three such resilience indicators were proposed by 
Berghof et al. [2] based on deviations between expected 
and observed production, i.e. ln(variance) of deviations, 
skewness of deviations, and autocorrelation of deviations. 
Such deviations can occur as a response to disease, heat, 
or management changes (e.g. feed composition). This 
study investigated the effect of different interval lengths 
and age periods on genetic characteristics of these resil-
ience indicators based on longitudinally observed day-to-
day deviations of EP in laying hens. Moreover, this study 
investigated possible pleiotropic effects (i.e. trade-offs) 
between resilience and production and between resil-
ience and immunity. Our results provide good indica-
tions for the definition of new resilience indicators for 
chicken breeding.

Table 10  Estimates of genetic correlations between resilience indicators and egg production traits

Estimates of genetic correlations with standard errors (in parentheses) between the resilience indicators ln(variance), skewness, and autocorrelation based on average 
batch production for the same life periods with 1-week-intervals and egg production traits for the full production cycle (i.e. all eggs between start and end), the 
early production cycle (i.e. between start and 25 weeks of age), the ’traditional’ production cycle (i.e. between 25 and 83 weeks of age), and the time period after the 
’traditional’ production cycle (i.e. between 83 weeks of age and end) for White (top) and Brown (bottom, italic)
a Not tested, because the resilience indicator trait was not heritable (i.e. not significantly different from zero)

Period Full Early 25–83 83-end

White ln(variance) 25–83 − 0.82 (0.02) 0.05 (0.05) − 0.72 (0.04) − 0.88 (0.02)

83-end − 0.62 (0.05) 0.10 (0.05) − 0.43 (0.06) − 0.81 (0.03)

Skewness 25–83 0.11 (0.08) − 0.15 (0.06) − 0.05 (0.09) 0.33 (0.08)

83-end a a a a

Autocorrelation 25–83 − 0.04 (0.07) − 0.06 (0.06) 0.25 (0.09) − 0.23 (0.07)

83-end − 0.16 (0.08) − 0.07 (0.07) − 0.03 (0.09) − 0.22 (0.08)

Brown ln(variance) 25–83 − 0.84 (0.03) − 0.14 (0.07) − 0.83 (0.04) − 0.77 (0.04)

83-end − 0.46 (0.08) 0.18 (0.07) − 0.42 (0.09) − 0.59 (0.07)

Skewness 25–83 0.53 (0.14) − 0.21 (0.11) 0.49 (0.15) 0.70 (0.11)

83-end − 0.95 (0.04) 0.06 (0.07) − 0.91 (0.05) − 0.99 (0.02)

Autocorrelation 25–83 0.22 (0.10) − 0.12 (0.08) 0.38 (0.11) − 0.02 (0.09)

83-end − 0.25 (0.10) − 0.04 (0.09) − 0.11 (0.11) − 0.42 (0.09)

Table 11  Estimates of genetic correlations between resilience 
indicators and antibody traits

Estimates of genetic correlations with standard errors (in parentheses) of the 
resilience indicators ln(variance), skewness, and autocorrelation based on 
average batch production for the same life periods with 1-week-intervals and 
the antibody traits keyhole limpet hemocyanin (KLH)-binding IgM natural 
antibodies and KLH-binding IgG natural antibodies for White and Brown (italic)
a Not tested, because the resilience indicator trait was not heritable (i.e. not 
significantly different from zero)

Period White Brown

IgM IgG IgM IgG

ln(variance) 25–83 − 0.09 
(0.11)

0.06 (0.17) − 0.03 
(0.30)

− 0.27 (0.32)

83-end − 0.12 
(0.12)

− 0.02 
(0.18)

− 0.21 
(0.34)

− 0.24 (0.39)

Skewness 25–83 0.08 (0.13) − 0.18 
(0.19)

− 0.16 
(0.42)

0.16 (0.48)

83-end a a 0.28 (0.34) − 0.09 (0.39)

Autocorrela-
tion

25–83 0.16 (0.12) 0.21 (0.18) − 0.09 
(0.31)

− 0.15 (0.33)

83-end 0.15 (0.15) 0.13 (0.21) 0.03 (0.42) 0.56 (0.42)
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Resilience indicators
The heritability estimates for the three resilience indica-
tors (0.02–0.12) analyzed here were lower than (compa-
rable) resilience indicators previously reported in the few 
studies that were based on longitudinal data [22–25, 27, 
28, 31], but were in line with those from studies investi-
gating uniformity in livestock (see Iung et al. [44] for an 
overview). Bedere et  al. [28], using crossbred chickens, 
which are related to the chicken population used here 
and with similar phenotypes, reported heritabilities that 
ranged from 0.01 to 0.21 for the three resilience indica-
tors based on deviations from average batch EP. In dairy 
cows and pigs, heritability estimates for resilience traits 
are generally higher [22–25, 31], which is possibly due 
to the larger number of observations per animal; i.e. 
more observations increase heritability estimates [2]. 
We observed a similar trend when comparing resilience 
indicators computed based on 1-week-, 2-week, and 
3-week-intervals, since the number of observations per 
animal decreases as the interval size increases. However, 
it should be noted that, in a previous study in purebred 
chickens [27], we found relatively high heritability esti-
mates of about 0.10 for the three resilience indicators 
based on deviations of body weight (BW) with only five 
to eight observations per animal, which does not support 
the previous argument that a larger number of observa-
tions increases heritabilities. In the current study, the 
median numbers of observations during the total pro-
duction cycle were 74 for White and 68 for Brown for 
1-week-intervals, 37 and 34 for 2-week-intervals, and 
24 and 22 for 3-week-intervals per individual, respec-
tively, and we used a minimum of five observations per 
individual. Heritability estimates for resilience indicators 
based on EP deviations were expected to be higher than 
heritability estimates of the resilience indicators based 
on BW deviations, given the number of observations per 
animal. A possible explanation for this ‘inconsistency’ 
probably lies in the differences in nature of these devia-
tions. Egg production can be considered as a ‘maximum 
trait’, meaning that breeding programs aim at reaching 
the maximum phenotype of one egg per day, which is the 
biological limit, and positive deviations in EP can only be 
the consequence of an additional egg laid the day before 
(as explained in ‘Methods’). Moreover, EP is binary, mak-
ing the interpretation of resilience indicators based on EP 
challenging (see also Doekes et al. [32]). In contrast, BW 
can be considered as an ‘optimum trait’, i.e. a trait that 
approximates a normal distribution and might have a 
desired optimum value or range for all livestock species. 
For such a trait, both negative and positive deviations can 
occur (the latter likely due to some compensatory mecha-
nism during recovery from a disturbance), which might 
result in higher heritabilities. Similar ‘optimum traits’ are 

eggshell strength and egg weight, but these traits are cur-
rently not collected on the individual and longitudinal 
scale (i.e. daily measurements on each egg). However, we 
hypothesize that these ‘optimum traits’ with both positive 
and negative deviations are better phenotypes on which 
to base longitudinal production data-based resilience 
indicators and have higher heritabilities than ‘maximum 
traits’.

To assess how this ‘maximum trait’ with its binary 
nature on a daily scale impacts the genetic parameters 
of the resilience indicators, we investigated EP devia-
tions computed based on different intervals, i.e. 1-week-, 
2-week-, and 3-week-intervals. We reasoned that, due to 
the long-term intensive selection for EP in these popula-
tions, few fluctuations should occur during short inter-
vals, which would heavily skew the deviation data. For 
this reason, we excluded daily observations as an option 
to determine the deviations. Moreover, because EP was 
recorded on a one- to four-day interval, we chose to use 
the three intervals mentioned above. We hypothesized 
that, on the one hand, a shorter interval would result 
in a higher estimate of heritability because of the larger 
number of observations per animal, but, that on the other 
hand, a longer interval would provide more opportunity 
for variation to occur when EP is very close to one egg per 
day. However, it can also be argued that shorter intervals 
better represent the volatility of (small) disturbances in 
an environment. Nevertheless, the results show convinc-
ingly that the resilience indicators derived using the three 
interval lengths are genetically highly correlated and, 
thus, hardly/not affected by interval length. Therefore, we 
selected resilience indicators based on 1-week-intervals 
as the most promising, because their environmental vari-
ance was the smallest and, consequently, their heritability 
estimates were the highest.

We also investigated two periods (25–83 and 83-end) 
during the productive life of chickens because we rea-
soned that with the only recent focus of breeding pro-
grams on a prolonged productive life (after 83  weeks 
of age), there would be more EP fluctuations after than 
before 83  weeks of age (as explained in ‘Methods’). 
Indeed, although estimates of the genetic correlations 
between resilience indicators based on the 25–83 and 
83-end periods were not equal to 1, they were moderate 
to high. Thus, determining the resilience indicators for 
both these life periods is relevant for the improvement 
of resilience throughout the whole production cycle. 
Genomic selection provides the possibility of including 
these resilience indicators in breeding programs, espe-
cially for the 83-end period, since the observations on 
selection candidates will come in too late to be used in 
their selection.
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The longitudinal data allowed us to estimate the 
genetic correlations between resilience indicators com-
puted based on deviations from average batch produc-
tion versus expected individual production, similar to 
Poppe et  al. [23–26]. Genetic correlation estimates for 
the 25–83 period were very high for ln(variance), mod-
erate for autocorrelation, and low for skewness. Thus, 
phenotypes for ln(variance) and autocorrelation do not 
depend (so much) on the absolute level of the expected 
production, but on the actual fluctuations of the devia-
tions. Skewness, on the other hand, is, by definition, 
strongly influenced by outliers and, thus, more affected 
by the expected production. These results are also in line 
with those of Berghof et  al. [27] and Poppe et  al. [23], 
who used different methods to set the expected produc-
tion and found that this did not affect ln(variance) and 
autocorrelation, but did affect skewness [23, 27]. This 
also means that, compared to skewness, ln(variance) and 
autocorrelation can be more easily compared between 
studies that use different approaches to compute devia-
tions. The reason for the very high genetic correlation 
estimates for the 83-end period between the two meth-
ods investigated here should probably be sought in the 
decrease in EP and its greater variation at the end of the 
chicken’s life. Although both the expected individual pro-
duction and the average batch production can under-
estimate deviations in their own way (see also Bedere 
et al. [28]), this does not seem to have a major effect on 
ln(variance) and autocorrelation, which is a direct conse-
quence of the characteristics of these indicators.

It is important to realize that for these resilience indica-
tors, it is assumed that the deviations actually occurred 
as a consequence of environmental disturbances rather 
than being part of a ‘normal’ performance trajectory. We 
deem this assumption likely because there is no indica-
tion that average batch EP shows structural fluctuations 
in EP (e.g. Fig. 2). The generally high genetic correlation 
estimates between resilience indicators computed using 
different methods support this idea (e.g. Berghof et  al. 
[27], Poppe et  al. [23], and our results). Therefore, indi-
vidual deviations are likely consequences of randomly 
occurring disturbances. In addition, the resilience indi-
cators investigated here are mostly independent of the 
absolute level of the trait and only based on fluctuations 
in deviations between observed and expected produc-
tion over time. Thus, a structural fluctuation in EP, as 
part of a normal EP curve, is expected to minimally affect 
the resilience indicators. Nevertheless, any information 
on the nature of the disturbances that occurred would 
be valuable information to further define and verify the 
resilience indicators, but this was not available for the 
chicken populations studied here.

In this study, we selected the resilience indicators based 
on having the highest heritability estimates and high 
genetic correlation estimates with other indicators. It 
should be noted that, although heritability estimates were 
relatively low in general, estimates of GCV were high, 
which indicates a high genetic variability and is consist-
ent with other reports in the literature (see overviews in 
Mulder et  al. [43], Hill and Mulder [38], and Iung et  al. 
[44]). Moreover, our study is the first to report signifi-
cant, although marginal, maternal environmental effects 
on resilience indicators. However, due to the non-specific 
nature of the fluctuations, the physiology of the mater-
nal effects remains unclear. In addition, as consistently 
reported in other studies, estimates of genetic correla-
tions between the three resilience indicators were low 
to moderate, suggesting that they cover different genetic 
aspects of resilience [23, 24, 27, 28]. Thus, the resilience 
indicators based on EP that have the highest potential for 
breeding programs are those based on 1-week deviations 
from either average batch EP or individual EP for the 
25–83 and 83-end periods.

Resilience indicators and egg production traits
Trade-offs between resilience and production can be 
expected based on resource allocation theory, which 
states that an organism’s limited resources are allocated 
to its different energy requirements resulting in trade-offs 
between these requirements [45–47]. To investigate the 
presence of trade-offs between resilience indicators and 
EP traits at the genetic level, genetic correlations between 
resilience indicators and EP were estimated.

Resulting estimates of genetic correlations were 
mostly favorable or low and, therefore, trade-offs seem 
to be almost absent or, in some cases, even synergetic. 
ln(variance) had moderate to high favorable genetic 
correlation estimates with EP after 25 weeks of age: the 
higher the EP, the smaller the number of days with no 
egg, and thus the less fluctuation. However, this is also 
expected to hold for the opposite phenotype, i.e. low EP 
results in less fluctuation (see also Doekes et  al. [32]). 
However, selection on EP has apparently been so strong 
and consistent, that there are nearly no chickens with 
an extremely low EP. For skewness for the 25–83 period, 
the genetic correlation estimates were low, but favorable, 
similar to those for ln(variance). Unexpectedly, skewness 
for the 83-end period was estimated to be unfavorably 
and very highly correlated with EP traits in Brown. Thus, 
a high negative skewness of deviations (i.e. fewer eggs 
than average) genetically correlates with higher produc-
tion, which is counter intuitive and, to date, we do not 
have a conclusive explanation for this result. One pos-
sibility of this unexpected behavior of skewness is that 
it is under the relatively strong influence of outliers. 
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Unfortunately, skewness for the 83-end period was not 
significantly heritable in White, and we cannot confirm 
this observation in both lines. This result, however, adds 
to the questionable usefulness of skewness as a resilience 
indicator [23, 24, 27, 28]. For autocorrelation, a similar 
phenomenon was observed, although to a lesser extent: 
autocorrelation for the 25–83 period was estimated to be 
unfavorably but weakly genetically correlated with EP for 
the 25–83 period, but the estimate of the genetic correla-
tion of autocorrelation for the 83-end period was favora-
ble and weak to moderate with EP for the 83-end period. 
In addition, it will be of great interest to investigate the 
genetic correlation of these resilience indicators with 
production traits that are different from the production 
trait that was used to determine the resilience indicators, 
for example, to investigate the relationship between resil-
ience indicators based on deviations of eggshell strength 
with EP traits. Nevertheless, the severity of the distur-
bances was probably too low to show trade-offs accord-
ing to the resource theory, and, thus, selection for these 
resilience indicators can be implemented into breeding 
programs of purebred chickens without strong effects on 
EP.

Resilience indicators and antibody traits
Higher levels of KLH-binding NAb at 20 weeks of age in 
chickens have been shown to be phenotypically associ-
ated with lower mortality later in life [48, 49] and with 
improved immunity [50, 51]. Moreover, chickens selected 
for high KLH-binding NAb levels had lower mortality 
after E. coli-infection at a young age compared to unse-
lected chickens and chickens selected for low KLH-bind-
ing NAb levels [52]. Thus, NAb levels show potential as 
indicators of disease resistance, since they are assumed 
to protect animals and thereby reduce their sensitivity 
to environmental disturbances, e.g. disease. NAb could 
also be genetically correlated with (disease) resilience 
and could, thus, be used as resilience indicators (or vice 
versa).

However, in our study, genetic correlations between 
the resilience indicators and KLH-binding NAb at about 
16  weeks of age (for disease resistance) were estimated 
to be low, which means that they capture other genetic 
aspects of health. In addition, a genome-wide association 
study for resilience indicators based on average batch EP 
showed no overlap in associated genomic regions with 
KLH-binding NAb in Brown [32]. Furthermore, genetic 
variants in the toll-like receptor family member 1A 
(TLR1A) gene, which is a major quantitative trait locus 
for KLH-binding NAb [34] in White, did not significantly 
explain variation for the resilience indicators (TLR1A as 
fixed effect in the model; results not shown). Similar to 
Berghof et  al. [27], the lack of disease challenges in the 

biosecure breeding nucleus environment likely resulted 
in very limited fluctuations in production due to disease. 
In contrast, high-challenge environments are generally 
reported to result in more genetic variation in resist-
ance or resilience than normal environments [53, 54]. 
Although estimated breeding values of ln(variance) were 
predictive of lesion scores after avian pathogenic Escheri-
chia coli challenge in chickens, they were not predictive 
of mortality [27]. In addition, in pigs, the level of KLH-
binding NAb was not significantly genetically correlated 
to resilience indicators based on the variance of the 
deviations of daily feed intake or of daily duration at the 
feeder, which were predictive of mortality, in a ‘natural 
disease challenge environment’ [31, 55]. Thus, it seems 
that also in challenge environments, the resilience indica-
tors are only weakly related to the level of NAb, but more 
challenge studies are needed to investigate this, although 
they are costly and ethically controversial. The absence of 
unfavorable genetic correlations shows that selection to 
improve resilience using resilience indicators based on 
EP does not negatively affect immunity and, thus, could 
be complementary in breeding for improved resilience 
and health.

Future directions
In this study, we examined different variants of poten-
tial resilience indicators previously analyzed [2, 23]. 
ln(variance) or similar traits related to variance of a phe-
notype gave consistently good results in several studies 
on different livestock species and traits [22–25, 27, 31]. 
However, the resilience indicators, skewness and auto-
correlation, can be improved. More resilient animals 
are expected to have a more uniform production with 
fewer and smaller deviations compared to less resilient 
animals, and to have a skewness and an autocorrelation 
of deviations around zero compared to the population 
average [2]. Thus, both positive and negative values for 
skewness and autocorrelation are undesired, but a nega-
tive autocorrelation and/or a positive skewness are more 
favorable because they are indicative of a more resilient 
animal compared to individuals with a positive autocor-
relation or negative skewness. It might be that due to 
the nature of skewness and autocorrelation, the results 
for these traits have been disappointing and sometimes 
confusing (also in this study), leading to the suggestion 
that they should be omitted in future analyses [23, 24, 
27, 28]. In addition, the interpretation of the direction 
of resilience indicators probably needs more nuance, as 
illustrated by Doekes et al. [32]. Thus, before completely 
excluding autocorrelation and skewness from future 
studies, we suggest using autocorrelation and skewness 
based on absolute values of deviations (i.e. bringing the 
desired value to zero) or basing them on deviations for 
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‘optimum traits’ (e.g. eggshell strength or body weight 
and as shown for activity in Poppe et al. [26]). Moreover, 
future studies should consider the use of ‘optimum traits’ 
for determining resilience indicators, which would also 
allow investigation of the use of daily fluctuations com-
pared to 1-week-interval fluctuations, because deviations 
for such traits are likely to be more normally distributed 
and not binary, as for daily EP. A major point of attention 
is that the resilience indicators should be studied in situ-
ations with known disturbances to verify their predictive 
properties to capture resilience, as was done by Putz et al. 
[31], Poppe et  al. [25], and Poppe et  al. [26]. These are 
exciting new steps in the search for informative resilience 
indicators for all livestock species.

Conclusions
Breeding for improved resilience will reduce the sensi-
tivity of livestock to environmental factors and, thereby, 
improve their health and economic profit. Although 
potential resilience indicators have been defined, how 
they are affected by underlying physiology requires 
more research. This study examined several variables 
(i.e. life periods, intervals, and different methods for 
expected production) that could affect resilience indica-
tor traits based on EP, which is currently the most exten-
sively measured longitudinal trait on individuals in layer 
chicken breeding programs. Based on the results, we 
conclude that the relevant resilience indicators based 
on EP are based on 1-week-intervals and for the periods 
25–83 and/or 83-end. The three resilience indicators, i.e. 
ln(variance), skewness, and autocorrelation, are geneti-
cally different and, therefore, contain information on dif-
ferent aspects of resilience. The method for determining 
the expected EP (average batch production vs. expected 
individual production) did not have much influence on 
the results for ln(variance) and autocorrelation, which 
illustrates that these indicators capture fluctuations and 
are independent of expected EP. Estimates of genetic cor-
relations between the resilience indicators and EP traits 
were mostly favorable or zero, which means that trade-
offs are mostly absent. However, skewness for the 83-end 
period showed very strong and unfavorable genetic cor-
relation estimates with EP in Brown, which requires fur-
ther studies. Future research should also focus on the 
usefulness and interpretation of skewness and autocorre-
lation and on possible trade-offs between resilience indi-
cators and other production traits in breeding programs. 
Finally, the analyzed resilience indicators did not show 
genetic correlations with the indicator of disease resist-
ance, i.e. level of NAb, possibly because the chickens used 
were housed in a highly hygienic environment. Thus, 
although the investigated resilience indicators based on 
EP and level of NAb cannot be used as predictors of each 

other, they can be used in conjunction in breeding pro-
grams. In total, this study took several steps in defining 
and implementing indicators in breeding programs to 
improve the resilience of livestock.
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Additional file 1: Table S1. Estimates of genetic (below the diagonal) and 
phenotypic (above the diagonal, italic) correlations with standard errors 
(in parentheses) between the resilience indicators ln(variance), skewness, 
and autocorrelation based on average batch production for the same 
life periods, but with different intervals for White. Table S2. Estimates of 
genetic (below the diagonal) and phenotypic (above the diagonal, italic) 
correlations with standard errors (in parentheses) between the resilience 
indicators ln(variance), skewness, and autocorrelation based on average 
batch production for the same life periods, but with different intervals 
for Brown. Table S3. Estimates of genetic (below the diagonal) and 
phenotypic (above the diagonal, italic) correlations with standard errors 
(in parentheses) between the resilience indicators ln(variance), skewness, 
and autocorrelation based on average batch production for 1-week-
intervals, but for different life periods for White. Table S4. Estimates 
of genetic (below the diagonal) and phenotypic (above the diagonal, 
italic) correlations with standard errors (in parentheses) between the 
resilience indicators ln(variance), skewness, and autocorrelation based 
on average batch production for 1-week-intervals, but for different life 
periods for Brown. Table S5. Estimates of genetic (below the diagonal) 
and phenotypic (above the diagonal, italic) correlations with standard 
errors (in parentheses) between the resilience indicators ln(variance), 
skewness, and autocorrelation based on average batch production for 
the same life periods with 1-week-intervals for White. Table S6. Estimates 
of genetic (below the diagonal) and phenotypic (above the diagonal, 
italic) correlations with standard errors (in parentheses) between the 
resilience indicators ln(variance), skewness, and autocorrelation based 
on average batch production for the same life periods with 1-week-
intervals for Brown. Table S7. Estimates of genetic and phenotypic (italic) 
correlations with standard errors (in parentheses) between the resilience 
indicators ln(variance), skewness, and autocorrelation based on average 
batch production and expected individual production for the same life 
periods with 1-week-intervals for White and Brown. Table S8. Estimates 
of genetic characteristics for egg production traits: variance components 
( σ 2 ), heritability ( h2 ), and maternal environmental effect ( m2 ) for 
the full production cycle (i.e. all eggs between start and end), the early 
production cycle (i.e. between start and 25 weeks of age), the ’traditional’ 
production cycle (i.e. between 25 and 83 weeks of age), and the time 
period after the ’traditional’ production cycle (i.e. between 83 weeks of 
age and end) with standard errors (SE) for White and Brown. Table S9. 
Estimates of genetic (below the diagonal) and phenotypic (above the 
diagonal, italic) correlations with standard errors (in parentheses) between 
egg production traits for the full production cycle (i.e. all eggs between 
start and end), the early production cycle (i.e. between start and 25 weeks 
of age), the ’traditional’ production cycle (i.e. between 25 and 83 weeks 
of age), and the time period after the ’traditional’ production cycle (i.e. 
between 83 weeks of age and end) for White. Table S10. Estimates of 
genetic (below the diagonal) and phenotypic (above the diagonal, italic) 
correlations with standard errors (in parentheses) between egg produc-
tion traits for the full production cycle (i.e. all eggs between start and 
end), the early production cycle (i.e. between start and 25 weeks of age), 
the ’traditional’ production cycle (i.e. between 25 and 83 weeks of age), 
and the time period after the ’traditional’ production cycle (i.e. between 
83 weeks of age and end) for Brown. Table S11. Estimates of genetic 
and phenotypic (italic) correlations with standard errors (in parentheses) 
between the resilience indicators ln(variance), skewness, and autocor-
relation based on average batch production for the same life periods 
with 1-week-intervals and egg production traits for the full production 
cycle (i.e. all eggs between start and end), the early production cycle (i.e. 
between start and 25 weeks of age), the ’traditional’ production cycle 
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(i.e. between 25 and 83 weeks of age), and the time period after the 
’traditional’ production cycle (i.e. between 83 weeks of age and end) for 
White. Table S12. Estimates of genetic and phenotypic (italic) correlations 
with standard errors (in parentheses) between the resilience indicators 
ln(variance), skewness, and autocorrelation based on average batch 
production for the same life periods with 1-week-intervals and egg pro-
duction traits for the full production cycle (i.e. all eggs between start and 
end), the early production cycle (i.e. between start and 25 weeks of age), 
the ’traditional’ production cycle (i.e. between 25 and 83 weeks of age), 
and the time period after the ’traditional’ production cycle (i.e. between 
83 weeks of age and end) for Brown. Table S13. Estimates of genetic 
characteristics for the antibody traits: variance components ( σ 2 ), herit-
ability ( h2 ), and maternal environmental effect ( m2 ) of the antibody traits 
keyhole limpet hemocyanin (KLH)-binding IgM natural antibody titer and 
KLH-binding IgG natural antibody titer with standard errors (SE) for White 
and Brown. Table S14. Estimates of genetic (below the diagonal) and 
phenotypic (above the diagonal, italic) correlations with standard errors 
(in parentheses) between the antibody traits keyhole limpet hemocyanin 
(KLH)-binding IgM natural antibody titer and KLH-binding IgG natural 
antibody titer for White and Brown. Table S15. Estimates of genetic and 
phenotypic (italic) correlations with standard errors (in parentheses) of the 
resilience indicators ln(variance), skewness, and autocorrelation based on 
average batch production for the same life periods with 1-week-intervals 
and the antibody traits keyhole limpet hemocyanin (KLH)-binding IgM 
natural antibody titer and KLH-binding IgG natural antibody titer for White. 
Table S16. Estimates of genetic and phenotypic (italic) correlations with 
standard errors (in parentheses) of the resilience indicators ln(variance), 
skewness, and autocorrelation based on average batch production for the 
same life periods with 1-week-intervals and the antibody traits keyhole 
limpet hemocyanin (KLH)-binding IgM natural antibody titer and KLH-
binding IgG natural antibody titer for Brown.
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